首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
《Marine pollution bulletin》2014,78(1-2):201-208
Seawater samples from major enclosed bays, fishing ports, and harbors of Korea were analyzed to determine levels of tributyltin (TBT) and booster biocides, which are antifouling agents used as alternatives to TBT. TBT levels were in the range of not detected (nd) to 23.9 ng Sn/L. Diuron and Irgarol 1051, at concentration ranges of 35–1360 ng/L and nd to 14 ng/L, respectively, were the most common alternative biocides present in seawater, with the highest concentrations detected in fishing ports. Hot spots were identified where TBT levels exceeded environmental quality targets even 6 years after a total ban on its use in Korea. Diuron exceeded the UK environmental quality standard (EQS) value in 73% of the fishing port samples, 64% of the major bays, and 42% of the harbors. Irgarol 1051 levels were marginally below the Dutch and UK EQS values at all sites.  相似文献   

2.
The presence of booster biocides in the aquatic environment has been associated with a risk to non-target species due to their proven toxicity. The aim of the present study was to determine the spatial and temporal distribution of common booster biocides in different harbours of the island of Gran Canaria (Spain) and evaluate, by means of a probabilistic risk assessment (PRA), the ecological risk posed by these compounds. With these objectives, a monitoring campaign was conducted between January 2008 and May 2009, collecting a total of 182 seawater samples. Four common booster biocides (TCMTB, diuron, Irgarol 1051 and dichlofluanid) were monitored. Diuron levels ranged between 2.3 and 203 ng/L and Irgarol 1051 between 2.4 and 146.5 ng/L. The ecological risk associated with these levels was always low, however, with probabilities of exceeding the 10th percentile of autotroph toxicity below 3.5%.  相似文献   

3.
In 2001, legislative measures were introduced in the UK to restrict usage of antifouling agents in small (<25 m) vessel paints to dichlofluanid, zinc pyrithione and zineb. This removed the previously popular booster biocides diuron and Irgarol 1051 from the market. To investigate the impact of this legislation, water samples were taken from locations where previous biocide levels were well documented. Results from analyses demonstrate a clear reduction in water concentrations of Irgarol 1051 (between 10% and 55% of that found during pre-restriction studies), indicating that legislation appears to have been effective. Although other booster biocides were screened for (chlorothalonil, dichlofluanid and Sea-Nine 211), they were below the limits of detection (<1 ng/l) in all samples. A survey of chandlers and discussions with legislative authorities supports these results and concurs the removal of Irgarol 1051 based paints from the market using simple regulations at a manufacturer level with little regulation at a retailer level.  相似文献   

4.
Antifouling herbicides in the coastal waters of western Japan   总被引:1,自引:0,他引:1  
Residue analyses of some antifouling herbicides (Diuron, Irgarol 1051 and the latter's degradation product M1, which is also known as GS26575), were conducted in waters collected along the coast of western Japan. In total, 142 water samples were collected from fishery harbours (99 sites), marinas (27 sites), and small ports (16 sites) around the Seto Inland Sea, the Kii Peninsula, and Lake Biwa, in August 1999. A urea-based herbicide, Diuron, was positively identified for the first time in Japanese aquatic environments. Diuron was detected in 121 samples (86%) up to a highest concentration of 3.05 microg/l, and was found in 86% of samples from fishery harbours, 89% from marinas, and 75% from ports. Four freshwater samples out of 11 collected at Lake Biwa contained Diuron. Neither Irgarol 1051 nor M1 was found in the lake waters, but both were found in many coastal waters. Irgarol 1051 was found in 84 samples (60%) at a highest concentration of 0.262 microg/l. The concentrations detected were of similar magnitude to those in our previous surveys, taken in 1997 and 1998. M1 was found in 40 samples (28%) up to a highest concentration of 0.080 microg/l. The concentrations detected were generally lower than those found in our previous surveys. The detection frequency among fishery harbours, marinas, and ports was 57-70% for Irgarol 1051 and 25-30% for M1. Ninety-five per cent of the coastal waters in which M1 was detected also contained Irgarol 1051, and 93% of the samples in which Irgarol 1051 was detected also contained Diuron. These results clearly suggest that commercial ship-bottom paints containing both Diuron and Irgarol 1051 are used extensively in the survey area.  相似文献   

5.
Due to deleterious effects on non-target organisms, the use of organotin compounds on boat hulls of small vessels (<25 m) has been widely prohibited. The International Maritime Organisation (IMO) resolved that the complete prohibition on organotin compounds acting as biocides in antifouling systems should commence in 2008. As a result of restrictions on the use of organotin based paints, other antifouling formulations containing organic biocides have been utilised. This survey was conducted to assess the contamination of replacement biocides in the marine environment following the ban of TBT-based paints. Surface sediments samples were collected in the major ports and marinas along the France Mediterranean coastline (Cote d’Azur) and analysed for organotin compounds, Irgarol 1051, Sea-nine 211TM, Chlorothalonil, Dichlofluanid and Folpet. Every port and marina exhibited high levels of organotin compounds, with concentrations in sediments ranging from 37 ng Sn g−1dry wt in Menton Garavan to over 4000 ng Sn g−1dry wt close to the ship chandler within the port of Villefranche-sur-Mer. TBT degradation indexes suggested that fresh inputs are still made. Among the other antifoulants monitored, only Irgarol 1051 exhibited measurable concentrations in almost every port, with concentrations ranging from 40 ng g−1dry wt (Cannes) to almost 700 ng g−1dry wt (Villefranche-sur-Mer, ship chandler).  相似文献   

6.
《Marine pollution bulletin》2013,70(1-2):189-194
Irgarol 1051 is a common antifouling biocide and is highly toxic to non-target plant species at low ng/L concentrations. We measured up to 254 ng/L Irgarol in water and up to 9 ng/g dry weight Irgarol in sediments from Southern California recreational marinas. Irgarol’s metabolite, M1, concentrations were up to 62 ng/L in water and 5 ng/g dry weight in sediments. Another antifouling biocide, diuron, reached up to 68 ng/L in water and 4 ng/g dry weight in sediments. The maximum Irgarol concentrations in water were greater than the Irgarol concentration recommended as the plant toxicity benchmark (136 ng/L), suggesting that Irgarol concentrations may be high enough to cause changes in phytoplankton communities in the sampled marinas. Irgarol concentrations measured in sediments were greater than calculated Environmental Risk Limits (ERLs) for Irgarol in sediments (1.4 ng/g). Antifouling pesticide accumulation in sediments may present a potential undetermined risk for benthic organisms.  相似文献   

7.
Effects of new antifouling compounds on the development of sea urchin   总被引:5,自引:0,他引:5  
Tributyltin oxide (TBTO) has been used worldwide in marine antifouling paints as a biocide for some time. However, it produced toxic effects, especially in marine water/sediment ecosystems. Consequently, its use in antifouling paints has been prohibited in many countries. In this study, the toxicity of alternative and/or new antifouling biocides compared with TBTO is assessed by a biological method. The effects of these chemicals on marine species have not been well studied. This paper assesses, comparatively, the effects of eight biocides on sea urchin eggs and embryos. The chemicals assessed were TBTO, Irgarol 1051, M1 (the persistent degradation product of Irgarol), Diuron, zinc pyrithione, 'KH101', 'Sea-Nine 211', and copper pyrithione. For these chemicals, toxicity appears to be in the order zinc pyrithione > Sea-Nine 211 > KH101 > copper pyrithione > TBTO > Diuron approximately = Irgarol 1051 > M1. Here, we show that zinc pyrithione, Sea-Nine 211, KH101, and copper pyrithione are much more toxic to sea urchins than TBTO or the other chemicals.  相似文献   

8.
Since 1990s, various booster biocides have been increasingly used as substitutes of organotins. However, knowledge about their toxicities on tropical/sub-tropical marine species is significantly lacking. This study comprehensively investigated the acute toxicities of copper, tributyltin (TBT), and five commonly used booster biocides including Irgarol, diuron, zinc pyrithione (ZnPT), copper pyrithione (CuPT) and chlorothalonil on the growth or survival of 12 marine species in which eight of them are native species of subtropical Hong Kong. We found that Irgarol was more toxic than TBT on the growth of autotrophic species. The toxicity of CuPT was comparable to that of TBT on almost all test species, while it showed higher toxicity than TBT on medaka fish larvae. As the usage of these biocides is expected to further increase worldwide, accurate assessments of their ecological risks are required for better informed decision on their management. This study provided useful datasets for such purposes.  相似文献   

9.
A study of the distribution of the 'booster' biocide 2-methylthio-4-tert-butylamino-6-cyclopropyl amino-s-triazine (Irgarol 1051) was carried out in the coastal waters of Bermuda. Irgarol 1051 concentrations (as determined by GC/MS) up to 590 ng l-1 have been measured within Hamilton Harbour. The data presented herein unequivocally demonstrate contamination of the coastal system of Bermuda by Irgarol 1051. Concurrently, TBT concentrations were measured and results indicate that levels are falling through legislated changes in antifouling treatments, from 220 ng l-1 in 1990 to < 20 ng l-1 (as Sn) by 1995, in the open water area of Hamilton Harbour. Concentrations of TBT immediately offshore from a boatyard were found to be > 600 ng l-1 (Sn), indicating continuing release due to painting operations and sediments in the area.  相似文献   

10.
International regulation of organotin compounds for use in antifouling paints has led to the development and increased use of replacement compounds, notably the s-triazine herbicide Irgarol 1051. Little is known about the distribution of Irgarol 1051 in tropical waters. Nor has the potential impact of this triazine upon photosynthesis of endosymbiotic microalgae (zooxanthellae) in corals been assessed. In this study Irgarol 1051 was detected in marinas, harbours and coastal waters of the Florida Keys, Bermuda and St. Croix, with concentrations ranging between 3 and 294 ng 1(-1). 14C incubation experiments with isolated zooxanthellae from the common inshore coral Madracis mirabilis showed no incorporation of H14CO3- from the sea water medium after 4-8 h exposure to Irgarol 1051 concentrations as low as 63 ng 1(-1). Reduction in net photosynthesis of intact corals was found at concentrations of l00 ng 1(-1) with little or no photosynthesis at concentrations exceeding 1000 ng 1(-1) after 2-8 h exposure at all irradiances. The data suggest Irgarol 1051 to be both prevalent in tropical marine ecosystems and a potent inhibitor of coral photosynthesis at environmentally relevant concentrations.  相似文献   

11.
The antifouling boosting agent Irgarol 1051 is a strong inhibitor of the photosystem II (PSII) with high efficiency/toxicity towards algae. However, because some phytoplankton species are more sensitive to Irgarol than others, its persistent release into the environment could result in adverse changes in the phytoplankton community structure at heavily impacted sites such as marinas. Continuous monitoring in the Florida Keys showed Irgarol concentrations of up to 635 ngL(-1) in the canal system leading to Key Largo Harbor Marina (KLH) with a sharp decrease in concentration at stations offshore from the mouth of the canal. Preliminary phytoplankton community assessments from surface water samples collected in KLH between February and August 2004 showed changes in several phytoplankton species in concordance with the increase of the herbicide concentrations. Typical responses include an increase in the abundance of eukaryotes and Cryptomonas sp. as Irgarol concentrations increase.  相似文献   

12.
The objective of this study was to use a probabilistic approach to determine the ecological risk of Irgarol and its major metabolite (GS26575) in coastal California marinas and reference areas by using monitoring data collected during the summer of 2006. Distributions of environmental exposure data were compared with the distribution of plant species response data from laboratory toxicity studies and the no observed effect concentration (NOEC) from a microcosm study to quantify the likelihood and significance of ecological risk. Toxicity testing indicates plants are much more sensitive to Irgarol than animals; therefore, the conservative effects benchmark used to characterize risk was the plant 10th centile for both Irgarol (193 ng/L) and GS26575 (5622 ng/L). In addition, the microcosm NOEC of 323 ng/L was also used to characterize risk. Irgarol concentrations from 15 California marinas ranged from 1.45 to 339 ng/L while GS26575 concentrations ranged from non-detected to 74 ng/L. The probability of exceeding the Irgarol plant 10th centile of 193 ng/L for 15 marinas sampled in coastal California in 2006 was 7.3% while the probability of exceeding the microcosm NOEC of 323 ng/L was even lower (5.5%). In general, this probability of exceedence for either effects benchmark and subsequent ecological risk is considered to be low for these marinas as only one marina (Kings Harbor marina in Redondo Beach) had measured concentrations of Irgarol exceeding 193 ng/L. Irgarol exposure is concentrated within marinas and ecological risk from Irgarol exposure in adjoining reference areas was judged to be very low. Ecological risk from GS26575 exposure was also low in both marina and reference areas in California.  相似文献   

13.
Irgarol 1051, a boosting antifouling agent often used to supplement copper based paints was found in surface waters from South Florida at stations collected from the Miami River, Biscayne Bay and selected areas of the Florida Keys. Concentrations of the herbicide ranged from below the method detection limit (1 ng/L) to as high as 182 ng/L in a canal system in Key Largo. The herbicide was present at 93% of the stations and often found in conjunction with its descyclopropyl metabolite (M1) previously reported to be the major degradation product of Irgarol under natural environmental conditions. The 90th percentile concentration calculated for all South Florida samples was 57.6 ng/L. Based on available data on the toxicity of Irgarol to algae and coral, only two stations (approximately 3%) ranked above the LC50 of 136 ng/L reported for the marine algae Naviculla pelliculosa and above the 100 ng/L level reported to reversibly inhibit photosynthesis of intact corals. However, a basic dissipation model for Irgarol using the Key Largo Harbor station as a point source indicated that concentrations of the herbicide decreased rapidly and concentrations below the MDL are observed within 2000 m of the source. No major coral based benthic habitats are documented for all the stations surveyed at distances that Irgarol may pose a substantial risk. However, other types of submerged vegetation like seagrasses are common around the marinas and the effects of Irgarol to such endpoints should be investigated further.  相似文献   

14.
Antifouling paint fragments collected from marinas and leisure boat maintenance facilities and in the vicinity of abandoned boats have been chemically characterised. High concentrations of Cu (23-380 mg g−1) and Zn (14-160 mg g−1) in the samples (= 14) are consistent with the use of these metals in the principal biocidal and non-biocidal pigments in contemporary antifouling formulations. Up to about 2% and 7% of the respective metals were solvent-extractable, suggesting that organo-forms of Cu and Zn (e.g. pyrithiones) were also present. Of the organic biocides, dichlofluanid was present in most samples and at concentrations up to about 20 mg g−1. Chlorothalonil and Irgarol 1051® were only detected in one and four cases, respectively, and Sea Nine 211® was not detected in any sample. Results are discussed in terms of UK legislation regarding biocide usage and the likely effects and fate of discarded paint particles in coastal environments where boats are repaired or moored.  相似文献   

15.
The use of copper in antifouling paints has increased in the UK in the last 20 years as TBT and several other organic biocides have been phased out. To assess the probable impact of copper on estuarine systems a survey was undertaken to measure the different fractions of copper present in the water column at current usage. The different fractions measured were; labile copper, (LCu) considered as both the free copper ions and inorganically bound copper, the total dissolved copper (TDCu) present, and the difference between them taken as the organically bound likely non-toxic copper fraction. The survey considered sites with different levels of boat use, namely marinas, harbours and estuaries, differing physical parameters of suspended and dissolved organic matter, different seasons of the year and different depths in the water column all of which control speciation behaviour. Suspended particulate matter (SPM) values were measured at all sites and increased from West to East coast locations (5.7-34.4 mg/l). Dissolved organic matter (DOM) values ranged from 0.58 to 2.2mg/l C. The total dissolved copper concentrations ranged from 0.30 to 6.68 microg/l, with labile fraction ranging from 0.02 to 2.69 microg/l, and most labile copper concentrations below 1 microg/l. None of the yearly mean copper measurements exceeded the 76/464/EEC EQS of 5 microg/l. Of the 306 measurements, only one dissolved copper value in one season was above 5 microg/l. This ratio of labile to total copper was between 10 and 30%. The results from this survey suggest that if toxicity of copper is due to the labile fraction then using the total dissolved copper concentrations as an indicator of impact overestimate the risk by a factor of four times.  相似文献   

16.
The objectives of this study were to measure: (1) Irgarol and GS26575 (major metabolite) during the peak 2004 boating season at selected marinas and reference areas in the Carolinian Zoogeographic Province of the Eastern United States; (2) Irgarol and GS26575 at selected stations during the summer months in the Back Creek/Severn River area in Maryland in 2003 and 2004; and (3) structural and functional characteristics of resident phytoplankton communities concurrently with Irgarol and GS26575 monitoring in Back Creek/Severn River area. Irgarol concentrations from 14 marinas in the Carolinian Province ranged from non-detectable (<1 ng/L) to 85 ng/L; concentrations were less than 16 ng/L at all reference sites. The probability of exceeding the plant 10th centile for Irgarol (251 ng/L) was less than 0.6% for all marinas and 0.01% for all reference areas. These data suggest low ecological risk from Irgarol exposure for both marina and reference areas in the Carolinian Province. Irgarol concentrations ranged from 5 ng/L at the Severn River reference site to 1,816 ng/L in Port Annapolis marina during the two year study. Ecological risk from Irgarol exposure was high for the Port Annapolis marina sites based on a probability of exceeding the plant 10th centile. However, risk was low for Severn River and Severn River reference sites. Functional and structural measures of resident phytoplankton communities in the Back Creek and Severn River did not suggest that these target species are impaired in the Port Annapolis marina area where probabilistic analysis predicted adverse effects from Irgarol exposure.  相似文献   

17.
Irgarol 1051 is a s-triazine herbicide used in popular slime-resistant antifouling paints. It has been shown to be acutely toxic to corals, mangroves and sea grasses, inhibiting photosynthesis at low concentrations (>50 ng l(-1)). We present the first data describing the occurrence of Irgarol 1051 in coastal waters of the Northeastern Caribbean (Puerto Rico (PR) and the US Virgin Islands (USVI)). Low level contamination of coastal waters by Irgarol 1051 is reported, the herbicide being present in 85% of the 31 sites sampled. It was not detected in water from two oceanic reference sites. In general, Irgarol 1051was present at concentrations below 100 ng l(-1), although far higher concentrations were reported at three locations within Benner Bay, USVI (223-1,300 ng l(-1)). The known toxicity of Irgarol 1051 to corals and sea grasses and our findings of significant contamination of the Northeastern Caribbean marine environment by this herbicide underscore the importance of understanding, more fully, local and regional exposure of reef and sea grass habitats to Irgarol 1051 and, where necessary, implementing actions to ensure adequate protection of these important ecosystems.  相似文献   

18.
In this work, data on the level of organotin compounds (OTCs) in seawater and mussels collected along the entire Croatian Adriatic Coast are presented. The samples were collected in 2009 and 2010 at 48 locations representing different levels of maritime activities, including marinas, ports and reference sites. Butyltins (BuTs) were found in all analyzed samples, representing >97% of OTCs, and ranged from 0.46 to 27.98 ng Sn L(-1) in seawater and from <6 to 1675 ng Sn g(-1) in mussels. The results indicate a recent input of TBT, with the highest concentrations of BuTs found in the marinas. It appears that the Adriatic coast is still polluted with TBT despite the fact that TBT-containing antifouling paints have been banned in Croatia since 2008. It is questionable how much TBT pollution decreased since 2005, when a high incidence of imposex was established in the same area.  相似文献   

19.
The release of tributyltin (TBT) from maritime traffic represents one of the main problems of direct, diffuse, and continued contamination of the marine environment. In the present survey, the concentrations of TBT and dibultytin (DBT) in brackish waters, sediments, and the gastropods Nassarius nitidus were evaluated in order to estimate the contamination of the southern part of the Venice lagoon. TBT and DBT were determined by GC-MS/MS. Recent contamination of TBT was found in brackish waters near marinas, whereas the highest concentrations of TBT and DBT were observed in surface sediments at dockyards and harbours. High content of organotin in the gastropods sampled near the dockyards, harbours, and marinas showed a mobilisation from the sediments through the food web. The present study allowed assessment of whether, despite the ban on the use of TBT paints, waters, sediments, and biota were still being contaminated by organotin compounds in the southern Venice lagoon.  相似文献   

20.
Irgarol and its major metabolite (GS26575) were measured in Maryland waters of Chesapeake Bay: (1) in and near 10 marinas, a mainstem Bay site and two Severn River locations during a general survey in July and December of 2002; (2) at various sites in the Port Annapolis Marina and the Severn River area during March of 2002 before the boating season began; and (3) during July (peak boating season) in the same Port Annapolis Marina and Severn River sites area during both an ebb and flood tide. Irgarol concentrations ranged from 1.82 ng/l at the mid-Bay site to 585 ng/l in Port Annapolis marina during the July and December general survey. An Irgarol 90th centile of 239 ng/l was reported for the 10 marina sites, two Severn River sites and one mainstem site sampled during the general survey conducted in July and December. Temporal analysis of all pooled data showed that 90th centiles were over seven times higher in July when compared to December. A comparison of Irgarol concentrations at 12 sites in the Port Annapolis marina and Severn River area during both an ebb and flood tide in July showed no consistent trend with tidal cycle by site although significant reductions in concentrations were reported with distance from the three Port Annapolis marina sites. Ecological risk from Irgarol exposure was judged to be low for most Chesapeake Bay sites sampled. Possible exceptions were Port Annapolis marina, Severn River sites in close proximity to this marina and Chesapeake Harbor marina where Irgarol concentrations exceeded a conservative effects threshold during the peak boating season in July. Ecological risk from GS26575 exposure was low for all sites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号