首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of the work was to verify and demonstrate, on a pilot plant scale, the applicability of the Slovak clinoptilolite as a natural selective ion exchanger for the removal of ammonia from tannery wastewaters. During the pilot treatment experiments at an industrial wastewater treatment plant of the Shoe Manufacturing Industry Svit-Otrokovice, about 260 m3 of wastewaters were treated. The regeneration process was carried out with 2% NaCl (pH = 9, NaOH) and the eluate was distributed into 3 fractions. Only the most concentrated ammonia fraction was stripped in the renovation step. The economic efficiency of the studied method was compared with the biological nitrification-denitrification method.  相似文献   

2.
Soil‐mix technology is effective for the construction of permeable reactive barriers (PRBs) for in situ groundwater treatment. The objective of this study was to perform initial experiments for the design of soil‐mix technology PRBs according to (i) sorption isotherm, (ii) reaction kinetics and (iii) mass balance of the contaminants. The four tested reactive systems were: (i) a granular zeolite (clinoptilolite–GZ), (ii) a granular organoclay (GO), (iii) a 1:1‐mixture GZ and model sandy clayey soil and (iv) a 1:1:1‐mixture of GZ, GO and model soil. The laboratory experiments consisted of batch tests (volume 900 mL and sorbent mass 18 g) with a multimetal solution of Pb, Cu, Zn, Cd and Ni. For the adsorption experiment, the initial concentrations ranged from 0.01 to 0.5 mM (2.5 to 30 mg/L). The maximum metal retention was measured in a batch test (300 mg/L for each metal, volume 900 mL, sorbent mass 90–4.5 g). The reactive material efficiency order was found to be GZ > GZ‐soil mix > GZ‐soil‐GO mix > GO. Langmuir isotherms modelled the adsorption, even in presence of a mixed cations solution. Adsorption was energetically favourable and spontaneous in all cases. Metals were removed according to the second order reaction kinetics; GZ and the 1:1‐mix were very similar. The maximum retention capacity was 0.1–0.2 mmol/g for Pb in the presence of clinoptilolite; for Cu, Zn, Cd and Ni, it was below 0.05 mmol/g for the four reactive systems. Mixing granular zeolite, organoclay and model soil increased the chemisorption. Providing that GZ is reactive enough for the specific conditions, GZ can be mixed to obtain the required sorption. Granular clinoptilolite addition to soil is recommended for PRBs for metal contaminated groundwater.  相似文献   

3.
The paper deals with the effectiveness of secondary effluent renovation with iron, alum and dolomite coagulation, electrocoagulation, adsorption on activated carbon, ammonia nitrogen removal on clinoptilolite.  相似文献   

4.
Oxygen isotope ratios were obtained from authigenic clinoptilolites from Barbados Accretionary Complex, Yamato Basin, and Exmouth Plateau sediments (ODP Sites 672, 797, and 762) in order to investigate the isotopic fractionation between clinoptilolite and pore water at early diagenetic stages and low temperatures. Dehydrated clinoptilolites display isotopic ratios for the zeolite framework (δ18Of) that extend from +18.7‰ to +32.8‰ (vs. SMOW). In combination with associated pore water isotope data, the oxygen isotopic fractionation between clinoptilolite and pore fluids could be assessed in the temperature range from 25°C to 40°C. The resulting fractionation factors of 1.032 at 25°C and 1.027 at 40°C are in good agreement with the theoretically determined oxygen isotope fractionation between clinoptilolite and water. Calculations of isotopic temperatures illustrate that clinoptilolite formation occurred at relatively low temperatures of 17°C to 29°C in Barbados Ridge sediments and at 33°C to 62°C in the Yamato Basin. These data support a low-temperature origin of clinoptilolite and contradict the assumption that elevated temperatures are the main controlling factor for authigenic clinoptilolite formation. Increasing clinoptilolite δ18Of values with depth indicate that clinoptilolites which are now in the deeper parts of the zeolite-bearing intervals had either formed at lower temperatures (17–20°C) or under closed system conditions.  相似文献   

5.
The diffusion and adsorption of two common volatile organic compounds, i. e., methanol and benzene, in different zeolite pellets were studied experimentally by using the single pellet moment technique. The experiments were conducted in a one‐sided single pellet adsorption cell at different temperatures in the range between 303 and 343 K. The results showed that both volatile organic tracers were adsorbed reversibly onto all zeolite samples. The overall adsorption equilibrium constants of both volatile organic compounds decreased with increasing temperature. The adsorption of the tracers onto the zeolite samples were found to increase in the order of NaY > clinoptilolite > 4A. In the range between 303 and 343 K, the adsorption constants of benzene range from 10.51 to 5.52 for zeolite 4A, from 11.90 to 6.37 for clinoptilolite and from 20.32 to 9.82 for NaY. The adsorption constants of methanol range from 19.05 to 8.26 for zeolite 4A, from 38.40 to 9.12 for clinoptilolite and from 74.21 to 14.70 for NaY at temperatures between 303 and 333 K. The effective diffusivities for benzene varied from 2.20·10–6 to 13.01·10–6 m2/s, whereas for methanol, they varied from 9.80·10–6 to 15.60·10–6 m2/s at the temperatures studied.  相似文献   

6.
The aim of this paper is to show the concise chemico-physical adsorbent performance of water purification systems utilizing geo-(e.g., allophane, clinoptilolite, and smectite) and bio-polymer materials(e.g.,chitosan or cellulose nanocomposite materials) and to propose an optimal ground-water remediation technique. The performance of geo-materials is evaluated based on the individual sorption and immobilization capacities for various priority substances and pollutants(e.g., lead, zinc, cadmium, c...  相似文献   

7.
This study focused on the electrochemical degradation of hydrolyzed Remazol Black B (CI Reactive Black 5), a common diazo reactive dye, in aqueous solution. In the presence of various auxiliary dye chemicals, a typical Remazol Black simulated exhausted dyebath liquor was treated electrochemically in various basic electrochemical reactor configurations such as batch, batch recirculation and single pass systems. The effect of current density, supporting electrolyte concentration, electrolysis duration, specific electrode surface and fluid flow rate on pollutant removal and energy consumption performance of the systems was critically evaluated. Batch studies show the following operating parameters, current density: 2.5 A/dm2, electrolysis duration: 6 h, and supporting electrolyte concentration: 3 g/L, were optimal for good overall performance of the system. Color removal was complete by 3 h of treatment for all combinations of parameters studied. The pollutant removal performance of the batch recirculation system was found to have improved considerably by increasing the flow rate. Performance of the batch recirculation system was comparatively better than the other rector configurations studied, with respect to capacity utilization and energy consumption.  相似文献   

8.
Adsorptive removal of EDTA (ethylenediaminetetraacetic acid) from aqueous solution was studied using steam pyrolyzed activated carbon. Rubber wood sawdust, obtained from a local timber facility at Kodangavila, Trivandrum, Kerala, India was used as the precursor for the production of the activated carbon. Batch adsorption experiments were employed to monitor and optimize the removal process. The experimental parameters, i. e., solution pH, agitation time, initial EDTA concentration and adsorbent dosage, affecting the adsorption of EDTA onto sawdust activated carbon (SDAC) were optimized. The inner core mechanism for the interaction between EDTA and SDAC, which resulted in the adsorption process, was also discussed. The change in amount of EDTA adsorbed onto SDAC and CAC (commercial activated carbon) was compared over a wide range of pH (2.0–8.0). The maximum removal of EDTA took place in the pH range of 4.0–6.0 for SDAC and 5.0–5.5 for CAC, which demonstrates the effectiveness of the former adsorbent. Kinetic as well as equilibrium studies were performed to determine the rate constant and adsorption capacity, respectively. The adsorption kinetic data was fitted with pseudo‐first‐order kinetics and the equilibrium data was shown to follow the Langmuir isotherm model. These observations explain the formation of a monolayer of EDTA on the surface of SDAC as confirmed by the slow approach to equilibrium after 4 h of contact time. The adsorption capacity of SDAC for the removal of EDTA was 0.526 mmol/g and is seen to be greater than that of CAC and other reported adsorbents (0.193–0.439 mmol/g). Finally, it is clear that the production of steam pyrolyzed activated carbon in the presence of K2CO3 greatly enhanced EDTA removal and resulted in a product with possible commercial value for wastewater treatment strategies.  相似文献   

9.
This paper presents a new environmental approach for reducing environmental impacts of two local Palestinian industries: It implements the principle of “treating waste by waste.” The technical feasibility of chromium removal from wastewater in leather making by its treatment with solid waste from stone cutting industry is demonstrated experimentally, and found to be an efficient approach. Nearly full removal of chromium is obtained at optimum operating conditions using sufficient mass of solid waste (limestone) and allowing enough contact time between the two wastes. This study investigated effects of various parameters on the percentage relative decrease in concentration by using ultra violet (UV)/Vis spectrophotometry. Kinetic curves showed that percentage relative decrease in concentration increased with time until approaching a plateau (adsorption capacity). The adsorption capacity increased with increasing limestone to liquid ratio (solid content), until nearly full removal of chromium was obtained when the solid content was 5 g/100 mL or higher. This was accomplished within few days when the particles were settled. The adsorption capacity was pH dependent; adsorption at pH < 5 was obtained, as a finding which was not reported by previous investigators for Cr(III) adsorption using other particles. The percentage removal was nearly doubled at higher pH values (>5). Further research work is proposed to distinguish between the contributions of the two removal mechanisms of precipitation and adsorption.  相似文献   

10.
Within the context of Ecological Sanitation (ECOSAN), human urine has been the subject of research and practice as a potential fertilizer in the recent years. Although quite a lot had been done with original undiluted urine with promising outcomes, not much appears in the literature which concentrates on dilute solutions of urine. This is important because unless waterless toilets are employed, urine will be diluted with flush water in actual use. In this work, dilute solutions of urine are investigated with emphasis on the recovery of plant nutrients. A natural zeolite namely clinoptilolite was loaded with nitrogen, phosphorus, and potassium as an indirect route of processing urine. The results have revealed that hydrolysis is completed in shorter times in dilute samples. Clinoptilolite could successfully remove plant nutrients from all dilute solutions. Nitrogen could be recovered up to 86% with higher efficiencies at higher concentrations in general. Recovery of orthophosphates increases with increasing concentration to reach 96%, however, potassium could not be recovered. The preliminary experiments with grass have revealed that nutrient loaded clinoptilolite was as effective as chemical fertilizers while direct application of original and diluted solutions of urine had shown inferior yields.  相似文献   

11.
Direct infiltration of roof runoff into the ground may pose a potential risk of soil and groundwater contamination. The performance of two different barrier materials for the retention of zinc from roof runoff of an eleven year old zinc roof was examined in a field study. As barrier materials geotextile and clinoptilolite were applied. Automatic samplers were used to take samples both at the inlet and at the outlet of the retention facility. Samples of twenty rain events were examined. Zinc was detected in the roof runoff in concentrations of up to 25 mg/L, and lead which originates from the tin‐solder was present in concentrations of up to 84 μg/L. Under most circumstances, a first flush could be observed for the analysed substances. No retention of heavy metals was observed, where only geotextile was used as a barrier material. The clinoptilolite filter was able to adsorb up to 97 % of zinc from the roof runoff.  相似文献   

12.
Limestone defluoridation by fixed bed reactor has been studied with water pre‐acidified with edible organic acids, viz. acetic acid (AA) and citric acid (CA). The study has been carried out by varying acid concentration, contact time (t), number of repeated use of the same limestone bed (n), and chip size of the crushed limestone using fixed fluoride concentration of 10 mg/L in distilled water and groundwater amended to that concentration of fluoride. The presence of both the acids considerably improved the fluoride removal and the removal increased with increase in the acid concentration. Fluoride removal to less than 0.5 and 1.0 mg/L from initial 5 and 10 mg/L, respectively, have been achieved by the method on treatment with single reactor. The mechanism of fluoride removal in the process thought to be the increase in Ca2+ activity by dissolution of limestone, which precipitates as CaF2. XPS analysis reveals that adsorption also contribute to the fluoride removal along with precipitation. The final pH of water remained within acceptable range for drinking water. Initial concentration of fluoride, effects the removal ability of the limestone particles only to some extent. The influence of other anions on fluoride removal process has a little influence which follows the order phosphate > sulfate > bromide > chloride > nitrate.  相似文献   

13.
Coexisting fine-grained (0.1–20 μm) authigenic silicate minerals separated from altered tuffs in Miocene and Plio-Pleistocene lacustrine deposits were characterized petrographically and using X-ray powder diffraction. The authigenic minerals are dominated by clinoptilolite, erionite, phillipsite, K-feldspar, silica, calcite, smectite, and randomly interstratified illite/smectite. Minor accessories of opal-CT, cristobalite, and barite are present with the major alteration minerals. Authigenic minerals from altered tuffs were dated using the K/Ar method to evaluate the utility of these minerals for determining the time of alteration in low-temperature diagenetic environments. The eruption ages of some of these zeolite-rich tuffs were determined using the 40Ar/39Ar method on single sanidine and plagioclase minerals. The K/Ar isotopic ages of the fine-grained K-feldspar show minimal variation compared with results from the clinoptilolite separates. The isotopic ages from the authigenic K-feldspar (15-13.8 Ma) and some of the zeolites (16.-6.7 Ma) are similar to the eruption ages of the tuffs and indicate early alteration. Despite their open-framework structure, zeolites apparently can retain part or all of their radiogenic argon under favorable conditions (e.g., saturated environment). How much of the radiogenic argon is retained is estimated from the isotopic ages of other coexisting secondary minerals that are commonly dated by the K/Ar method. Although zeolite isotopic ages should be interpreted with caution, they may be useful to constrain temporal relations of low-temperature diagenetic processes when used in conjunction with other dateable minerals.  相似文献   

14.
Secondary drainage canals have the potential to effectively mitigate excess nitrogen loads from diffuse and point sources. In vegetated (Phragmites australis and Typha latifolia) and in unvegetated canals subjected to diffuse and point pollution, nitrogen removal was evaluated by means of simple in–out mass balance and potential uptake by macrophytes was estimated from biomass data. Results suggest an elevated control of nitrogen in vegetated ditches receiving point source of pollution (average abatement of 50% of the total N load per linear km), whereas removal processes are much less effective in unvegetated ditches. The comparison between net abatement and plant uptake, highlights the presence of other unaccounted for processes responsible for a relevant percentage of total N removal. Overall, results from this study suggest the importance of actions aiming at the appropriate management of emergent vegetation, in order to improve its direct and indirect metabolic functions and maximize nitrogen removal in impacted watersheds.  相似文献   

15.
In this paper, a novel adsorbent developed by means of granulating of natural zeolite nanoparticles (i.e., clinoptilolite) was evaluated for possible removal of the petroleum monoaromatics (i.e., benzene, toluene, ethylbenzene, and xylene, BTEX). To do this, the natural zeolite was ground to produce nanosized particulate, then modified by two cationic surfactants and granulated. The effect of various parameters including temperature, initial pH of the solution, total dissolved solids (TDS), and concentration of a competitive substance (i.e., methyl tert‐butyl ether, MTBE) were studied and optimized using a Taguchi statistical approach. The results ascertained that initial pH of the solution was the most effective parameter. However, the low pH (acidic) was favorable for BTEX adsorption onto the developed adsorbents. In this study, the experimental parameters were optimized and the best adsorption condition by determination of effective factors was chosen. Based on the S/N ratio, the optimized conditions for BTEX removal were temperature of 40°C, initial pH of 3, TDS of 0 mg/L, and MTBE concentration of 100 µg/L. At the optimized conditions, the uptake of each BTEX compounds reached to more than 1.5 mg/g of adsorbents.  相似文献   

16.
Phosphorus sorption capacity was investigated in surface sediments derived from an abandoned zinclead mine area located in northeastern Algeria. The forms and the distribution of phosphorus in the raw sediment were identified using the sequential chemical extractions method. Batch experiments were done to study the adsorption kinetics and isotherms. The pH effect was evaluated by macroscopic and infrared analyses. In raw sediment, speciation results show that phosphorus is dominantly bound to oxyhydroxides. Sorption experiments demonstrate that phosphorus uptake is principally related to sediment composition. The nature of the dominant iron oxyhydroxide has a substantial role in the adsorption capacity and the mechanism interaction. The adsorption kinetics can be described by the second order and Elovich models. The isotherms data are successfully modeled by the Temkin equation.The maximum phosphorus removal is reached under acidic pH. Spectroscopic analyses reveal that the predominance of jarosite implies electrostatic interaction with sediment particles. However, in the case of schwertmannite predominance, phosphate ions are adsorbed by the ligand exchange mechanism.  相似文献   

17.
Municipal wastewater (MWW) or urban wastewater (UWW) is generated by the domestic consumption of freshwater, which contains a huge amount of nutrients. The release of unprocessed wastewater causes eutrophication and harms aquatic life. Moreover, ingestion of polluted MWW causes a severe negative impact on human health. Microalgae are unicellular, eukaryotic photosynthetic organisms and have the capability of nutrient assimilation in the presence of light. Moreover, the produced biomass can be used for the generation of value-added bioproducts such as bioenergy. However, conventional microalgae-based MWW treatment is not as sustainable on a commercial scale. Therefore, more advanced approaches using microalgae need to be integrated in wastewater cultivation systems to improve nutrient removal efficiency. Thus, the present review explores the use of microalgae for the removal of nutrients from MWW, provides an outlook of direct and indirect methods of nutrient uptake from wastewater and the effects of the influencing factors in biomass growth. Moreover, the review also gives insight into recent approaches used for MWW treatment and the applications of algal biomass resulting from treated wastewater. It is predicted that microalgae-based MWW treatment systems will be a significant green approach to help eliminate nutrient loads and implement circular economy.  相似文献   

18.
The adsorption of cobalt ions was evaluated using sediment samples from water bodies to investigate the adsorption properties of sediment and the behavior of these natural materials in the presence of nuclear and industrial waste.The two sediments(S1 and S2)were treated to eliminate humic and fulvic acids and then they were characterized by several techniques.The minerals found in both the sediments(X-ray diffraction)were quartz and albite;plus,goethite and muscovite in S1,and kaolinite and montmorillonite in S2.Point of zero charge(PZC)of S1 and S2 was 6.00 and 5.22,respectively.The specific area of S1(63.3 m2/g)is higher than S2(1.5 m2/g).Adsorption kinetics data for S1 and S2 were best fitted to the pseudo second-order model.The removal efficiency of S1 for cobalt was 96%with an adsorption capacity(qe)of 0.93 mg/g,and for S2 was 45%with a qeof 0.40 mg/g.The experimental data of the adsorption isotherms were adjusted to Langmuir and Freundlich models for S1 and S2,respectively.The thermodynamic parameters(enthalpy,entropy,and Gibb’s free energy)indicated that the adsorption processes were endothermic,spontaneous,and chemisorption mechanism.The results show that the adsorption capacities of the sediments depend on their composition.These water sediments have important adsorption properties for cobalt,and they can be used in the treatment of nuclear and industrial aqueous wastes.  相似文献   

19.
In the present study, the vine stem and modified vine stem were used as low cost adsorbents for the removal of acidic and basic dyes from aqueous solutions. A comparative study was also carried out with activated carbon obtained from vine stem and then the adsorption capacities of all adsorbents were evaluated by batch adsorption process. The effects of various adsorption parameters (initial pH, particle size, and contact time) were investigated. The modification of the vine stem with nitric acid increased its adsorption capacity for the basic dye. Both, vine stem and modified vine stem exhibited higher adsorption capacities than activated carbon. The adsorption capacities were found to be 322.58, 250, and 200 mg g?1 for modified, natural vine stem, and activated carbon, respectively. In the case of acidic dye, the pH strongly affected the adsorption capacity and the maximum dye uptake was observed at pH 2 for all adsorbents. The acidic dye adsorption was lower compared to basic dye on both biosorbents and activated carbon tested. The maximum acidic dye adsorption values (58.82 and 59.88 mg g?1) were obtained with the vine stem and activated carbon, respectively. In the case of lignocellulosic adsorbents, both surface charge and surface groups had main effect on the adsorption of basic dye, while adsorption mechanism in activated carbon was mainly through the physical adsorption. The results of comparative adsorption capacity of adsorbents indicated that vine stem or modified vine stem can be used as a low cost alternative to activated carbon in aqueous solution for basic dye removal.  相似文献   

20.
In the present study, Oreganum onites L. stalks in natural and chemically modified with HNO3 and H3PO4 used as adsorbent for removal of both acidic and basic dyes from waters. The adsorption was studied as a function of pH and contact time by batch method. All tested biosorbents were characterized by FT‐IR, scanning electron microscopy, and measuring the pH dependence of the zeta potential. The adsorption isotherms were fitted to Langmuir isotherm. The maximum adsorption capacity of dyes was 280.73 mg g?1 for Basic Red 18, 147.06 mg g?1 for methylene blue and 112.36 for Acid Red 111, which is comparable to that of other lignocellulosic materials. The modification process was considerably increased the biosorption capacity of lignocellulosic material, resulting in a 56–63% increase in the biosorption capacity of basic dyes and a 125% increase in the biosorption capacity of acidic dye. The present study illustrated that the most effective factors in the adsorption of basic dye were surface charge and acidic groups on lignocellulosic biosorbents, while non‐electrostatic forces as well as electrostatic forces were also effective in the adsorption of acidic dye. In conclusion, Oreganum stalks can be considered as a very prospective adsorbent for the removal of tested basic and acidic dyes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号