首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
The fifth Japaniese X-ray astronomy satellite, Astro-E, following Hakucho, Tenma, Ginga, and ASCA is scheduled for launch in the year 2000 by the Institute of Space and Astronautical Science (ISAS) with an M-V rocket. The satellite will be put into an approximately circular orbit with an altitude of ∽550 km and an inclination of ∽31°. There will be three experiments on board Astro-E: an X-ray micro-calorimeter array, four X-ray CCDs and a hard X-ray detector. All three experiments combined, Astro-E will become a spectrometer facility covering a wide energy band from 0.5 keV to 600 keV.  相似文献   

2.
The Mercury Imaging X-ray Spectrometer (MIXS) will be launched on board of the 5th ESA cornerstone mission BepiColombo. The two channel instrument MIXS is dedicated to the exploration of the elemental composition of the mercurian surface by imaging x-ray spectroscopy of the elemental fluorescence lines. One of the main scientific goals of MIXS is to provide spatially resolved elemental abundance maps of key rock-forming elements. MIXS will be the successor of the XRS instrument, which is currently orbiting Mercury on board of NASAs satellite MESSENGER. MIXS will provide unprecedented spectral and spatial resolution due to its innovative detector and optics concepts. The MIXS target energy band ranges from 0.5 to 7 keV and allows to directly access the Fe-L line at 0.7 keV, which was not accessible to previous missions. In addition, the high spectroscopic resolution of FWHM ≤ 200 eV at the reference energy of 1 keV after one year in Mercury orbit, allows to separate the x-ray fluorescence emission lines of important elements like Mg (1.25 keV) and Al (1.49 keV) without the need for any filter. The detectors for the energy and spatially resolved detection of x-rays for both channels are identical DEPFET (DEpleted P-channel FET) active pixel detectors. We report on the calibration of the MIXS flight and flight spare detector modules at the PTB (Physikalisch-Technische Bundesanstalt) beamlines at the BESSY II synchrotron radiation facility. Each detector was calibrated at least at 10 discrete energies in the energy range from 0.5 to 10 keV. The excellent spectroscopic performance of all three detector modules was verified.  相似文献   

3.
The main characteristics of the PENGUIN-M instrument are given. The instrument has been operating aboard the CORONAS-PHOTON spacecraft (SC) launched into orbit on January 30, 2009. The instrument includes the PENGUIN-MD detector unit (PMD) and the PENGUIN-ME electronic unit (PMD). The purpose of the experiment is to measure the degree of linear polarization of X-ray radiation from solar flares in the energy range of 20–150 keV and to obtain energy spectra of X-ray radiation from solar flares in the energy range of 2–500 keV. The paper describes the instrument, calibration procedure, and in-flight adjustment, and contains the first results of measurements.  相似文献   

4.
The Large Observatory For X-ray Timing (LOFT) is one of the candidate missions selected by the European Space Agency for an initial assessment phase in the Cosmic Vision programme. It is proposed for the M3 launch slot and has broad scientific goals related to fast timing of astrophysical X-ray sources. LOFT will carry the Large Area Detector (LAD), as one of the two core science instruments, necessary to achieve the challenging objectives of the project. LAD is a collimated detector working in the energy range 2-50 keV with an effective area of approximately 10 m 2at 8 keV. The instrument comprises an array of modules located on deployable panels. Lead-glass microchannel plate (MCP) collimators are located in front of the large-area Silicon Drift Detectors (SDD) to reduce the background contamination from off-axis resolved point sources and from the diffuse X-ray background. The inner walls of the microchannel plate pores reflect grazing incidence X-ray photons with a probability that depends on energy. In this paper, we present a study performed with an ad-hoc simulator of the effects of this capillary reflectivity on the overall instrument performance. The reflectivity is derived from a limited set of laboratory measurements, used to constrain the model. The measurements were taken using a prototype collimator whose thickness is similar to that adopted in the current baseline design proposed for the LAD. We find that the experimentally measured level of reflectivity of the pore inner walls enhances the off-axis transmission at low energies, producing an almost flat-top response. The resulting background increase due to the diffuse cosmic X-ray emission and sources within the field of view does not degrade the instrument sensitivity.  相似文献   

5.
Large area X-ray propositional counter (LAXPC) instrument on AstroSat is aimed at providing high time resolution X-ray observations in 3–80 keV energy band with moderate energy resolution. To achieve large collecting area, a cluster of three co-aligned identical LAXPC detectors, is used to realize an effective area in access of \({\sim }6000\,\hbox {cm}^{2}\) at 15 keV. The large detection volume of the LAXPC detectors, filled with xenon gas at \({\sim }\)2 atmosphere pressure, results in detection efficiency greater than 50%, above 30 keV. In this article, we present salient features of the LAXPC detectors, their testing and characterization in the laboratory prior to launch and calibration in the orbit. Some preliminary results on timing and spectral characteristics of a few X-ray binaries and other type of sources, are briefly discussed to demonstrate that the LAXPC instrument is performing as planned in the orbit.  相似文献   

6.
In this paper we are going to review the latest estimates for the particle background expected on the X-IFU instrument onboard of the ATHENA mission. The particle background is induced by two different particle populations: the so called “soft protons” and the Cosmic rays. The first component is composed of low energy particles (< 100s keV) that get funnelled by the mirrors towards the focal plane, losing part of their energy inside the filters and inducing background counts inside the instrument sensitivity band. The latter component is induced by high energy particles (> 100 MeV) that possess enough energy to cross the spacecraft and reach the detector from any direction, depositing a small fraction of their energy inside the instrument. Both these components are estimated using Monte Carlo simulations and the latest results are presented here.  相似文献   

7.
The “Fast X-ray Monitor” (BRM) instrument operated in the complex of the scientific instruments onboard the CORONAS-PHOTON satellite from February 19, 2009, until December 1, 2009. The instrument is intended for the registration of the hard X-ray radiation of solar flares in the 20–600 keV energy range in six differential energy channels (20–30, 30–40, 40–50, 50–70, 70–130, and 130–600 keV) with temporal resolution to 1 ms. In the instrument, a detector based on the YAP: Ce scintillator is used; this detector is 70 mm in diameter and 10 mm thick (the decay time is about 28 ns). For the decrease of the back-ground charge of the detector, the collimator limiting the angle of view of the instrument of value 12° is mounted over the scintillator. The effective area of the detector amounts to 27.7 cm2 (at the X-ray radiation energy 80 keV), and the dead time of the detector is 1 μs. Over the operation onboard the CORONAS-PHOTON satellite, the BRM instrument has registered gamma ray burst series and, perhaps, one solar flare of the class C1.3 on October 26, 2009.  相似文献   

8.
Observational results from the supersoft X-ray detector (SD) aboard the spacecraft Shenzhou-2 are briefly described. The resultspertain to cosmic γ-ray bursts solar x-ray bursts, high-energy charged particles and soft X-ray background radiation. The detector is a proportional counter with a polypropylene thin-film window of 50 mm diameter, it operates in the energy range 0.23–3.0keV covered by six energy channels. Two grades of time resolution are used: 40 ms for recording burst events and 520 ms when there is no triggering signal resulted from a burst event. Figures 1 and 2 show the light curves and energy spectra of two cosmic γ-ray bursts (starting time 2001 Jan 17, 09:37:25.21 UT and 2001 Mar 9, 12:33:55.692 UT), and Figures 3 and 4, the results on two solar X-ray burst (2001 Apr 6, 19:14:09.11 UT, and 2001 May 20, 06:02:12.58 UT). The detector records the ambient high-energy charged particles when there is no burst event and the shutter of the window is closed. 110 data sets of high-energy charged particles along the spacecraft orbit have been collected. As examples, the variations of the particle counting rate along the orbit are shown in Figs. 6a, 6b, 8e, 8f and 7. More than 10 events of particle precipitation induced by solar proton events have also been recorded, some of which are displayed in Figs.6c–6f and 7. Some of the data of soft X-ray background radiation shown in Fig. 8 were obtained when the shutter was open, and they are important for the data processing of the burst events.  相似文献   

9.
InFOCμS is a new generation balloon-borne hard X-ray telescope with focusing optics and spectroscopy. We had a successful 22.5-hour flight from Fort Sumner, NM on September 16,17, 2004. In this paper, we present the performance of the hard X-ray telescope, which consists of a depth-graded platinum/carbon multilayer mirror and a CdZnTe detector. The telescope has an effective area of 49 cm2 at 30 keV, an angular resolution of 2.4 arcmin (HPD), and a field of view of 11 arcmin (FWHM) depending on energies. The CdZnTe detector is configured with a 12 × 12 segmented array of detector pixels. The pixels are 2 mm square, and are placed on 2.1 mm centers. An averaged energy resolution is 4.4 keV at 60 keV and its standard deviation is 0.36 keV over 128 pixels. The detector is surrounded by a 3-cm thick CsI anti coincidence shield to reduce background from particles and photons not incident along the mirror focal direction. The inflight background is 2.9 × 10−4 cts cm−2 sec−1 keV−1 in the 20–50 keV band.  相似文献   

10.
The Large Observatory For X-ray Timing (LOFT), currently in an assessment phase in the framework the ESA M3 Cosmic Vision programme, is an innovative medium-class mission specifically designed to answer fundamental questions about the behaviour of matter, in the very strong gravitational and magnetic fields around compact objects and in supranuclear density conditions. Having an effective area of ~10 m2 at 8 keV, LOFT will be able to measure with high sensitivity very fast variability in the X-ray fluxes and spectra. A good knowledge of the in-orbit background environment is essential to assess the scientific performance of the mission and optimize the design of its main instrument, the Large Area Detector (LAD). In this paper the results of an extensive Geant-4 simulation of the instrumentwillbe discussed, showing the main contributions to the background and the design solutions for its reduction and control. Our results show that the current LOFT/LAD design is expected to meet its scientific requirement of a background rate equivalent to 10 mCrab in 2?30 keV, achieving about 5 mCrab in the most important 2–10 keV energy band. Moreover, simulations show an anticipated modulation of the background rate as small as 10 % over the orbital timescale. The intrinsic photonic origin of the largest background component also allows for an efficient modelling, supported by an in-flight active monitoring, allowing to predict systematic residuals significantly better than the requirement of 1 %, and actually meeting the 0.25 % science goal.  相似文献   

11.
A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.  相似文献   

12.
We present a new method for determining the sensitivity of X-ray imaging observations, which correctly accounts for the observational biases that affect the probability of detecting a source of a given X-ray flux, without the need to perform a large number of time-consuming simulations. We use this new technique to estimate the X-ray source counts in different spectral bands (0.5–2, 0.5–10, 2–10 and 5–10 keV) by combining deep pencil-beam and shallow wide-area Chandra observations. The sample has a total of 6295 unique sources over an area of  11.8 deg2  and is the largest used to date to determine the X-ray number counts. We determine, for the first time, the break flux in the 5–10 keV band, in the case of a double power-law source count distribution. We also find an upturn in the 0.5–2 keV counts at fluxes below about  6 × 10−17 erg s−1 cm−2  . We show that this can be explained by the emergence of normal star-forming galaxies which dominate the X-ray population at faint fluxes. The fraction of the diffuse X-ray background resolved into point sources at different spectral bands is also estimated. It is argued that a single population of Compton thick active galactic nuclei (AGN) cannot be responsible for the entire unresolved X-ray background in the energy range 2–10 keV.  相似文献   

13.
The pn-CCD cameras at the focal plane of the eROSITA space observatory will be the first X-ray (0.2?C12?keV) detector to operate in a L-2 orbit. Therefore, no direct information of instrumental non X-ray background (NXB) is available to make predictions for eROSITA. Since, in general, the instrumental NXB experienced in orbit has a major impact on the overall sensitivity of the cameras, we investigated and modeled the L-2 radiation environment and its interaction with the eROSITA mass distribution and cameras, in order to quantify the expected pn-CCD NXB level. We obtain an average value of NXB ??25% lower than that observed by the pn-CCDs on-board the XMM-Newton satellite, which is placed in a Highly Elliptical Orbit (HEO). We discuss this result in light of the differences between the L-2 and HEO space environments.  相似文献   

14.
One of the scientific objectives of NASA’s Fermi Gamma-ray Space Telescope is the study of Gamma-Ray Bursts (GRBs). The Fermi Gamma-Ray Burst Monitor (GBM) was designed to detect and localize bursts for the Fermi mission. By means of an array of 12 NaI(Tl) (8 keV to 1 MeV) and two BGO (0.2 to 40 MeV) scintillation detectors, GBM extends the energy range (20 MeV to > 300 GeV) of Fermi’s main instrument, the Large Area Telescope, into the traditional range of current GRB databases. The physical detector response of the GBM instrument to GRBs is determined with the help of Monte Carlo simulations, which are supported and verified by on-ground individual detector calibration measurements. We present the principal instrument properties, which have been determined as a function of energy and angle, including the channel-energy relation, the energy resolution, the effective area and the spatial homogeneity.  相似文献   

15.
The Hard X-ray Modulation Telescope (HXMT) is a broadband X-ray (1250 keV) astronomical satellite. Its core payload, the High Energy X-ray Telescope (hereafter HE), is operated in the hard X-ray energy range (20250 keV) and dedicated to the hard X-ray high-sensitivity survey observation, hard X-ray sky mapping and high-sensitivity focused observations towards particular celestial bodies. In order to achieve a high sensitivity, it is important to reduce effectively the background that is caused by the interactions between the detector and space particles (γ-ray, protons, electrons, neutrons). Combining a series of references about the near-earth space background with the up-to-date observational data, this paper presents a set of self-consistent data and energy spectrum formulae of near-earth space particles for the convenience of applications. In addition, by the simulative calculations with the software Geant 4, the background of HXMT and its variations with the time and orbit are also given.  相似文献   

16.
I use ASCA data to investigate the 2–10 keV X-ray emission of active galactic nuclei (AGN) taken from the ROSAT International X-ray Optical Survey (RIXOS). I find that the integrated spectrum of these faint, soft X-ray-selected AGN in the 2–10 keV band is harder (best-fitting α = 0.8 ± 0.1) than the slope measured with ROSAT between 0.1 and 2 keV, but softer than the 2–10 keV X-ray background, and consistent with the average 2–10 keV spectrum of bright, nearby Seyfert galaxies. With this spectral slope and using measurements of the AGN contribution to the 1–2 keV X-ray background, I estimate that the AGN percentage contribution to the 2–10 keV background is 0.60 +0.19−0.14 times the AGN percentage contribution to the 1–2 keV background. Hence AGN produce between 12 and 32 per cent of the 2–10 keV X-ray background. This is only the contribution from the types of AGN which are found in soft X-ray surveys; a population of absorbed AGN could represent an additional component of the 2–10 keV X-ray background.  相似文献   

17.
The RELEC scientific instrumentation onboard the Vernov spacecraft launched on July 8, 2014, included the DRGE gamma-ray and electron spectrometer. This instrument incorporates a set of scintillation phoswich detectors, including four identical X-ray and gamma-ray detectors in the energy range from 10 keV to 3 MeV with a total area of ~500 cm2 directed toward the nadir, and an electron spectrometer containing three mutually orthogonal detector units with a geometry factor of ~2 cm2 sr, which is also sensitive to X-rays and gamma-rays. The goal of the space experiment with the DRGE instrument was to investigate phenomena with fast temporal variability, in particular, terrestrial gammaray flashes (TGFs) and magnetospheric electron precipitations. However, the detectors of the DRGE instrument could record cosmic gamma-ray bursts (GRBs) and allowed one not only to perform a detailed analysis of the gamma-ray variability but also to compare the time profiles with the measurements made by other instruments of the RELEC scientific instrumentation (the detectors of optical and ultraviolet flashes, the radio-frequency and low-frequency analyzers of electromagnetic field parameters). We present the results of our observations of cosmicGRB 141011A and GRB 141104A, compare the parameters obtained in the GBM/Fermi and KONUS–Wind experiments, and estimate the redshifts and E iso for the sources of these GRBs. The detectability of GRBs and good agreement between the independent estimates of their parameters obtained in various experiments are important factors of the successful operation of similar detectors onboard the Lomonosov spacecraft.  相似文献   

18.
19.
The emission from individual X-ray sources in the Chandra Deep Fields and XMM – Newton Lockman Hole shows that almost half of the hard X-ray background above 6 keV is unresolved and implies the existence of a missing population of heavily obscured active galactic nuclei (AGN). We have stacked the 0.5–8 keV X-ray emission from optical sources in the Great Observatories Origins Deep Survey (GOODS; which covers the Chandra Deep Fields) to determine whether these galaxies, which are individually undetected in X-rays, are hosting the hypothesized missing AGN. In the 0.5–6 keV energy range, the stacked-source emission corresponds to the remaining 10–20 per cent of the total background – the fraction that has not been resolved by Chandra . The spectrum of the stacked emission is consistent with starburst activity or weak AGN emission. In the 6–8 keV band, we find that upper limits to the stacked X-ray intensity from the GOODS galaxies are consistent with the ∼40 per cent of the total background that remains unresolved, but further selection refinement is required to identify the X-ray sources and confirm their contribution.  相似文献   

20.
Individual X-ray photons in the keV energy range produce hundreds of photoelectrons in a single pixel of a CCD array detector. The number of photoelectrons produced is a linear function of the photon energy, allowing the measurement of spectral information with an imaging detector system. Most solar X-ray telescopes, such as Yohkoh/SXT and Hinode/XRT, use CCD detectors in an integrating mode and are designed to make temperature estimates from multiband filter photometry. We show how such instruments can be used in a new way to perform a limited type of this photon spectroscopy. By measuring the variance in intensity of a series of repeated images through a single filter of an X-ray source, the mean energy per detected photon can be determined. This energy is related to the underlying coronal spectrum, and hence it can be used to deduce the mean plasma temperature. We apply this technique to data from the Yohkoh Soft X-Ray Telescope and compare the temperatures obtained with this technique with the temperatures derived using the standard filter ratio method for a postflare loop system. Given the large dynamic range of the soft X-ray flux observed from the Sun, we describe the requirements for a future instrument that would be better suited to performing photon spectroscopy. B.J. Labonte deceased 24 October 2005.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号