首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A radiation and diffraction boundary value problem is investigated. It arises from the interaction of linear water waves with a freely floating rectangular structure in a semi-infinite fluid domain of finite water depth with the leeward boundary being a vertical wall. Analytical expressions for the radiated potentials and the diffracted potential are obtained by use of the method of separation of variables and the eigenfunction expansion method. The added masses and damping coefficients for the structure heaving, swaying and rolling in calm water are obtained by use of the corresponding radiated potentials and the wave excitation forces are calculated by use of the diffracted potential. To verify the correctness of the method, a boundary element method is used. A comparison of the analytical results with those obtained by the boundary element method is made and good agreement is achieved, which shows that the analytical expressions for the radiated and diffracted potentials are correct. By use of the present analytical solution, the added mass, damping coefficients, wave excitation force, together with the hydrodynamic effects of the draft, width of the structure and the clearance between the structure and the sidewall are also investigated.  相似文献   

2.
A model-based approach is proposed to solve the oceanic internal wave signal processing problem that is based on state-space representations of the normal-mode vertical velocity and plane wave horizontal velocity propagation models. It is shown that these representations can be utilized to spatially propagate the modal (depth) vertical velocity functions given the basic parameters (wave numbers, Brunt-Vaisala frequency profile, etc.) developed from the solution of the associated boundary value problem as well as the horizontal velocity components. These models are then generalized to the stochastic case where an approximate Gauss-Markov theory applies. The resulting Gauss-Markov representation, in principle, allows the inclusion of stochastic phenomena such as noise and modeling errors in a consistent manner. Based on this framework, investigations are made of model-based solutions to the signal enhancement problem for internal waves. In particular, a processor is designed that allows in situ recursive estimation of the required velocity functions. Finally, it is shown that the associated residual or so-called innovation sequence that ensues from the recursive nature of this formulation can be employed to monitor the model's fit to the data  相似文献   

3.
In this study, a two-dimensional floating pier consists of single rectangular impermeable pontoon with side supporting pile-columns is studied. The purpose of this study is to present a theoretical solution for the linearized problem of incident waves exerting on a floating pier with pile-restrained. All boundary conditions are linearized in the problem, which is incorporated into a scattering problem and radiation problem with unit displacement. The method of separation of variables is used to solve for velocity potentials. For the radiation problem with unit heave and pitch amplitude, the boundary value problem with non-homogeneous boundary condition beneath the structure is solved by using a solution scheme. By calculating the wave force from velocity potential and solving the equation of motion of the floating structure simultaneously a close form theoretical solution for the problem is developed. The finite element method was also applied to calculate the dynamic responses on the supporting piles subjected to the pontoon motions and incident waves.  相似文献   

4.
Based on a two dimensional linear water wave theory, the boundary element method (BEM) is developed and applied to study the heave and the sway problem of a floating rectangular structure in water to finite depth with one side of the boundary is a vertical sidewall and the other boundary is an open boundary. Numerical results for the added mass and radiation damping coefficients are presented. These coefficients are not only depend on the submergence and the width of the structure, but also depend on the clearance between structure and sidewall. Negative added mass and sharp peaks in the damping and added mass coefficients have been found when the clearance with a value close to integral times of half wave length of wave generated by oscillation structure. The important effect of the clearance on the added mass and radiation damping coefficients are discussed in detail. An analytical solution method is also presented. The BEM solution is compared with the analytical solution, and the comparison shows good agreement.  相似文献   

5.
This paper shows how the second order wave pressure on the submerged surface of a body may be obtained without solving the boundary value problem for the second order velocity potential. The corresponding analytical solution for a vertical circular cylinder is developed, and selected results are presented which illustrate a number of novel phenomena not occurring in first order diffraction analysis.  相似文献   

6.
An analytical solution is undertaken to describe the wave-induced flow field and the surge motion of a permeable platform structure with fuzzy controllers in an oceanic environment. In the design procedure of the controller, a parallel distributed compensation (PDC) scheme is utilized to construct a global fuzzy logic controller by blending all local state feedback controllers. A stability analysis is carried out for a real structure system by using Lyapunov method. The corresponding boundary value problems are then incorporated into scattering and radiation problems. They are analytically solved, based on separation of variables, to obtain series solutions in terms of the harmonic incident wave motion and surge motion. The dependence of the wave-induced flow field and its resonant frequency on wave characteristics and structure properties including platform width, thickness and mass has been thus drawn with a parametric approach. From which mathematical models are applied for the wave-induced displacement of the surge motion. A nonlinearly inverted pendulum system is employed to demonstrate that the controller tuned by swarm intelligence method can not only stabilize the nonlinear system, but has the robustness against external disturbance.  相似文献   

7.
Based on the Rankine source, this paper proposed a time-domain method for analyzing the three-dimensional wave–structure interaction problem in irregular wave. A stable integral form of the free-surface boundary condition (IFBC) is employed to update the velocity potential on the free surface. A multi-transmitting formula, with an artificial wave speed, is used to eliminate the wave reflection for radiation condition on the artificial boundary. An effective multi-transmitting formula, coupled with damping zone method, is further used to analyze the irregular wave diffraction at the artificial boundary. We investigate hydrodynamic forces on floating structure and compare our solution to the frequency-domain solution. It is shown that long time simulation can be done with high stability and the numerical results agree well with the solution obtained under the frequency domain. The efficiency of the proposed multi-transmitting formula and the coupled methods for radiation boundary make them promising candidates in studying the irregular water wave problem in time domain.  相似文献   

8.
In this note we investigated the effects of a thin visco-elastic mud layer on wave propagation. Within the framework of linear water-wave theory, analytical solutions are obtained for damping rate, dispersion relation between wave frequency and wave number, and velocity components in the water column and mud layer. The wave attenuation rate reaches a maximum value when the mud layer thickness is about the same as the mud boundary layer thickness. Heavier mud has a weaker effect on the wave damping. However, the wave attenuation rate does not always decrease as the elastic shear modulus increases. In the range of small values for elastic shear modulus, the wave attenuation can be amplified quite significantly. The current solutions are compared with experimental data with different wave conditions and mud properties. In general, good agreements are observed.  相似文献   

9.
This study gives a new analytical solution for wave reflection and transmission by a surface-piercing porous breakwater. Velocity potential decompositions in the breakwater are used to obtain the solution. Different from traditional solutions, the new solution needs no complex dispersion relations (complex wave numbers) for wave motion through porous media. Thus, difficult procedures in traditional solutions for solving complex dispersion relations and handling non-self-adjoint eigenvalue problem are avoided. The calculated results of the new solution are in very good agreement with those of traditional solutions and multi-domain boundary element method solutions.  相似文献   

10.
The influence of the seaward boundary condition on the internal swash hydrodynamics is investigated. New numerical solutions of the characteristics form of the nonlinear shallow-water equations are presented and applied to describe the swash hydrodynamics forced by breaking wave run-up on a plane beach. The solutions depend on the specification of characteristic variables on the seaward boundary of the swash zone, equivalent to prescribing the flow depth or the flow velocity. It is shown that the analytical solution of Shen and Meyer [Shen, M.C., Meyer, R.E., 1963. Climb of a bore on a beach. Part 3. Runup. J. Fluid Mech. 16, 113–125] is a special case of the many possible solutions that can describe the swash flow, but one that does not appear appropriate for practical application for real waves. The physical significance of the boundary conditions is shown by writing the volume and momentum fluxes in terms of the characteristic variables. Results are presented that illustrate the dependence of internal flow depth and velocity on the boundary condition. This implies that the internal swash hydrodynamics depend on the shape and wavelength of the incident bore, which differs from the hydrodynamic similarity inherent in the analytical solution. A solution appropriate for long bores is compared to laboratory data to illustrate the difference from the analytical solution. The results are important in terms of determining overwash flows, flow forces and sediment dynamics in the run-up zone.  相似文献   

11.
This paper presents an analytical solution for the dynamic behavior of both the platform and tethers in the tension leg platform system when the platform system is subjected to the wave-induced surge motion and the flow-induced drag motion. Along with the analysis the coupling problem of a two dimensional tension leg platform interacting with a monochromatic linear wave train in an inviscid and incompressible fluid is being considered. The scattering problem and radiation problem are first solved independently and then combined together to resolve for all unknowns. The dynamic behavior of the platform and tethers was further solved based on these solutions. The material property and the dimensional effect for the tether incorporated in the tension leg platform system are both taken into account in the analytical analysis. Corresponding to the variation of material properties and tether dimensions, it was found that the dynamic behavior of both the tether of tension leg platform and the platform itself is closely related to the material property and the dimension of the tether.  相似文献   

12.
The three-dimensional numerical model with σ-coordinate transformation in the vertical direction is applied to the simulation of surface water waves and wave-induced laminar boundary layers. Unlike most of the previous investigations that solved the simplified one-dimensional boundary layer equation of motion and neglected the interaction between boundary layer and outside flow, the present model solves the full Navier–Stokes equations (NSE) in the entire domain from bottom to free surface. A non-uniform mesh system is used in the vertical direction to resolve the thin boundary layer. Linear wave, Stokes wave, cnoidal wave and solitary wave are considered. The numerical results are compared to analytical solutions and available experimental data. The numerical results agree favorably to all of the experimental data. It is found that the analytical solutions are accurate for both linear wave and Stokes wave but inadequate for cnoidal wave or solitary wave. The possible reason is that the existing analytical solutions for cnoidal and solitary waves adopt the first-order approximation for free stream velocity and thus overestimate the near bottom velocity. Besides velocity, the present model also provides accurate results for wave-induced bed shear stress.  相似文献   

13.
The radiation and the diffraction of linear water waves by an infinitely long floating rectangular structure submerged in water of finite depth with leeward boundary being a vertical wall are analyzed in this paper by using the method of separation of variables. Analytical expressions for the radiated and diffracted potentials are derived as infinite series with unknown coefficients determined by the eigenfunction expansion matching method. The expressions for wave forces and hydrodynamic coefficients are given. A comparison is made between the results obtained by the present analytical solution and those obtained by the boundary element method. By using the present analytical solution, the hydrodynamic influences of the submergence, the width, the thickness of the structure, and the distance between the structure and the wall on the wave forces and hydrodynamic coefficients are discussed in detail.  相似文献   

14.
Finite element analysis of two-dimensional non-linear transient water waves   总被引:1,自引:0,他引:1  
The two-dimensional nonlinear time domain free surface flow problem is analyzed by the finite element method. Two approaches are used. One is based on the velocity potential which is approximated by means of shape functions. The solution is obtained through use of a variational statement, and the velocity is obtained subsequently by the Galerkin method. The other approach is to write both potential and velocity in terms of the shape functions at the same time. Their solutions are derived from the same equation by using another variational statement. Numerical results are given for the vertical wave maker problem and for a transient wave in a rectangular container. They are compared with analytical solutions, and very good agreement is found.  相似文献   

15.
This study gives a new approximate analytic solution for water wave scattering by a submerged horizontal porous disk in the context of the linear potential theory. The solution is based on the domain decomposition method. The velocity potentials are determined by two different approaches. One approach is to adopt decompositions for velocity potentials, and the other is to expand the vertical derivative of the velocity potential on the porous disk along the radial direction. Hence the velocity potentials are determined by the matched eigenfunction expansions. Differing from previous solutions with respect to the porous disk, the present solution needs no complex dispersion relations. Thus the new solution is easier for numerical implementation. According to numerical examples, the convergence of the present solution is satisfactory. In addition, the present predictions of the wave surface elevation and the vertical wave force on the disk agree very well with previous results by different approaches. The present solution can also be extended to other structures involving disks, such as a fish cage, a porous disk with finite thickness, and a submerged elastic disk.  相似文献   

16.
多消浪室局部开孔沉箱防波堤反射特性的迭代解析研究   总被引:1,自引:0,他引:1  
基于势流理论,对多消浪室局部开孔沉箱防波堤的反射特性进行解析研究。研究中采用开孔墙处的二次压力损失边界条件,可以直接考虑波高对于开孔墙处能量损失的影响。利用匹配特征函数展开法和迭代方法得到当前问题的解析解。收敛性验证表明,迭代计算和级数解均具有良好的收敛性。该解析解的计算结果与分区边界元的数值计算结果一致,并且与已有的试验结果符合良好。通过算例分析,研究开孔沉箱防波堤反射系数的主要影响因素。结果表明:与单消浪室开孔沉箱防波堤相比,多消浪室开孔沉箱防波堤可以在更宽的波浪频率范围内保持低反射;增大开孔墙的开孔率,有利于降低多消浪室开孔沉箱防波堤的反射系数;当开孔墙的开孔率沿着入射波方向依次递减时,多消浪室开孔沉箱防波堤的反射系数较小。本文所建立的解析模型简单可靠,可用于工程初步设计中分析开孔沉箱防波堤的水动力性能。  相似文献   

17.
A three-dimensional modeling of multidirectional random-wave diffraction by a group of rectangular submarine pits is presented in this paper. The fluid domain is divided into N interior regions representing the pit area and an overall exterior region separated by the imaginary pit boundaries. In the interior region, the analytical expressions of the Fourier series expansion for velocity potentials in the pit regions have been derived with the unknown coefficients determined from a series of Green's function based boundary integral equations. The boundary integral approach has also been applied to obtain the velocity potential and free-surface elevation in the exterior region. The Pierson–Moskowitz (P–M) frequency spectrum was selected for the random wave simulation using the superposition of solutions of a finite number of decomposed wave components. Numerical results for the cases of regular waves and random waves are presented to examine the influences of the pit geometry and incident wave condition on the overall wave field. The general diffraction pattern of alternate bands of increase and decrease of relative wave height in front of the pit system can be observed. It is found that, in the shadow region, the relative wave height is reduced. As the number of pit increases, the effectiveness of reducing the relative wave height behind the multiple-pit system increases. However, the relative wave height within the pit area and in front of the leading pit shows increasing trend. It is noticed that under the random-wave condition, the level of increase and decrease of the relative wave height due to the existence of submarine pits is less pronounced than that observed from results in regular-wave condition.  相似文献   

18.
LI  Yucheng 《中国海洋工程》2002,16(1):79-87
Regular wave deformation and breaking on very gende slopes is calculated by Mixed-Eulerian-Lagrangian procedure. The velocity potentials and their normal derivatives on the boundary are calculated through the mixed 0-1 boundary element method. The wave elevation and the potentials of time-stepping integration are detertnined by the 2nd-order Taylor expansion at the nodes of free surface boundary elements. During calculation the x-coordinates of the free surface element nodes are supposed to remain unchanged, i.e. the partial derivatives of wave elevation and potentials with respect to x are considered as zero. The numerical results of asymmetric parameters of breaking waves are verified by experimental study. It is shown that when the wave asymmetry is weak, the maximum horizontal velocity of water particales occurs at the wave peak and, the average ratio of this maximum velocity to wave celerity is 0.96. However, when the wave asymmetry is strong, the maximum horizontal velocity of water particles occu  相似文献   

19.
This paper presents numerical solutions for the wave reflection from submerged porous structures in front of the impermeable vertical breakwater. A new time-dependent mild-slope equation involves the parameters of the porous medium including the porosity, the friction factor and the inertia coefficient, etc. is derived for solving the boundary value problem. A comprehensive comparison between the present model and the existing analytical solution for the case of simple rectangular geometries of the submerged structure is performed first. Then, more complicated cases such as the inclined and trapezoidal submerged porous structures in front of the vertical breakwater with sloping bottom are considered. This study also examines the effects of the permeable properties and the geometric configurations of the porous structure to the wave reflection. It is found that the submerged porous structure with trapezoidal shape has more efficiency to reduce the wave reflection than that of triangular shape. The numerical results show that the minimum wave reflection is occurred when the breakwater is located at the intermediate water depth.  相似文献   

20.
An analytical solution using homotopy analysis method is developed to describe the nonlinear progressive waves in water of finite depth. The velocity potential of the wave is expressed by Fourier series and the nonlinear free surface boundary conditions are satisfied by continuous mapping. Unlike the perturbation method, the present approach is not dependent on small parameters. Thus solutions are possible for steep waves. Furthermore, a significant improvement of the convergence rate and region is achieved by applying Homotopy-Padé Approximants. The calculated wave characteristics of the present solution agree well with previous numerical and experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号