首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
撞击坑统计定年法及对月球虹湾地区的定年结果   总被引:2,自引:0,他引:2       下载免费PDF全文
赵健楠  黄俊  肖龙  乔乐  王江  胡斯宇 《地球科学》2013,38(2):351-361
撞击作用是行星形成和表面重塑的重要地质过程,记录和揭示了行星的演化历史.撞击作用形成的撞击坑可用于研究天体表面地质单元形成的时间.依据内太阳系天体表面的撞击历史,总结了通过对撞击坑的直径和频率分布进行统计,计算天体表面模式年龄的原理和方法.在此基础上,利用美国“月球勘测轨道器(LRO)”广角相机获得的图像,对月球虹湾地区的撞击坑进行了直径-频率分布统计研究,获得其3个主要地质单元的绝对模式年龄分别为3.33 Ga、3.21 Ga和2.60 Ga,有效限定了本区主要地质事件发生的时间.   相似文献   

2.
撞击坑统计技术在行星表面定年应用中的误区   总被引:1,自引:0,他引:1  
撞击坑大小-频率统计技术在其理论基础与实际应用中存在一定的局限性,且尚未引起国内外行星地质学界的广泛关注.使用该技术分析行星表面的年龄时,应注意:(1)由于晚期大轰击事件的存在,该技术不能用于估算内太阳系天体表面老于~38亿年的地质体的年龄;(2)由于内、外太阳系的撞击历史不同,不能直接使用月球上的撞击坑的产生方程估算外太阳系天体表面地质单元的绝对模式年龄;(3)由于二次撞击坑的干扰,须谨慎使用小撞击坑统计估算年龄;(4)分析撞击坑统计的结果前,首先需分析统计区的饱和状态;(5)避免使用太阳入射角小的影像数据统计撞击坑,避免选择地形复杂的区域作为统计区.另外,建议优先使用相对分布法、并结合累积分布法分析撞击坑统计的结果.  相似文献   

3.
徐璐媛 《地质学报》2021,95(9):2662-2677
充分认识外太阳系撞击体的来源类型和分布特征,对认识外太阳系固态天体上撞击过程,明确外太阳系天体上的撞击坑生成率和撞击坑定年等诸多方面具有重要的意义.得益于海量高质量探测数据的获取,如今我们对内太阳系主要天体表面的撞击分布和来源已经有了较为深入的了解,但对外太阳系天体的撞击分布和来源还知之甚少.不同大小频率的撞击体会在外太阳系冰卫星表面形成不同大小频率分布的撞击坑,不同飞行速度的撞击体也会在同步自转的冰卫星上留下程度不同的前导-后随半球不对称分布的撞击坑,因此,对外太阳系冰卫星上撞击坑的大小频率分布和前导-后随半球不对称性分布的观测,可以用于反推外太阳系的主要撞击来源.木星系统中大坑(D>10~30 km)的主要撞击来源是日心小天体(环绕太阳),但目前在木卫三和木卫四上观测到的前导-后随半球不对称性程度与黄道彗星引起的不对称性程度并不相符,更接近于近各向同性彗星(NICs)引起的不对称性,这与目前的天文观测和理论计算结果不一致;木卫二上的大坑稀少,小坑(D<1 km)则主要受一次坑的溅射物影响.对土星系统,土卫五和土卫八的大坑(D>20~30 km)分布更符合日心小天体来源;而土卫一、土卫四、土卫三上的分布则与行心碎屑物(以行星为中心)一致,尤其是小坑更可能来自以土星为中心的撞击体影响,例如大型盆地的溅射物或卫星碎片残骸.  相似文献   

4.
月球表面定年研究对于理解和重建月球地质演化历史具有关键作用,撞击坑尺寸频率分布法(CSFD)是通过统计区域内不同尺寸撞击坑密度得到特定地质单元的绝对地质年龄。雨海北部地区(LQ 4)包括雨海北部、冷海西部地区以及风暴洋东北部等月海,位于雨海西北边缘的虹湾是中国嫦娥三号卫星预选软着落区,文中综合使用3种方法从影像和地形数据中自动提取了该区内的撞击坑。利用Clementine光谱数据对雨海北部和风暴洋东北部内玄武岩进行了分区,利用撞击坑尺寸频度法(CSFD)法得到每个玄武岩分区内的定年结果。对比该地区之前的定年数据后发现,使用自动识别结果得到的各分区定年结果新老整体趋势上与之前研究结果基本一致,但存在一定偏差。根据自动识别定年结果,认为该地区玄武岩新老顺序大致为:雨海东部(3.56 Ga)-虹湾(3.38 Ga)-风暴洋东北部(2.74 Ga)-雨海西部(2.63 Ga)-柏拉图坑(2.37 Ga)。结合撞击坑自动识别技术和CSFD法,形成了一条利用影像和地形遥感数据快速得到月球表面地质年龄的方法,为月球年代学研究提供一种新途径。  相似文献   

5.
外来天体物质的高速撞击作用贯穿了月球形成和演化的全部历史。撞击作用是塑造月球全球地貌、改造月表物质的物理化学特征、影响月球多圈层演化的重要地质营力。月球上的撞击过程、撞击历史及其对月表物质的改造,一直是月球科学研究的重要内容,也是月球探测的重点研究对象。本文综述了近十年来国、内外在月球的撞击过程、撞击历史和撞击改造浅表层物质研究中的重要进展,重点介绍了基于我国嫦娥探月工程获取的科学数据的相关研究成果,展望了该研究的发展方向,并对未来探测的重要观测目标提出了建议。  相似文献   

6.
撞击坑统计方法是估计行星表面年代的一种有效方法。利用小尺度撞击坑大小频率分布测定撞击年龄,并分析了计算模型的不确定性、撞击坑的退化、次级撞击坑影响等相关问题。选用嫦娥二号获取的虹湾地区高精度影像数据进行验证,确定该区域退化参数为350 m,直径小于30 m时次级撞击坑密集分布,使用350 m以上的撞击坑计算得到撞击年龄为3.16 Ga,误差控制在0.1 Ga以内。  相似文献   

7.
简要讨论了小行星和彗星撞击地球表面形成撞击坑的一般特征。根据小行星与彗星的结构和组成的差别,提出了判别小行星与彗星撞击坑的有关地质,地貌等判据。  相似文献   

8.
撞击坑统计定年法的基本原理是首先得到月球表面撞击坑密度分布的一般规律(即产率函数),然后将其应用到Apollo和Luna任务采样的区域中,得到大干特定直径(常用1 km)的撞击坑密度,然后在该密度和样品的同位素年龄之间建立函数关系(即年代函数).在对没有样品的地质单元进行年龄分析时,首先从遥感影像解译撞击坑,然后根据产率函数求解大于指定直径撞击坑的密度,最后将其代入年代函数中求解该区域的地质年龄.根据其它行星与月球撞击环境的差异等因素,该方法已经推广到其它行星表面地质年龄的研究中.本文详细分析了撞击坑统计定年方法的原理,以及在应用中需要注意的问题.  相似文献   

9.
月表撞击坑自动识别与提取的新方法及其应用   总被引:2,自引:0,他引:2       下载免费PDF全文
月表撞击坑是月球最显著的地质构造特征。随着不同月球探测器探测数据的丰富与数据质量的提高,月表地质信息挖掘成为月球科学领域重要的研究内容。月表分布广泛的撞击事件的撞击机理研究和月表地质单元的地质年龄的判定等科学问题都离不开对撞击坑的研究。因此,对撞击坑进行识别和特征参数提取是挖掘以上月表地质隐含信息的基础和关键。针对目前用于撞击坑识别和特征参数提取的方法存在效率低下、应用范围有限等种种缺陷,提出了一种新的月表环形构造识别和特征参数提取方法,并且实现了定量自动化处理。首先,根据撞击坑环形构造特征,利用坡度指数提取坑壁多边形矢量要素;其次,提出并采用环形构造最小外包矩形法提取撞击坑的伪中心与伪直径;然后,以伪中心为中心点向外搜寻并确定撞击坑坑缘顶点;最后,利用三点定圆法确定撞击坑的中心位置和直径大小。以嫦娥一号CCD相机影像数据和利用CCD立体相机制作的DEM数据为数据源,选取不同区域、不同类型的月表撞击坑进行试验,并将计算结果与目前研究成果进行对比。结果验证表明,此方法可以推广到月表其他表面,并可应用于月表撞击坑形成机理研究和利用撞击坑大小频率分布测量的方法确定月表地质单元的地质年龄工作中。  相似文献   

10.
Apollo 11和嫦娥四号(Chang'E-4)是人类探月历史上的里程碑,它们的着陆区分别位于月球正面和背面.对两个着陆区内不同退化程度撞击坑的统计和对比分析有助于揭示研究区域的地质年龄和演化历史,对月球地质研究有着重要的意义.本文使用LRO NAC影像和DTM产品对两个着陆区附近1 km2范围内撞击坑的退化进行分析,通过目视解译识别撞击坑并根据形貌将其分为不同的类别,然后对各类撞击坑进行统计,最后根据统计结果分析区域的地质年龄和撞击坑退化速度.结果 表明Apollo 11和Chang'E-4着陆区附近直径在5~300 m的撞击坑累计大小频率分布规律基本相同,撞击坑累积数量随直径的减小呈指数关系增加;撞击坑最初退化速度较快,随着退化程度的增加,退化速度急剧降低;两个区域的地质年龄相近,撞击历史相似.  相似文献   

11.
Impact craters are distinctive landforms on Moon, Mars, Venus and other bodies of the Solar System. In contrast, the Earth has few craters, due to the dynamic nature of the planet, where craters and other geological structures are destroyed, modified or covered. Planetary missions have also shown that in other worlds where craters are numerous and well preserved, the crater record has been modified, through the identification of buried structures. Studies of the concealed crater record have major implications for the crater‐size frequency distribution and crater‐counting chronologies. On Earth, Chicxulub is an example of a large multi‐ring buried basin. Its study provides clues for the investigation other planetary surfaces. In addition, geophysical surveys have unravelled its deep 3‐D structure, providing data and constraints for new planetary missions.  相似文献   

12.
撞击坑是太阳系内大多数类地行星表面的一种重要地质过程,文中介绍了撞击坑形成的机制和撞击坑研究中的数值模拟方法。首先介绍模拟撞击成坑过程的基本理论与策略,着重指出状态方程在数值模拟中具有重要作用。然而,相对于客观世界物质复杂多样,在撞击坑数值模拟中仅有少数物质的状态方程,因此在研究中不可避免地使用其他物质的状态方程进行替换。详细阐述了状态方程替换的概念和原则,即它们的雨贡纽曲线必须相似。其次进一步从理论上分析这种替代过程对物理属性以及溅射速度的影响。最后,开展两个小型撞击坑的数值模拟,靶区分别使用花岗岩和石英岩,模拟结果显示了两次模拟中的峰值压力、温度以及密度的相似性和差异性。这种分析能够有助于行星科学领域的研究,尤其是在目前从月球、火星以及其他星体正在获取越来越多数据的阶段。  相似文献   

13.
Two general classes of lunar impact breccias have been recognised: fragmental breccias and melt breccias. Fragmental breccias are composed of clastic-rock debris in a finely comminuted grain-supported matrix of mineral and lithic fragments. Impact melt breccias have crystalline to glassy matrices that formed by cooling of a silicate melt. Most lunar impact breccias in our collection probably sample ejecta from large complex craters or multi-ring basins, although linking individual breccias to specific impact events has proven surprisingly difficult. A long-standing problem in lunar science has been distinguishing clast-poor impact melt breccias from igneous rocks produced by melting of the lunar interior. Concentrations and relative abundances of highly siderophile elements derived from the meteoritic impactor provide a useful discriminant, especially when combined with petrologic and geochemical evidence for mechanical mixing. Most lunar impact melt breccias have crystallisation ages of 4.0?–?3.8 Ga, corresponding to an episode of intensive crustal metamorphism recorded by whole-rock U?–?Pb isotopic compositions of lunar anorthosites. This may reflect a short-lived spike in the cratering rate, although other explanations are possible. The question of whether or not a cataclysmic bombardment struck the Earth and Moon at ca 3.9 Ga remains open and the subject of continuing investigations.  相似文献   

14.
张诚  陈建平 《江苏地质》2019,43(3):514-522
撞击坑是研究月球最直接的对象,也是月球表面最为普遍且显著的地貌单元和地质构造标志,在行星地质学研究中具有重要的地位。通过对月球撞击坑识别方法和撞击坑分类方法研究进展进行概述及总结,将月球撞击坑识别方法概括为人工识别、基于形态特征提取算法、基于机器学习算法、基于地理信息融合分析算法4类,并对月球撞击坑识别方法研究中存在的问题进行了分析。  相似文献   

15.
Meteorite impact structures are found on all planetary bodies in the Solar System with a solid surface. On many planets, impact craters are the dominant landform. Earth's active geology, however, tends to rapidly erase impact structures from the geological record, although we know currently of 174 confirmed impact sites. Impact events are destructive and have been linked to at least one of the 'big five' mass extinctions over the past 540 Ma. But they also provide certain economic benefits, including the formation of metalliferous ore deposits and hydrocarbon reservoirs. Impact structures can also form new biological niches, which can provide favourable conditions for the survival and evolution of life. Despite this, it was only in the past 40 years that the importance of impact cratering as a geological process was recognized and only during the past 15–20 years that the study of meteorite impact structures has moved into the geological mainstream. There is, therefore, still considerable potential for new and exciting advancements.  相似文献   

16.
Impact cratering produces not only craterform topographic features, but also structural disturbances at the site of impact, and a spectrum of transformed and newly formed rocks. The term ‘coptogenesis’ (from the Greek χoπτo, to destroy by shock) may be used collectively to describe the impact process—a process fundamental to all cosmic bodies. Principal coptogenic topographic features of terrestrial impact craters may be subdivided into excavational, structural and accumulative landforms, most of which subsequently experience various processes of degradation. Nevertheless, the original shape of craters may in some cases be reconstructed and compared with fresh craters on other planets. An immediate conformity between the pre-erosional topographic features of complex terrestrial craters, and the morphostructural elements of their erosional remnants, is not a standing rule. Geological observations show that the inner structure of the proximal crater fill and distal ejecta are characterised by pseudo-stratification and that these materials represent a group of facies of impact-derived and impact-related, or coptogenic, lithologies. The study of these facies allows us to distinguish various facies settings of rock-forming processes. Impact lithologies, or coptogenic rocks, may be systematised and classified using the principles adopted by igneous petrology and volcanology. Appropriate geological methods and approaches should be applied to the investigation of terrestrial impact craters, including their identification, mapping, and study of their various physiographic, structural, and lithological features.  相似文献   

17.
Impact cratering was an important — even dominant — process affecting the crustal evolution of the small terrestrial planets. The fundamental highlands/maria dichotomy of the Moon's surface can be traced to a late heavy bombardment by basin-forming, asteroid-sized bodies which produced not only a topographic division in the lunar crust but also localized the later eruptions of mare basalts. Major impact basins with diameters in excess of 200 km are recognized throughout the inner solar system from Mars to Mercury. Similar craters must have formed on the Earth prior to 4 Ga ago, and the minimum number of such basin-forming impacts can be calculated by scaling from the observed (minimum) number preserved on the Moon. When allowance is made for differences in impact velocity, gravitational cross-section and the effects of gravity on crater diameter, it is found that at least 50% of a presumed global sialic crust would have been converted into impact basins by 4 Ga ago. Among the effects resulting from the impact of an asteroidal object on the early crust were: (a) establishment of a topographic dichotmy of 3–4 km (after isostatic adjustment), (b) pressure-release partial melting of the upper mantle and rapid flooding of the basin floor by basalt, and (c) enhancement of thermal gradients in the sub-basin lithosphere and upper asthenosphere. Comparative planetary data such as impact scaling can be used as important constraints on models of the early terrestrial crust. For example, the topography resulting from impact bombardment produced discrete oceans and dry land by 4 Ga ago, making unreasonable models of a globe-encircling ocean on the Earth after that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号