首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the invasive species Caulerpa racemosa var. cylindracea (hereafter C. racemosa) on amphipod assemblages associated with shallow-water rocky habitats were studied. Two habitats located along the SE Iberian Peninsula were compared; invaded and non-invaded. The results showed that growth of C. racemosa affects habitat structure, influencing the species composition and biomass of macroalgae, and detritus accumulation. In turn, such changes in habitat features affected the associated amphipod assemblages with different ecological requirements. However, the species richness of amphipods was relatively high in both habitats, while the species composition of amphipods changed completely. For example, some species such as Ampithoe ramondi and Hyale schmidti did not colonize invaded habitats, while others such as Apocorophium acutum were favoured by the spread of C. racemosa. Habitat invasion by C. racemosa can have an important influence on biotic assemblages, modifying both habitat structure and the associated fauna, with unknown effects on the overall ecosystem.  相似文献   

2.
Abstract.  This study compares the structure of Mediterranean macroalgal assemblages invaded by Caulerpa taxifolia and C. racemosa . Assemblages in areas colonized by the two algae and in reference areas were sampled and analyzed for 2 years. Significant differences were recorded both between reference and invaded areas and between areas invaded by different Caulerpa species. Macroalgal assemblages colonized by C. racemosa were more separated from references than those colonized by C. taxifolia . Differences between assemblages colonized by C. racemosa and the others decreased during the alga's period of vegetative rest and increased at the last sampling date. While erect and turf species showed similar patterns in invaded areas, covers of encrusting algae were lower in C. racemosa areas than in C. taxifolia areas.  相似文献   

3.
Effective management of marine ecosystems is enhanced when detailed information on biodiversity is available. Key information to underpin management actions and conservation planning includes relationships between species assemblages and environmental gradients, and information on species distributions. We conducted a subtidal biodiversity assessment of surface‐dwelling subtidal molluscs in eight a priori defined habitat types using underwater visual censuses to quantitatively explore relationships between molluscan assemblages, and their correlation with benthic habitats and abiotic variables. In addition, variations in diversity were examined for two key habitat types (areas dominated by Dendronephthya australis and by filter feeders) over a period of 15 months to examine temporal change. We found that molluscs form distinct assemblages within subtidal habitats, but that assemblages within key habitats show inherent temporal variability. Regional (gamma) diversity of molluscs was found to result from a combination of: (i) within habitat alpha diversity, which increased with habitat complexity; (ii) between habitat beta diversity, with significant differences in molluscan assemblages amongst habitats with differing benthic growth, substrate type, and depth; and (iii) temporal beta diversity, with significant changes detected in molluscan assemblages over time. The results demonstrate how habitats and abiotic variables (principally depth and substrate type) combine to contribute to molluscan biodiversity in temperate estuaries, and illustrate the value of these factors as surrogates for surface‐dwelling subtidal molluscs in conservation planning.  相似文献   

4.
The use of hard coastal-defence structures, like breakwaters and seawalls, is rapidly increasing to prevent coastal erosion. We compared low-shore assemblages between wave-protected and wave-exposed habitats on breakwaters along a sandy shore of Tuscany (North-Western Mediterranean). Assemblages were generally characterized by a low diversity of taxa, with space monopolized by Mytilus galloprovincialis and Corallina elongata on the seaward side of breakwaters and by filamentous algae on the landward side. Assemblages in wave-protected habitats were characterized by greater temporal stability than those in exposed habitats and supported non-indigenous macroalgae such as Caulerpa racemosa and Codium fragile ssp. tomentosoides. Hence, the introduction of hard coastal-defence structures in otherwise soft-bottom dominated areas, attracting native and exotic rocky-bottom species, should be of great concern for the conservation of marine biodiversity at local and regional scales and for the management of biological invasions.  相似文献   

5.
The ecology and diversity of the shallow soft‐bottom areas adjacent to coral reefs are still poorly known. To date, the few studies conducted in these habitats dealing with macroinvertebrate fauna have focused on their abundance spatial patterns at high taxonomic levels. Thus, some aspects important to evaluate the importance and vulnerability of these habitats, such as species diversity or the degree of habitat specialization, have often been overlooked. In this study we compared the crustacean assemblages present in four different habitats at Magoodhoo Island coral reef lagoon (Maldives): coral rubble, sandy areas and two different seagrass species (Thalassia hemprichii and Cymodocea sp.). Forty‐two different crustacean species belonging to 30 families and four orders were found. ‘Site’ was a significant factor in all of the statistical analyses, indicating that tropical soft‐bottom habitats can be highly heterogeneous, even at a spatial scale between tens and hundreds of meters. Although traditionally it has been considered that seagrass beds host greater species diversity and abundance of organisms than adjacent unvegetated habitats, no differences in the univariate measures of fauna (abundance of organisms, number of species and Shannon diversity) were observed among habitats. However, sandy areas, coral rubble and seagrass beds exhibited different species composition of crustacean communities. The percentage of taxa considered as potential habitat specialists was 27% and the number of species exclusively occurring in one habitat was especially high in seagrass beds. Thus, degradation of this vegetated habitat would result in a great loss of biodiversity in tropical shallow soft‐bottom habitats.  相似文献   

6.
Meiobenthic data from two microtidal sandy beaches of the eastern Mediterranean (Crete, Greece) were used to investigate patterns of both alpha and beta diversity in space and time. Copepod assemblages and environmental variables related to sediment characteristics, morphodynamics and food were studied over a year at four distinct habitats at each beach; the retention, resurgence and saturation zones of Salvat's intertidal scheme (midlittoral zone), and the surf zone of the sublittoral. Αlpha diversity analysis indicated similar species richness at both beaches when the whole 13-month data set was considered but was higher at the sheltered site when each sampling period was examined separately. Both beaches supported higher diversity in the sublittoral zone. Species richness increased seawards at the midlittoral zone of the sheltered site whereas, no pattern was evident at the exposed site, where the intense hydrodynamic conditions homogenized the sediments. Beta diversity increased markedly towards the sublittoral, indicating greater differences in alpha diversity between the sublittoral and the midlittoral zone. Species turnover was more variable at the exposed beach and at the most landward stations, where environmental conditions change often between extremes. A proportion of the variation in alpha diversity was explained by food availability at both beaches and additionally by grain size at the sheltered site. However, no environmental variable explained beta diversity patterns. Although the results of our study support the hypothesis of Multicausal Environmental Severity proposed for sandy beach macrofauna, we believe the classic Intermediate Disturbance Hypothesis is a more appropriate framework for the meiofauna communities of the studied sites.  相似文献   

7.
The present work investigated the modifications induced by the spread of the green macroalga Caulerpa racemosa var. cylindracea (Bryopsidales, Chlorophyta) on the sponge assemblage of Apulian coralligenous concretions (Ionian Sea – Torre Ovo, Italy). The study of qualitative and quantitative sponge composition was carried out before (2004) and after (2006) the spread of this invasive alga by means of traditional (quadrat scraping) and photographic sampling methods. Results indicate that the spread of the green alga is concomitant with a significant decrease in percentage sponge cover both on horizontal- and on vertical-oriented substrates. In addition, strong modifications to the structure of the community in terms of repartition of the available substrate have been observed since the algal spread. Conversely, no major changes have affected the specific composition of the sponge assemblage, suggesting that at this stage of colonization the algal spread has not produced a loss of sponge biodiversity. However, there is a clear need to monitor closely the C. racemosa invasion to verify its long-term impact on the sponge assemblage.  相似文献   

8.
In the tropics and sub-tropics, estuarine environments with mangrove and seagrass habitats provide important structures and resources for diverse communities of benthic organisms. However, temperate estuarine habitats, especially in mangrove areas, may differ significantly in their community associations and interactions. The community composition of benthic macro-fauna was investigated within temperate Matapouri Estuary, northern New Zealand. The density and distribution of fauna were sampled within six distinctive habitats (mangrove stands, pneumatophore zones, Zostera beds, channels, banks, and sand flats), within four sampling events between December 2002 and September 2003. Each type of habitat was replicated seven times within different locations in the estuary. Counts of all infauna and epifauna within four replicate cores were recorded from each habitat and location. Multidimensional scaling plots were used to identify differences in structure and composition of assemblages among habitats and locations within each sampling event. Results from these benthic samples indicate that Matapouri Estuary has a high overall biodiversity, with distinctive faunal assemblages found within different habitats, and some seasonal variations also apparent. In terms of both number of individuals and taxa per unit area, seagrass beds had the highest numbers and mangrove areas had the lowest numbers, with all other habitats in between. Some locations were found to support a high diversity of organisms across habitats, while other locations had high densities of a few species only. Several physical and biological differences between tropical/sub-tropical and New Zealand's temperate mangrove habitats are put forth as potential reasons for the lower density and diversity of the benthic component observed herein. Further ongoing studies aim to elucidate the structure and interactions within food webs in this estuarine ecosystem.  相似文献   

9.
The present study evaluated the capability of recovery of Mediterranean macroalgal assemblages on rocky bottom invaded by Caulerpa racemosa. A manipulative experiment was performed to compare the structure of native assemblages that: (a) were invaded by the alga, (b) were invaded, but where the invasive alga was removed, and (c) had never been invaded. Macroalgal assemblages differed significantly between areas invaded by C. racemosa and control areas. Moreover, one year after removal of the invader, the recovery of community was minimal. Overall, recovery consisted of a significant increase in species richness and cover of macroalgae, but cover of each vegetation layer (encrusting, turf and erect) did not vary significantly between cleared and Invaded plots through time. Results showed that the effects of the colonization persist after the removal of the alga and the process of recovery of the assemblages appears to be quite slow. This finding might be an important contribution to evaluate invasion costs and thus potentially useful for an effective addressing of control strategies.  相似文献   

10.
Unusually dense assemblages of benthic infaunal invertebrates have been discovered in continental slope sediments off Cape Hatteras, North Carolina. Densities were highest on the upper slope, ranging from 24,055 to 61,244 (X¯=46,255) individuals m−2 in nine samples taken at a 600-m site in 1984 and 1985, and from 15,522 to 89,566 (X¯=37,282) individuals m−2 in single samples at 15 stations over a wider depth range of 530 to 1535 m in 1992. A lower slope station at 2000 m sampled six times in 1984–1985 and again in 1992, had densities consistently higher than 8500 individuals m−2. Species richness and diversity are consistently lower on the Cape Hatteras slope than at other locations off North Carolina and elsewhere in the western North Atlantic. The 1992 studies indicated that the upper slope infaunal assemblages (600m) were dominated by oligochaetes, while the middle slope assemblages (800–1400 m) were dominated by the polychaeteScalibregma inflatum. This latter depth range could be defined into two assemblages based upon suites of less abundant species. At depths of 1500–2000 m, a lower slope assemblage dominated by various deposit feeding polychaetes and oligochaetes was found. Results from the 1984–1985 studies suggest seasonal or year-to-year patterns in the dominance ofS. inflatum andCossura longocirrata. Unusually high sedimentation rates and organic carbon flux have been recorded from the slope off Cape Hatteras and may account for the high infaunal productivity in the area. Most of the dominant infaunal organisms are species more typical of shallow, coastal habitats rather than deep-sea species that dominate other areas of the U.S. Atlantic continental slope. Parallel investigations regarding the nature of organic matter in the Cape Hatteras sediments have revealed a mixture of both marine and terrestrially derived carbon, only a small percentage of which is composed of the smaller molecular weight polyunsaturated fatty acids more typical of continental slope sediments. It is likely that the high percentage of refractory organic matter would favor the survival of preadapted shelf species over those from adjacent slope environments.  相似文献   

11.
The consistency of habitat-related differences in coastal lagoon fish assemblages was assessed across different spatial and temporal scales. Multimesh gillnets were used to sample assemblages of fish on a monthly basis for 1-year in three habitats (shallow seagrass, shallow bare and deep substrata) at two locations (>1 km apart), in each of two coastal lagoons (approximately 500 km apart), in southeastern Australia. A total of 48 species was sampled with 34 species occurring in both lagoons and in all three habitats; species caught in only one lagoon or habitat occurred in low numbers. Ten species dominated assemblages and accounted for more than 83% of all individuals sampled. In both lagoons, assemblages in the deep habitat consistently differed to those in the shallow strata (regardless of habitat). Several species were caught more frequently or in larger numbers in the deep habitat. Assemblages in the two shallow habitats did not differ consistently and were dominated by the same species and sizes of fish, possibly due to habitat heterogeneity and the scale and method of sampling. Within each lagoon, very few between location differences in assemblages within each habitat were observed. Consistent differences in assemblages were detected between lagoons for the shallow bare and deep habitats, indicating there were some intrinsic differences in ichthyofauna between lagoons. Assemblages in spring differed to those in summer, which differed to those in winter for the shallow bare habitat in both lagoons, and the deep habitat in only one lagoon. Fish-habitat relationships are complex and differences in the fish fauna between habitats were often temporally inconsistent. This study highlights the need for greater testing of habitat relationships in space and time to assess the generality of observations and to identify the processes responsible for structuring assemblages.  相似文献   

12.
Deep‐water coral habitats are scattered throughout slope depths (360–800 m) off the Southeastern United States (SEUS, Cape Lookout, North Carolina, to Cape Canaveral, Florida), contributing substantial structure and diversity to bottom habitats. In some areas (e.g. off North Carolina) deep corals form nearly monotypic (Lophelia pertusa) high profile mounds, and in other areas (e.g. off Florida) many species may colonize hard substrata. Deep coral and hard substrata ecosystems off the SEUS support a unique fish assemblage. Using the Johnson‐Sea‐Link submersible (in 2000–2005, 65 dives), and a remotely operated vehicle (in 2003, five dives), fishes were surveyed in nine deep reef study areas along the SEUS slope. Forty‐two benthic reef fish species occurred in deep reef habitats in these study areas. Species richness was greatest on the two coral banks off Cape Lookout, North Carolina (n = 23 and 27 species) and lowest on the two sites off Cape Canaveral, Florida (n = 7 and 8 species). Fish assemblages exhibited significantly (ANOSIM, Global R = 0.69, P = 0.001) different patterns among sites. Stations sampled off North Carolina (three study areas) formed a distinct group that differed from all dives conducted to the south. Although several species defined the fish assemblages at the North Carolina sites, Laemonema barbatulum, Laemonema melanurum, and Helicolenus dactylopterus generally had the most influence on the definition of the North Carolina group. Fish assemblages at three sites within the central survey area on the Blake Plateau were also similar to each other, and were dominated by Nezumia sclerorhynchus and L. melanurum. Synaphobranchus spp. and Neaumia sclerorhynchus differentiated the two southern sites off Cape Canaveral, Florida, from the other station groups. Combinations of depth and habitat type had the most influence on these station groups; however, explicit mechanisms contributing to the organization of these assemblages remain unclear.  相似文献   

13.
Characteristic flora and fauna that are highly sensitive to disturbances colonize coastal detritic bottoms in the Mediterranean Sea. In the present study, a comparison of the assemblage composition and colonization by invasive macroalgae was made between two coastal detritic macrophyte assemblages, one dominated by rhodoliths (free-living non-geniculate Corallinales) and the other dominated by fleshy algae, in an area that has been exposed to important levels of anthropogenic disturbance, mainly pollution (including changed sedimentation regimes) in the recent past (bay of Marseilles, France). In comparison with less strongly impacted Mediterranean regions, the macrophyte assemblages in the bay of Marseilles were characteristic in terms of species identity and richness of coastal detritic macrophyte assemblages. However, extremely low species abundance (cover) was observed. As far as invasive species were concerned, Caulerpa racemosa var. cylindracea was only abundant in the rhodolith assemblage whereas the two invasive Rhodophyta Asparagopsis armata and Womersleyella setacea were mainly found in the fleshy algae assemblage. The seasonality observed in the Rhodolith assemblage seemed to be related to the development of C. racemosa var. cylindracea and did not follow the typical pattern of other Mediterranean assemblages. This study represents the first study of coastal detritic assemblages invaded by C. racemosa var. cylindracea.  相似文献   

14.
Well-developed aerial roots of mangroves make it difficult to study how fish utilize the mangrove forest as a habitat. In the present study, we compared the differences in fish assemblages in three major types of habitats of mangrove estuary (vegetated area, treeless mudflat, and creek) of a mangrove bay in Hainan Island, China, at different seasons during two consecutive years. Three types of gears, centipede net, gill net and cast net, were used in the different habitats of mangrove estuary and sampling efficiencies among gears were evaluated. Centipede nets were used in all the three types of habitats and cast nets and gill nets in treeless mudflats and creeks. Fish assemblages were dependent on gears used. Centipede net could efficiently catch fish occurring both inside and outside of vegetated areas efficiently. A total of 115 fish species in 51 families were collected. In terms of numbers of species per family, Gobiidae was the most diverse (17 species), followed by Mugilidae (5 species). Almost all of the fish were juvenile or small fish and few predators were recorded, implying low predation pressure in the bay. ANOVA analysis showed that significant seasonal and spatial variation existed in species richness, abundance, and biomass, which were less in the vegetated areas than those of treeless mudflats and creeks. The attraction of vegetated areas to fish was less than that of creeks and mudflats. Many species were specific to a particular habitat type, 4 species occurring exclusively in the creeks, 45 species occurring exclusively in the treeless mudflats, and 5 species occurring exclusively in the vegetated areas. The results indicated that mangrove estuaries were potentially attractive habitats for juvenile and small fish, but this attraction was accomplished by a connection of vegetated areas, treeless mudflats and creeks, not only by vegetated areas.  相似文献   

15.
The present study analyses the composition, structure and trophic function of epibenthic assemblages in two artificial reefs (ARs) 16 years after deployment and in nearby natural reefs (NRs), aiming at providing insights on the complementarity between both habitats. Current findings suggest that after 16 years the ARs (concrete blocks), located in southern Portugal, do not act as surrogates for NRs, as epibenthic assemblages differed between reef types in composition, structure and trophic function. NRs showed higher diversity and complementarity (i.e. beta-diversity) than ARs, evidencing higher redundancy. Higher heterogeneity within NRs was also evidenced by the multi-dimensional scaling analysis based on abundance, biomass and trophic composition. NRs presented higher abundance of molluscs and biomass of sponges, resulting in differences in the trophic function: suspension-feeding dominated the NRs, while within ARs there was an ascendency of carnivory. Although not acting as surrogates for NRs and provided that no adverse effects (e.g. establishment of non-native species) were detected, ARs may have a significant contribution for the increase of regional diversity, as evidenced by the highest complementarity levels observed between assemblages in both reefs.  相似文献   

16.
During the 1990s the rock lobster Jasus lalandii shifted its focus of distribution south-eastwards along the coast of South Africa, to establish a dense population in an area where it was previously rare. This coincided with a marked decrease in the sea urchin Parechinus angulosus, a preferred prey item of J. lalandii and a vital source of shelter for juveniles of the abalone Haliotis midae. The range expansion of lobsters has thus economic and ecological ripple effects. We determined the diets of small (50–65 mm carapace length) and large (>69 mm CL) rock lobsters from gut content analyses, and compared them between three ‘lobster invaded’ sites and three adjacent ‘non-invaded’ sites where densities are still low. At the non-invaded sites, diets were collectively heterogeneous but the dietary breadth of individual lobsters was narrow (in contradiction to generally accepted ecological theory), and the lobsters fed mainly on large, individual, mobile, high-energy prey such as sea urchins and large winkles. Conversely, at invaded sites where lobster densities were high, they consumed predominantly small, colonial or sessile low-energy prey such as sponges, barnacles and foliar algae, and the diet was significantly more uniform among individuals, but broader within individuals. This was a direct result of the contrasting benthic community structure of the two areas, and consequent prey availability – itself caused by differences in intensity of rock-lobster predation. Cannibalism was unexpectedly greater at non-invaded sites, possibly as a result of lobsters being larger there. The diet of small and large lobsters also differed significantly. Large rock lobsters predominantly consumed large individual prey such as lobsters, urchins and crabs, while small rock lobsters ate mainly colonial, sessile prey such as sponges and barnacles, and small prey such as tiny winkles and crustaceans. Dietary selectivity indices revealed that algae and sponges were negatively selected (avoided) in non-invaded areas but positively or neutrally selected in invaded areas. These dietary differences have important ramifications not only for the lobster populations but also for the structure and functioning of the radically different communities that have developed in invaded areas, reflecting a regime shift induced by lobster predation.  相似文献   

17.
The present study examines traditional paradigms regarding the differences between faunas in estuaries vs coastal waters. The ecological characteristics of the free-living nematode faunas of nearshore, subtidal sediments in downstream and upstream areas of the large, microtidal Swan River Estuary are compared with those similarly recorded seasonally in subtidal sediments along an adjacent part of the coast of temperate south-western Australia. Overall, the nematode species richness recorded in the upstream (38) and downstream estuarine areas (58) and from throughout the estuary (61) were substantially less than in marine waters (75). In addition, the value for Simpson’s diversity index was marginally less in the estuary and the dominance of the most abundant species greater. In contrast, the mean nematode species richness and diversity in individual cores followed the reverse trend, reflecting a combination of less variability among the species compositions and far greater densities in the cores from estuarine sediments. Furthermore, the mean density (numbers 10 cm−2) was far higher in both upstream (341) and downstream (903) areas of the estuary than in marine waters (87). Although the compositions of the assemblages in upstream and downstream estuarine areas differed markedly from each other at the species, genus and family levels, these differences were less pronounced than those between either of these areas and marine waters. The trophic compositions at the moderately sheltered and fully exposed marine sites differed from that in both areas of the estuary, whereas that at the most sheltered marine site was similar to that in the downstream estuarine area, with both containing substantial proportions of epistrate-grazing species. The variations among the species richness, diversity, densities and taxonomic and trophic compositions of nematode assemblages in the sediments of the two estuarine areas and nearby marine waters appear to reflect differences in 1) salinity regimes, 2) extents of exposure to wave action and its related effects and 3) amounts and types of food available to nematodes.  相似文献   

18.
There are thousands of seeps in the deep ocean worldwide; however, many questions remain about their contributions to global biodiversity and the surrounding deep‐sea environment. In addition to being globally distributed, seeps provide several benefits to humans such as unique habitats, organisms with novel genes, and carbon regulation. The purpose of this study is to determine whether there are unique seep macrobenthic assemblages, by comparing seep and nonseep environments, different seep habitats, and seeps at different depths and locations. Infaunal community composition, diversity, and abundance were examined between seep and nonseep background environments and among three seep habitats (i.e., microbial mats, tubeworms, and soft‐bottom seeps). Abundances were higher at seep sites compared to background areas. Abundance and diversity also differed among microbial mat, tubeworm, and soft‐bottom seep habitats. Although seeps contained different macrobenthic assemblages than nonseep areas, infaunal communities were also generally unique for each seep. Variability was 75% greater within communities near seeps compared to communities in background areas. Thus, high variability in community structure characterized seep communities rather than specific taxa. The lack of similarity among seep sites supports the idea that there are no specific infauna that can be used as indicators of seepage throughout the northern Gulf of Mexico, at least at higher taxonomic levels.  相似文献   

19.
Scientific study has generated a range of hypotheses about the ecological structure and function of seamounts. Interpretations of these ideas and data are vital to understanding how seamount communities will respond to anthropogenic impacts. Here, we examine how diversity and structure of seamount assemblages vary with depth and slope of the sea floor. We conducted ROV video transects on three seamounts of the Taney Seamount Chain in the Northeast Pacific Ocean. Depth and slope were both related to assemblage structure on the Taney seamounts. Depth differences were seen in alpha‐ and beta‐diversity but not density. Beta‐diversity and density but not alpha‐diversity varied with slope. Overall, slope and depth together explained 14–31% of beta‐diversity. The findings suggest that differences in beta‐diversity as related to depth gradients may differ among onshore and offshore and/or between shallow and deep summit seamounts. Specifically, we hypothesize that differences in productivity and depth gradients among seamounts may generate different patterns of beta‐diversity.  相似文献   

20.
Habitat created or modified by the physical architecture of large or spatially dominant species plays an important role in structuring communities in a variety of terrestrial, aquatic, and marine habitats. At hydrothermal vents, the giant tubeworm Riftia pachyptila forms large and dense aggregations in a spatially and temporally variable environment. The density and diversity of smaller invertebrates is higher in association with aggregations of R. pachyptila than on the surrounding basalt rock seafloor. Artificial substrata designed to mimic R. pachyptila aggregations were deployed along a gradient of productivity to test the hypothesis that high local species diversity is maintained by the provision of complex physical structure in areas of diffuse hydrothermal flow. After 1 year, species assemblages were compared among artificial aggregations in low‐, intermediate‐, and high‐productivity zones and compared to natural aggregations of R. pachyptila from the same site. Hydrothermal vent fauna colonized every artificial aggregation, and both epifaunal density and species richness were highest in areas of high chemosynthetic primary production. The species richness was also similar between natural aggregations of R. pachyptila and artificial aggregations in intermediate‐ and high‐productivity zones, suggesting that complex physical structure alone can support local species diversity in areas of chemosynthetic primary production. Differences in the community composition between natural and artificial aggregations reflect the variability in microhabitat conditions and biological interactions associated with hydrothermal fluid flux at low‐temperature hydrothermal vents. Moreover, these local ecological factors may further contribute to the maintenance of regional species diversity in hydrothermal vent communities on the East Pacific Rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号