首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vertical distributions of phyllosoma larvae were examined in waters east of the Philippines or west of the Mariana Islands (18°56′ N to 19°04′ N; 129°10′ E to 129°35′ E) based on zooplankton samples collected with an Isaacs-Kidd Midwater Trawl on September 22–24, 1986. Phyllosoma larvae belonged to the two families Scyllaridae and Palinuridae comprising 4 genera and 9 species. Of the collected phyllosoma larvae, those of Scyllarus cultrifer and Panulirus longipes were most abundant and showed similar vertical distributions: (1) both species were collected from the mixed layer at night but not in the day, (2) their vertical distributions did not change with their stages, and (3) the upper limit of their vertical distributions during the day accorded with the base of mixed layer. Furthermore, their vertical distributions were similar to those of lepthocephalus larvae which were collected using the same sampling stations and gear in the present study. Vertical distributions of phyllosoma larvae were discussed in relation to their horizontal distributions. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
Using ichthyoplankton samples collected in the Kuroshio Subgyre during early summer cruises, we examined spatial distributions of scyllarid phyllosoma larvae in the Subgyre, particularly of the genus Scyllarus. The present study has two objectives: (1) to reveal species composition of Scyllarus phyllosoma larvae in the Kuroshio Subgyre, and (2) to examine larval recruitment of Scyllarus species as contrasted with that of Panulirus, particularly P. japonicus, the larval recruitment of which has been examined in detail. A total of 218 phyllosoma larvae collected in the present study belonged to two families (Palinuridae and Scyllaridae) representing 5 genera and 11 species. Phyllosoma larvae of two Scyllarus species (S. cultrifer and Scyllarus sp. c) were abundant among the collected larvae, and were found mainly in the following three regions located within the Kuroshio-Counter Current region south of Kuroshio Current: the water east of Okinawa Is., the water far east of Okinawa Is. (or far south of Shikoku Is.), and the water around Hachijojima Is. Larvae of each of the above two Scyllarus species collected in the three regions may belong to different populations: larvae collected in the water around Hachijojima Is. may come from their benthic populations along the Pacific coast of Honshu and Shikoku Is., central Japan, while larvae collected in the other two regions may come from their benthic populations of the Ryukyu Archipelago and Taiwan. Judging from their shorter larval period and current systems within the Kuroshio Subgyre, these Scyllarus larvae may be destined for death. An erratum to this article is available at .  相似文献   

3.
Phyllosoma larvae collected to date in Japanese and Taiwanese waters have been classified into two genera (Linuparus, Panulirus) of the Palinuridae, four genera (Ibacus, Parribacus, Scyllarides, Scyllarus) of the Scyllaridae, and one genus (Palinurellus) of the Synaxidae. However, phyllosoma larvae of three Scyllarus species (S. bicuspidatus, S. cultrifer, S. kitanoviriosus) are absolutely dominant among the larvae collected in the waters. Scyllarus larvae are abundant in coastal waters while those of Panulirus are often collected in offshore/oceanic waters. Based on previous and ongoing studies dealing with spatial distributions of phyllosoma larvae in Japanese and Taiwanese waters, it appears that phyllosoma and nisto larvae of the Scyllarus are retained within coastal waters north of the Kuroshio Current. On the other hand, the life history of the Panulirus (particularly P. japonicus) may be completed within the Kuroshio Subgyre: their phyllosoma larvae may be flushed out from coastal waters into the Kuroshio, then transported through the Counter Current south of the Kuroshio into the water east of Ryukyu Archipelago and Taiwan where they attain the subfinal/final phyllosoma or puerulus stages, once again entering the Kuroshio and dispersing into coastal waters. This revised version was published online in July 2006 with corrections to the Cover Date. An erratum to this article is available at .  相似文献   

4.
Distributions and taxonomy of phyllosoma larvae were examined in Taiwanese waters, based on ichthyoplankton samples collected from May 1990 to July 1995. Phyllosoma larvae belonged to the two families Scyllaridae and Palinuridae representing 6 genera and 13 species. Of the collected phyllosoma larvae, those of Scyllarus and Panulirus species were most abundant, forming 90% of total numbers. Early stage Scyllarus and Panulirus phyllosoma larvae were abundant in Taiwanese waters. Middle to late stages (except the final stage) of Panulirus phyllosoma larvae were absent from the waters throughout the year, while those of Scyllarus phyllosoma larvae were collected in the waters. This suggests that all stages of Scyllarus phyllosoma larvae may be retained in the northern part of the waters around northern Taiwan while middle to late stages of Panulirus phyllosoma larvae may be flushed out from the waters, the sub-final and final stages then possibly returning to the waters. An anticlockwise eddy existed in the waters off northeastern Taiwan, which may be closely related to flushing out and returning of Panulirus phyllosoma larvae through a much longer planktonic period. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

5.
The complete series of phyllosoma larval stages of spiny lobster lasus edwardsii are described. Eleven stages are recognised from specimens captured in plankton samples collected along a transect extending 185 km east of Castlepoint, North Island, New Zealand between July 1969 and December 1971. A table of distinguishing characteristics and a key for identification of stages are presented. First stage larvae occur between August and October and last stage larvae about 15 months later. Mortality through the phyllosoma stages is estimated to be 98%. Early stage larvae occur mainly inshore in Southland Current water in the upper 5 m, and later stage larvae occur more frequently offshore in East Cape Current water at 40–60 m depth.  相似文献   

6.
在黑潮入侵南海强弱的问题上,到底是太平洋年代际变化(Pacific Decadal Oscillation,PDO)还是厄尔尼诺-南方涛动(El Nio-Southern Oscillation,ENSO)现象在起关键作用,目前还存在着较大争议。本文先以高盐水作为黑潮入侵强弱的示踪物,用120°E断面的高盐水数据和北赤道流分叉点(North Equator Current Bifurcation,NEC-Y)的南北变动进行相关分析,接着,进一步用学者所用的黑潮入侵指数(KI指数,Kuroshio intrusion index和NEC指数,North Equatorial Current index)与北赤道流分叉点南北变动进行相关分析。最后,用EMD(Empirical Mode Decomposition)方法和相关关系分析法分别分析了PDO指数、Nio3.4指数与北赤道流分叉点南北变动的关系并用NECP风场数据探讨其影响机制。结果表明:(1)通过对120°E断面的高盐水的KI指数、NEC指数与NEC-Y的相关分析,表明了北赤道流分叉点的南北变动能够很好地指代黑潮入侵南海的强弱;(2)通过PDO指数和Nio3.4指数与北赤道流分叉点的南北变动的相关性分析,发现PDO指数、Nio3.4指数与北赤道流分叉点的南北变动都具有较好的相关性,都在0.5水平。这些良好的相关性表明了PDO和ENSO对黑潮入侵南海的强弱都具有重要的影响;(3)当处于厄尔尼诺年(拉尼娜)时,赤道太平洋发生西(东)风异常,使得北赤道流分叉点偏北(南),使吕宋岛东侧的黑潮流速减弱(加强),黑潮入侵南海增强(减弱);当PDO处于暖(冷)阶段时,会加强热带太平洋的西(东)风异常,使得黑潮入侵南海增强(减弱)。  相似文献   

7.
In the previous paper (Toba and Murakami, 1998) we reported on an unusual path of the Kuroshio Current System, which occurred in April 1997 (April 1997 event), using the Ocean Color and Temperature Scanner (OCTS) data of the Advanced Earth Observing Satellite (ADEOS). The April 1997 event was characterized by the flow of the Kuroshio along the western slope (northward) and the eastern slope (southward) of the Izu-Ogasawara Ridge, a very southerly turning point at about 32°N, followed by a straight northward path up to 37°N of the Kuroshio Extension along the eastern flank of the Izu-Ogasawara and the Japan Trenches. Overlaying of depth contours on ADEOS-OCTS chlorophyll-a images at the April 1997 event demonstrates the bottom topography effects on the current paths. A new finding based on TOPEX/Poseidon altimeter data is that the sea-surface gradient across the Kuroshio/Kuroshio Extension diminished greatly in the sea area southeast of the central Japan, as a very temporary phenomenon prior to this event. This temporary diminishing of the upper-ocean current velocity might have caused a stronger bottom effect along the Izu-Ogasawara Ridge, and over the Izu-Ogasawara Trench disclosed a weak background, barotropic trench-flank current pattern, which existed otherwise independently of the Kuroshio Extension. The very southerly path of the Kuroshio Extension from winter 1996 to autumn 1998 corresponded, with a time lag of about 1.5 years, to the previous La Niña tendency with weaker North Equatorial Current. The April 1997 event occurred in accordance with its extreme condition.  相似文献   

8.
9.
Pacific ocean circulation based on observation   总被引:2,自引:1,他引:1  
A thorough understanding of the Pacific Ocean circulation is a necessity to solve global climate and environmental problems. Here we present a new picture of the circulation by integrating observational results. Lower and Upper Circumpolar Deep Waters (LCDW, UCDW) and Antarctic Intermediate Water (AAIW) of 12, 7, and 5 Sv (106 m3s−1) in the lower and upper deep layers and the surface/intermediate layer, respectively, are transported to the North Pacific from the Antarctic Circumpolar Current (ACC). The flow of LCDW separates in the Central Pacific Basin into the western (4 Sv) and eastern (8 Sv) branches, and nearly half of the latter branch is further separated to flow eastward south of the Hawaiian Ridge into the Northeast Pacific Basin (NEPB). A large portion of LCDW on this southern route (4 Sv) upwells in the southern and mid-latitude eastern regions of the NEPB. The remaining eastern branch joins nearly half of the western branch; the confluence flows northward and enters the NEPB along the Aleutian Trench. Most of the LCDW on this northern route (5 Sv) upwells to the upper deep layer in the northern (in particular northeastern) region of the NEPB and is transformed into North Pacific Deep Water (NPDW). NPDW shifts southward in the upper deep layer and is modified by mixing with UCDW around the Hawaiian Islands. The modified NPDW of 13 Sv returns to the ACC. The remaining volume in the North Pacific (11 Sv) flows out to the Indian and Arctic Oceans in the surface/intermediate layer.  相似文献   

10.
利用EN4(the UK Met Office EN4.2.1 analyses)盐度数据发现北太平洋副热带高盐中心——北太平洋热带水(NPTW)的海表面积与体积在2000—2008年、2014—2017年存在下降趋势,2008—2014年期间存在上升趋势,进一步的研究表明,这些变化与太平洋年代际震荡(PDO)的位相转换紧密相关。利用淡水通量数据以及ECCO2(Circulation and Climate of the Ocean, Phase II)流场数据计算分析后表明,淡水通量对NPTW的变化贡献较小,而水平输运对NPTW的表面积以及体积变化贡献较大,这与PDO正(负)位相期间北赤道流(NEC)的向北(南)摆动有关。  相似文献   

11.
菲律宾海热含量分布及其变化的初步探讨   总被引:2,自引:0,他引:2  
白虹  胡敦欣 《海洋科学》1989,13(3):7-12
本文利用1986年及1987年秋季在菲律宾以东海域进行的CTD观测资料,分析了该海域上层海水热含量分布及变化,得出,热含量由南向北随纬度逐渐增大,这主要是北赤道流引起的等温线自南向北下倾造成的,另外也与南部和北部的冷涡和暖涡有关。本文认为,两年里热含量的差异可能与1986年生成的El Nin有关。另外,北太平洋赤道流体积输送量的变化与菲律宾海热含量的变化也有一定的联系。  相似文献   

12.
The variability of the Caribbean Current is studied in terms of the influence on its dynamics of the freshwater inflow from the Orinoco and Amazon rivers. Sea-surface salinity maps of the eastern Caribbean and SeaWiFS color images show that a freshwater plume from the Orinoco and Amazon Rivers extends seasonally northwestward across the Caribbean basin, from August to November, 3–4 months after the peak of the seasonal rains in northeastern South America. The plume is sustained by two main inflows from the North Brazil Current and its current rings. The southern inflow enters the Caribbean Sea south of Grenada Island and becomes the main branch of the Caribbean Current in the southern Caribbean. The northern inflow (14°N) passes northward around the Grenadine Islands and St. Vincent. As North Brazil Current rings stall and decay east of the Lesser Antilles, between 14°N and 18°N, they release freshwater into the northern part of the eastern Caribbean Sea merging with inflow from the North Equatorial Current. Velocity vectors derived from surface drifters in the eastern Caribbean indicate three westward flowing jets: (1) the southern and fastest at 11°N; (2) the center and second fastest at 14°N; (3) the northern and slowest at 17°N. The center jet (14°N) flows faster between the months of August and December and is located near the southern part of the freshwater plume. Using the MICOM North Atlantic simulation, it is shown that the Caribbean Current is seasonally intensified near 14°N, partly by the inflow of river plumes. Three to four times more anticyclonic eddies are formed during August–December, which agrees with a pronounced rise in the number of anticyclonic looper days in the drifter data then. A climatology-forced regional simulation embedding only the northern (14°N) Caribbean Current (without the influence of the vorticity of the NBC rings), using the ROMS model, shows that the low salinity plume coincides with a negative potential vorticity anomaly that intensifies the center jet located at the salinity front. The jet forms cyclones south of the plume, which are moved northwestward as the anticyclonic circulation intensifies in the eastern Caribbean Sea, north of 14°N. Friction on the shelves of the Greater Antilles also generates cyclones, which propagate westward and eastward from 67°W.  相似文献   

13.
The large-scale circulation of the Pacific Ocean consists of two great anticyclonic gyres that contract poleward at increasing depth, two high-latitude cyclonic gyres, two westward flows along 10° to 15° north and south that are found from the surface to abyssal depths, and an eastward flow that takes place just north of the equator at the surface and at about 500m, but lies along the equator at all other depths.This pattern is roughly symmetric about the equator except for the northward flow across the equator in the west and the southward flow in the east.As no water denser than about 26.8 in σ0 is formed in the North Pacific, the denser waters of the North Pacific are dominated by the inflow from the South Pacific. Salinity and oxygen in the deeper water are higher in the South Pacific and the nutrients are lower. These characteristics define recognizable paths as they move northward across the equator in the west and circulate within the North Pacific. Return flow is seen across the equator in the east. Part of it turns westward and then southward with the southward limb of the extended cyclonic gyre, and part continues southward along the eastern boundary and through the Drake Passage.The important differences from earlier studies are that the equatorial crossings and the deep paths of flow are defined, and that there are strong cyclonic gyres in the tropics on either side of the equator.  相似文献   

14.
The low-frequency variability of the North Equatorial Current (NEC) bifurcation during 1958 to 2001 was investigated with the Simple Ocean Data Assimilation (SODA) 2.0.2 dataset.In agreement with recent observations,the NEC bifurcation latitude (NBL) shifted northward as depth increases, from about 12.7°N near the surface to about 17.1°N at depths around 500 m for the annual average. This study reveals that the interannual variations of NBL,with five years period,mainly focused on the upper 500 m with amplitude increasing as depth increased.The NBL shifted southward in the past 40 years,which was more significant in the subsurface at more than -0.02°/a.The NBL manifests itself in the transports of NMK (NEC-Mindanao Current (MC)-Kuroshio) system in strong relationship with MC (0.7) and Kuroshio (-0.7).The EOF analysis of meridional velocity off the Philippine coast shows that the first mode,explaining 62% of variance and 5 years period,was highly correlated with the southward shift of NBL with coefficient at about 0.75.The southward shift of NBL consists with the weakening of MC and strengthening of Kuroshio,which exhibited linear trends at -0.24Sv/a and 0.11Sv/a.Both interannual variation and trend of NBL were closely related to the variation of NMK system.  相似文献   

15.
The large-scale circulation of the Indian Ocean has several major components. There is a cyclonic gyre in the far southwest with its axis along about 60°S. It extends to the bottom. North of this the Circumpolar Current flows eastward south of 40°S to more than 3000 m. The axis of the great anticyclonic gyre lies along 35°S to 40°S down to about 2000 m. Below there the western end shifts northward and the axis lies along the central and southeast Indian ridges, with southward flow west of the ridges and northward flow on the east side.There is a westward flow along 10°S to 15°S, which includes water from the Pacific, through the Banda Sea. The flow near the equator is eastward down to the depth of the ridge near 73°E. Flow within both the Arabian Sea and Bay of Bengal is cyclonic down to great depth.There is a southward flow along the coast of Africa in the upper 2000 m joining the Circumpolar Current, and a southward flow along the coast of Australia that does not reach the Circumpolar Current.Below 2500 m there is a northward flow from the Circumpolar Current along the east coast of Madagascar and on into the Somali and Arabian basins.  相似文献   

16.
Full-depth conductivity-temperature-depth-oxygen profiler (CTDO2) data at low latitudes in the western North Pacific in winter 1999 were analyzed with water-mass analysis and geostrophic calculations. The result shows that the deep circulation carrying the Lower Circumpolar Water (LCPW) bifurcates into eastern and western branch currents after entering the Central Pacific Basin. LCPW colder than 0.98°C is carried by the eastern branch current, while warmer LCPW is carried mainly by the western branch current. The eastern branch current flows northward in the Central Pacific Basin, supplying water above 0.94°C through narrow gaps into an isolated deep valley in the Melanesian Basin, and then passes the Mid-Pacific Seamounts between 162°10′E and 170°10′E at 18°20′N, not only through the Wake Island Passage but also through the western passages. Except near bottom, dissolved oxygen of LCPW decreases greatly in the northern Central Pacific Basin, probably by mixing with the North Pacific Deep Water (NPDW). The western branch current flows northwestward over the lower Solomon Rise in the Melanesian Basin and proceeds westward between 10°40′N and 12°20′N at 150°E in the East Mariana Basin with volume transport of 4.1 Sv (1 Sv=106 m3 s−1). The current turns north, west of 150°E, and bifurcates around 14°N, south of the Magellan Seamounts, where dissolved oxygen decreases sharply by mixing with NPDW. Half of the current turns east, crosses 150°E at 14–15°N, and proceeds northward primarily between 152°E and 156°E at 18°20′N toward the Northwest Pacific Basin (2.1 Sv). The other half flows northward west of 150°E and passes 18°20′N just east of the Mariana Trench (2.2 Sv). It is reversed by a block of topography, proceeds southward along the Mariana Trench, then detours around the south end of the trench, and proceeds eastward along the Caroline Seamounts to the Solomon Rise, partly flowing into the West Mariana and East Caroline Basins. A deep western boundary current at 2000–3000 m depth above LCPW (10.0 Sv) closes to the coast than the deep circulation. The major part of it (8.5 Sv) turns cyclonic around the upper Solomon Rise from the Melanesian Basin and proceeds along the southern boundary of the East Caroline Basin. Nearly half of it proceeds northward in the western East Caroline Basin, joins the current from the east, then passes the northern channel, and mostly enters the West Caroline Basin (4.6 Sv), while another half enters this basin from the southern side (>3.8 Sv). The remaining western boundary current (1.5 Sv) flows over the middle and lower Solomon Rise, proceeds westward, then is divided by the Caroline Seamounts into southern (0.9 Sv) and northern (0.5 Sv) branches. The southern branch current joins that from the south in the East Caroline Basin, as noted above. The northern branch current proceeds along the Caroline Seamounts and enters the West Mariana Basin.  相似文献   

17.
The interannual variations of the monthly sea surface temperature (SST) in the North Pacific (including Equatorial East Pacific) during 1951-1980 are analysed by means of EOF method. The findings are:(1) In the cold and warm ocean current areas, such as the North Pacific Current, the California Current and the Equatorial East Pacific areas, the convergence speeds are the fastest, while in the Kuroshio and the western part of the North Equatorial Current areas they are fast only in winter.(2) The physical features of the first 3 eigenvectors are obvious. The first eigenvector shows that the SST values are high in the south and low in the north in the latitudinal distribution of the SST field. The warm current area, i.e. the northwestern part of the North Pacific is positive and the cold current area, i.e. the southeastern part of the North Pacific including the Eastern Equatorial Pacific is negative. The zero line of the 2nd eigenvector field runs from northeast to southwest, in the same direction as the  相似文献   

18.
We discussed the branching and joining of the Tsushima Current around the Oki Islands, based on ADCP and CTD measurements carried out in June 1990 by the quadrireciprocal method (Katoh, 1988). The volume transport of the northeastward current northwest of the Izumo Coast was about 2 Sv. The triple-branch structure of the Tsushima Current was obscure there. This northeastward current divided into the eastward and northward currents, with volume transports of 0.5 Sv and 1.5 Sv, respectively, at the west entrance of the Oki Strait. Most of the first branch of the Tsushima Current seemed to be separated again from the other confluent branches and to pass through the Oki Strait as this eastward current. The northward current was composed of the second and the third branches of the Tsushima Current. It detoured the Oki Islands, and almost all of it returned south to the Tajima Coast. In the vicinity of the Tajima Coast, the eastward current was abruptly strengthened through the confluence of the southward one which was originated from the northward current west of the Oki Islands. This showed that the first branch finally joined the compound of the second and the third branches detouring the Oki Islands. Between the Oki Strait and the Tajima Coast, the two-layer structure of currents was clearly found.  相似文献   

19.
Newly formed North Pacific Tropical Water (NPTW) is carried to the Philippine Sea (PS) by the North Equatorial Current (NEC) as a subsurface salinity maximum. In this study its spreading and salinity change processes are explored using existing hydrographic data of the World Ocean Database 2009 and Argo floats. Spreading of NPTW is closely associated with the transports of the NEC, Mindanao Current (MC), and Kuroshio. Estimated for subsurface water with salinity S greater than 34.8?psu, the southward (northward) geostrophic transport of NPTW by the MC (Kuroshio) at 8°N (18°N) is about 4.4 (5.7)?Sv (1?Sv?=?106?m3?s?1), which is not sensitive to reference level choice. Fields of salinity maximum, geostrophic current, sea level variation, and potential vorticity suggest that the equatorward spreading of NPTW to the tropics is primarily afforded by the MC, whereas its poleward spreading is achieved by both the Kuroshio transport along the coast and open-ocean mesoscale eddy fluxes in the northern PS. The NPTW also undergoes a prominent freshening in the PS. Lying beneath fresh surface water, salinity decreases quicker in the upper part of the NPTW, which gradually lowers the salinity maximum of NPTW to denser isopycnals. Salinity decrease is especially fast in the MC, with along-path decreasing rate reaching O (10?7?psu?s?1). Both diapycnal and isopycnal mixing effects are shown to be elevated in the MC owing to enhanced salinity gradient near the Mindanao Eddy. These results suggest intensive dispersion of thermal anomalies along the subtropical-to-tropical thermocline water pathway near the western boundary.  相似文献   

20.
1IntroductionThetropicalPacificOceanplaysanimpor-tantroleintheclimatevariabilitiessuchasElNi-no-SouthernOscillation(ENSO)phenomenon(Chao,1993).ManystudieshavefoundthatthetropicalPacificvariabilitiescanhavesignifi-cantinfluenceontheoceancirculationintheseasadjacenttoChina(Yu,1985;Chaoetal.,1996;Wangetal.,2002).TheseaareaadjacenttoChinaischaracterizedbyitscomplextopog-raphyandnumerousnarrowstraits,andthusre-quiresafinegridtoresolve.Tostudytheinter-actionbetweenthetropicalPacificandChinas…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号