首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
对2011年西安咸阳国际机场所有雷暴日雷暴发生时间前后的NCEP1°×1°再分析资料的400hPa垂直速度场进行分析,发现大多数雷暴发生在中高层为上升气流区的环境中,少数雷暴发生在中高层为下沉气流区的环境中。进一步的研究表明:当低层为高温高湿且有明显辐合运动时,中高层的垂直速度场对雷暴的出现并不起决定性的作用;但当低层的对流条件不明显,而中高层为强的上升气流区时,仍有发生雷暴的可能。研究为雷暴天气的预报提供了新的思路,提醒预报员在低层对流条件不明显时,还需关注中高层强上升气流区的作用。  相似文献   

2.
对2011年西安咸阳国际机场所有雷暴日雷暴发生时间前后的NCEP1°×1°再分析资料的400hPa垂直速度场进行分析,发现大多数雷暴发生在中高层为上升气流区的环境中,少数雷暴发生在中高层为下沉气流区的环境中。进一步的研究表明:当低层为高温高湿且有明显辐合运动时,中高层的垂直速度场对雷暴的出现并不起决定性的作用;但当低层的对流条件不明显,而中高层为强的上升气流区时,仍有发生雷暴的可能。研究为雷暴天气的预报提供了新的思路,提醒预报员在低层对流条件不明显时,还需关注中高层强上升气流区的作用。  相似文献   

3.
北京雷暴大风日环境特征分析   总被引:12,自引:2,他引:10  
雷暴大风是指由对流活动带来的除龙卷以外的地面灾害性强阵风。根据北京地区21个观测站2000~2007年的观测资料,将出现在该期间的雷暴大风按强阵风出现时降水量的大小划分为干、湿两种类型,探讨了两类雷暴大风日环境大气的热力稳定度条件、环境风垂直分布及演变等特征。结果表明,绝大多数干型雷暴大风产生在对流有效位能较小但对流层中低层环境风垂直切变却比较大的环境中,因此反映热力不稳定性的对流参数在干型雷暴大风的预报中具有一定的局限性,给对流初生的预报带来了一定难度。而湿型雷暴大风则多发生在热力不稳定的条件下。两种类型雷暴大风日环境大气温湿廓线有较大差别是造成热力不稳定性不同的原因之一。因此在预报雷暴大风时,除了环境大气的热力不稳定性外,还应考察环境风垂直切变等因素。下沉气流的热力稳定性和对流层中下层环境风速的演变是判断对流活动能否给地面带来短时强阵风的两个重要因素。下沉对流有效位能(DCAPE)的分析结果表明,多数雷暴大风日临近时刻的下沉对流有效位能大于600 J·kg-1,而且86%的干型个例和59%的湿型个例在地面大风出现前DCAPE呈现增加的趋势,这对雷暴大风特别是干型雷暴大风的潜势预报具有一定的意义。在雷暴大风来临前,抬升凝结高度以下的环境温度直减率明显增加,这种演变趋势也可为临近预报提供有用的信息。此外,风廓线仪观测资料是对常规探空的有效补充。分析表明,有一些雷暴大风的产生与高空水平动量下传有关。在雷暴大风出现前,高空环境风陡增,具有较高数值的等风速线连续下落,在雷暴大风产生时到达地面。有效地使用风廓线仪观测资料,将有利于提高雷暴大风的临近预报和预警水平。    相似文献   

4.
极端雷暴大风的环境参量特征   总被引:2,自引:0,他引:2       下载免费PDF全文
为了研究极端雷暴大风天气环境要素特点,选取2002—2017年中国各地区极端雷暴大风个例95个和不伴随强对流的普通雷暴个例95个,通过两者间关键环境参数的对比,揭示极端雷暴大风事件的关键环境参数特征。结果表明:极端雷暴大风天气发生在对流层中层相对干的环境下,表现为400~700 hPa极端雷暴大风对应的单层最大温度露点差和平均温度露点差平均值分别为25.7℃和13.6℃,而普通雷暴的相应值分别为16.2℃和6.5℃。统计结果表明:尽管产生极端雷暴大风的对流风暴和普通雷达对应的地面露点差异并不大,但前者相应的大气可降水量(平均值为37 mm)明显低于后者(平均值为51 mm),差异突出表现在两者湿层厚度的不同上;相对于普通雷暴事件,极端雷暴大风事件对应的对流有效位能值(平均值为1820 J·kg-1)明显高于普通雷暴事件的对应值(平均值为470 J·kg-1);此外,极端雷暴大风事件对应的对流层中下层垂直温度递减率、下沉有效位能、夹卷层平均风速和0~6 km,0~3 km垂直风切变均明显大于普通雷暴事件对应的相应值。  相似文献   

5.
对2009年8月25日西太平洋副热带高压(简称副高)西北外围对流雨带的云图特征进行了分析,利用WRF3.3中尺度模式对对流雨带的发生发展进行了数值模拟,在模拟较成功的基础上,利用模式输出结果分析了对流雨带发生时的对称不稳定、对流不稳定、惯性不稳定以及锋生等。结果表明:副高外围对流雨带由若干具有一定间隔的对流单体构成,单体在随对流层中层气流的移动中逐渐发展直至消亡。对流雨带的西北侧为宽广的带状斜压云系,东南侧为副高控制的晴空区。对流雨带发生于对流层低层(700 hPa以下)的对称不稳定区,700~500 hPa存在对流不稳定和弱的惯性不稳定。随着对流的发展,700~500 hPa的对流不稳定度明显减弱,而惯性不稳定明显加强。对流层低层为倾斜上升区,中高层为垂直上升区,左侧对应下沉气流,呈现明显的倾斜对流和垂直对流的混和特征,体现了对流—对称不稳定的作用。对流层低层(750 hPa以下)锋生的存在提供了对流—对称不稳定能量释放的有利条件。对流雨带与500~800 hPa等厚度线基本平行,而与500 hPa等高线存在明显的交角,雨带中的对流单体随环境气流移动,雨带符合与对称不稳定相联系的带状降水特征。上述结论对实际预报副高外围对流雨带的位置和走向具有指示意义。  相似文献   

6.
利用2011—2015年4—9月华北地区主要区域(北京、天津、河北、山西)的重要天气报和雷暴观测资料,统计分析了该地区雷暴大风的时空分布等特征。结果表明,华北地区雷暴大风出现最多的月份为6—7月,最多的时次为下午到前半夜,大范围雷暴大风天气过程起始时间多为13:00(北京时,下同)-15:00,持续时间为4~8 h,高海拔地区出现雷暴大风的频次大于低海拔地区。在将华北地区站点分为高海拔站点和低海拔站点的基础上,使用2011—2013年4—9月的NCEP物理量分析场对雷暴大风过程的指示性进行统计分析,结果表明:多数常用的热力指标需考虑季节因素;下沉对流有效位能阈值基本不随季节变化,并对高海拔和低海拔区域的雷暴大风的出现及其范围均有一定的指示性;对流抑制能量、0~3 km垂直风切变、低层散度、500 hPa风场、整层可降水量、500 hPa相对湿度08:00—14:00变化等物理量在一些具体方面对于雷暴大风的出现及范围有一定的指示性。主要发生在高海拔地区的雷暴大风天气过程,850 hPa的相对湿度均在50%以下;主要发生在低海拔地区的雷暴大风天气过程,850 hPa的相对湿度基本在50%以上;850 hPa相对湿度较大的大范围雷暴大风天气过程,850 hPa和500 hPa的温差在24~28℃,850 hPa相对湿度较小的大范围雷暴大风天气过程,850 hPa和500 hPa的温差则常常达到30℃或以上。  相似文献   

7.
《湖北气象》2021,40(4)
使用MICAPS地面气象观测资料和探空资料,对山东省2009—2016年4—9月产生的雷暴大风以500 hPa天气系统为主进行分型,并以低层(850 hPa)中尺度天气系统和地面天气系统为辅对各型雷暴大风进行分类。然后,采用百分位数法统计分析各型雷暴大风发生时的物理诊断量,并给出各物理诊断量的临界值。结果表明:(1)基于500 hPa天气影响系统配置,山东省雷暴大风分为槽前型、槽后型和副高边缘型,再根据雷暴大风落区与850 hPa天气系统的位置关系,又分为切变线辐合类、偏南气流辐合类和偏北气流辐合类3种类型,而根据海平面气压场中天气系统与雷暴大风的位置关系,则将产生雷暴大风的地面天气系统主要归纳为6种类型。(2)将山东省划分为内陆地区和半岛地区,4—6月内陆地区雷暴大风的适用物理诊断量为850 hPa与500 hPa温差(DT_(850-500))、500 hPa与850 hPa风速差(DV_(500-850))、风暴强度指数(SSI)和大风指数(WI),半岛地区代表大气热力和动力综合特征的物理诊断量SSI和WI对雷暴大风的指示性较好。(3) 7—8月山东全省,代表大气热力不稳定的物理诊断量即对流有效位能(CAPE)、K指数、抬升指数(LI)、700 hPa与850 hPa假相当位温差(Dθ_(se700-850))、强天气威胁指数(SWEAT),对雷暴大风有较好的指示性。(4) 9月山东省雷暴大风主要发生在半岛地区,Dθ_(se700-850)、SSI、SWEAT和DV_(500-850)对雷暴大风具有较好的指示性。  相似文献   

8.
对2009年8月25日西太平洋副热带高压(简称副高)西北外围对流雨带的云图特征进行了分析,利用WRF3.3中尺度模式对对流雨带的发生发展进行了数值模拟,在模拟较成功的基础上,利用模式输出结果分析了对流雨带发生时的对称不稳定、对流不稳定、惯性不稳定以及锋生等。结果表明:副高外围对流雨带由若干具有一定间隔的对流单体构成,单体在随对流层中层气流的移动中逐渐发展直至消亡。对流雨带的西北侧为宽广的带状斜压云系,东南侧为副高控制的晴空区。对流雨带发生于对流层低层(700 hPa以下)的对称不稳定区,700~500 hPa存在对流不稳定和弱的惯性不稳定。随着对流的发展,700~500 hPa的对流不稳定度明显减弱,而惯性不稳定明显加强。对流层低层为倾斜上升区,中高层为垂直上升区,左侧对应下沉气流,呈现明显的倾斜对流和垂直对流的混和特征,体现了对流—对称不稳定的作用。对流层低层(750 hPa以下)锋生的存在提供了对流—对称不稳定能量释放的有利条件。对流雨带与500~800 hPa等厚度线基本平行,而与500 hPa等高线存在明显的交角,雨带中的对流单体随环境气流移动,雨带符合与对称不稳定相联系的带状降水特征。上述结论对实际预报副高外围对流雨带的位置和走向具有指示意义。  相似文献   

9.
冷涡底部一次弓状强飑线的演变和机理   总被引:1,自引:0,他引:1  
公衍铎  郑永光  罗琪 《气象》2019,45(4):483-495
综合利用多种观测资料和NCEP分析资料,分析了2016年6月30日发生在冷涡南部暖区的一次长生命史弓状飑线(以下简称飑线)的环境条件、触发、演变和维持机制以及预报难点。其发生环境条件为超过4000 J·kg~(-1)以上的对流有效位能(CAPE)、中等强度0~6 km垂直风切变,是超级单体形成和维持的有利条件;湿球温度0℃高度3. 6 km是有利大冰雹形成的融化层高度;整层相对干(对流层中层达28℃温度露点差)、大的垂直减温率和下沉对流有效位能(DCAPE)都是形成弓状回波和地面强风的有利条件。前期较大对流抑制能量(CIN)抑制了对流初生;随着地面温湿度增加CAPE显著增大、CIN减小,加之边界层辐合显著增强因而触发了对流。老的对流出流气流,环境低空西南气流增强为急流和上游的低空西北偏西气流增强了边界层辐合。飑线发展过程表现出以下特征:TBB演变表明飑线是由线状积云发展成为一个中尺度对流复合体,以正闪为主的闪电和地面大风主要分布于TBB低值处;可见光云图显示具有粗糙的纹理、显著的上冲云顶和旋转等特征;雷达反射率因子显示其由一个β中尺度线状对流系统发展成为一个α中尺度弓状飑线系统;成熟阶段具有显著的回波悬垂、有界弱回波区、中气旋、强中层后侧入流、后侧入流缺口、前侧入流缺口和中层径向速度辐合等特征,异常的垂直液态水含量值是产生大冰雹和雷暴大风的典型雷达回波特征;由于高层分流气流和其西侧不断有新生对流使其组织成非对称尖锥状。对流层中层大的温度露点差和强的后侧入流导致的强下沉辐散气流是形成弓状回波结构的主要原因。位于飑线前沿辐合区后侧的强前侧入流是飑线和弓状回波维持的主要原因。500 hPa风速初期偏弱后期增强、前期较大的CIN及后续迅速减小和抬升触发条件相对弱是该飑线的短期时效预报难点。  相似文献   

10.
华北秋季强弱线型对流发展时天气尺度环境条件探讨   总被引:3,自引:1,他引:2  
廖晓农 《气象》2013,39(3):291-301
华北地区进入秋季以后,弱对流过程增加.为了提高秋季对流天气强度的诊断识别能力,选择了9月份发生在相似背景下,强弱不同的两个线型对流个例作了对比分析.结果表明,强对流发生在深厚的天气尺度上升区中(上升运动伸展到200 hPa附近),而且对流层低层环境大气的绝对湿度较大;而弱对流发展时,上升运动仅存在于500 hPa以下,边界层内的比湿只有5~7 g·kg-1,较强对流个例低2~5 g·kg-1.它们是导致对流强弱不同的主要原因.强对流个例深厚的上升运动源于低层辐合切变线、露点锋和高空槽的强迫,此外对流层上部的强辐散叠置在低层辐合区上空,有利于上升运动加强并向高层发展.弱对流产生时,冷空气侵入到对流层中层以下,造成下沉区的下边界较低,不能产生深厚的上升运动.这是强弱个例垂直运动伸展高度不同的动力因素.热力学条件差异主要在对流层中下层.强对流产生时,对流区内有能量聚积,CAPE达到1087 J·kg-1,而且暖湿层和对流性不稳定层伸展到600~700 hPa.弱对流个例,仅边界层相对暖湿,CAPE只有68J·kg-1.上述关于力和热动力条件差异研究结果表明,天气尺度上升运动伸展的高度、对流层下层空气的绝对湿度、暖湿层和不稳定层的厚度等可能是影响华北秋季对流强弱的重要环境因素.  相似文献   

11.
12.
刘爱民  孙安来 《气象科技》2007,35(5):759-760
数据收集系统(DCS:Data Collection System)中的数据处理和运行监视子系统主要是对指令数据接收站(CDAS:Commander Data Acquired System)通过高速网输入的经过打包的数据收集平台(DCP:Data Collection Platform)报文和平台状态信息进行解包处理和数据检验,形成DCP实时报文和DCP状态信息分类数据,并实现DCP运行状态监视,同时将各类数据入库管理,为数据服务系统向平台用户分发报文信息提供相关的数据。该系统采用软件工程方法研制,设计模块化。在运行中不断完善与改进,经过半年多的试运行,证明系统运行稳定可靠。  相似文献   

13.
目前气象大数据云平台(天擎)系统庞大且数据种类繁多,而现有的监控止步于数据消息积压后的告警。本文通过jQuery技术研究Rabbit消息,在消息粒度上获取消息积压信息,实现自动处理相应数据的解码程序,开拓了自动运维业务,在一定程度上减轻了运维压力,提高工作效率。尤其在长时间没有收到消息告警时,缩短排查故障时间。对于省级自动化运维,具有较强的参考和推广价值。  相似文献   

14.
地图图形数字化中的坐标转换   总被引:10,自引:4,他引:6  
俞善贤 《气象》1998,24(12):37-38
讨论了气候应用专用数据库气温,降水,日照时数等常用气象资料进行质量检验的必要性,介绍了基本质量控制,时间一致性检验和空间质量控制的思路,方法和步骤。  相似文献   

15.
刘仁进 《湖北气象》2004,23(3):27-28
在MICAPS2.0数据接口程序、MM5解码程序的基础上,结合五峰县气象局的业务应用实际需求,对MICAPS2.0的部分数据接口程序、数据检索参数进行了修正和本地化处理。  相似文献   

16.
ATOVS(BUFR码)资料报告   总被引:1,自引:0,他引:1  
刘乖乖  沈文海 《气象科技》2006,34(Z1):52-56
数值预报急需全球性的ATOVS资料来改善其预报的时效性,因此需要对通信台目前接收的BUFR编码的ATOVS资料进行解码分析统计,看它的覆盖范围是全球性的还是区域性的,是否符合数值预报的要求。文中使用作者自己编写的BUFR码的解码软件,对从德国和日本两条国际线路接收到的BUFR编码的ATOVS资料进行了解码分析,并结合BUFR报文结构和NOAA卫星扫描的特点,得出了ATOVS资料覆盖范围、时次、数据要素等相关统计信息。  相似文献   

17.
两种再分析资料与RS92探空资料的比较分析   总被引:8,自引:1,他引:7  
利用2008年5~12月在安徽寿县获得的逐6小时RS92探空资料,与同期的NCEP/NCAR和ERA-Interim两种再分析资料(6h)进行比较分析,计算分析了标准气压层上探空与再分析资料的温度、纬向风、经向风和相对湿度的相关系数、偏差和平均绝对差。结果表明:在所有标准层高度,ERA-Interim再分析资料与探空资料的相关优于NCEP再分析资料的与探空资料的相关,温度和风速再分析资料与探空资料的相关优于相对湿度的相关;温度再分析资料与探空资料的相关系数在1000~250hPa接近1,在250hPa以上随高度减小,ERA-Interim与探空资料的偏差的绝对值基本小于0.3℃,而NCEP与探空资料的偏差绝对值在1000hPa上要大一倍;纬向风再分析资料与探空资料的相关系数在对流层中高层大于对流层低层和平流层低层,经向风的相关在对流层随高度增加,在平流层低层迅速减小;风速再分析资料与探空资料的偏差绝对值小于1m·s-1;相对湿度再分析资料与探空资料的相关随高度减小,偏差在400~100hPa层较大,达10%~20%,在更高层小于10%。  相似文献   

18.
地面观测资料报文传输方式调整之后,值班观测员应注意小时内自动气象站的数据采集情况,在正点后通过《地面气象测报业务软件》的"正点地面观测数据维护"对数据进行检查,当发现自动气象站错误或数据异常时,应及时对疑误数据进行分析处理,完成对自动气象站数据的质量控制。通过对几例正点地面观测数据维护中典型异常数据的分析处理,帮助地面测报值班人员在日常工作中对正点地面观测疑误数据进行快速的判断和维护,做好自动气象站数据的质量控制,以保证地面气象要素上传数据文件内数据的完整性、时效性和质量。  相似文献   

19.
李长青  闫之辉  王瀛  郜凌云 《气象》2007,33(1):62-69
分析了2005年5月11日至6月10日的NCEP—FNL与T213L31分析资料在位势高度、温度和风场上的整体差异,揭示了低层差异最小,差异极值主要分布在3个关键区的特征。进一步通过地形高度差异与位势高度差异的相关性分析,认为青藏高原附近的地形高度差异的极值是引起两种资料位势高度差异的主要原因,并计算分析了这种差异对高原周围中低层大气环流的动力和热力影响。结果显示,在NCEP—FNL中的西南涡强度和热源作用较强,中层风速切变较弱。  相似文献   

20.
针对省级卫星直收站数据存储分散造成共享应用不便的问题,提出卫星多源数据便捷高效访问和安全分级管理方案。引入数据湖技术,按照全国统一规范构建了基于气象大数据云平台的省级气象数据湖系统,基于此实现了FY-3、FY-4卫星地面直收站原始接收数据、加工处理产品等多种卫星数据入湖集中管理,并提供统一的数据共享服务,解决了海量多源异构数据的存储、管理和共享服务等技术难题。通过数据湖统一权限控制,实现对用户访问数据的分级管理,保障了数据应用的稳定性和安全性。通过数据湖统一文件目录服务,实现长时间序列文件的便捷快速获取,有效支撑卫星数据的服务应用和挖掘分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号