首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Observations, mostly from the International Satellite Cloud Climatology (ISCCP), are used to assess clouds and radiative fluxes in the EC-Earth general circulation model, when forced by prescribed observed sea surface temperatures. An ISCCP instrument simulator is employed to consistently compare model outputs with satellite observations. The use of a satellite simulator is shown to be imperative for model evaluation. EC-Earth exhibits the largest cloud biases in the tropics. It generally underestimates the total cloud cover but overestimates the optically thick clouds, with the net result that clouds exert an overly strong cooling effect in the model. Every cloud type has its own source of bias. The magnitude of the cooling due to the shortwave cloud radiative effect ( \(\mid \hbox {SWCRE}\mid\) ) is underestimated for the stratiform low-clouds, because the model simulates too few of them. In contrast, \(\mid \hbox {SWCRE}\mid\) is overestimated for trade wind cumulus clouds, because in the model these are too thick. The clouds in the deep convection regions also lead to overestimate the \(\mid \hbox {SWCRE}\mid\) . These clouds are generally too thick and there are too few mid and high thin clouds. These biases are consistent with the positive precipitation bias and the overly strong mass flux for deep convective plumes. Potential sources for the various cloud biases in the model are discussed.  相似文献   

2.
冬季青藏高原东部(22°N~32°N,102°E~118°E)层云区是唯一存在于副热带陆地的层云密集区,环流特征较为复杂,大多数耦合气候系统模式对该地区层云的模拟存在较大的偏差。对该地区层云模拟能力的系统分析评估是改进模式性能的重要基础。本文基于国际卫星云计划(ISCCP)卫星资料,评估了中国科学院大气物理研究所两个版本的气候系统模式FGOALS-s2和FGOALS-g2的大气环流模式试验(AMIP)对青藏高原东侧层云的模拟能力。通过分析云辐射强迫等相关特征、大气环流、稳定度、以及地表气温和云的关系,探讨了模式偏差的可能原因。结果表明,两个模式都不同程度地低估了青藏高原东侧的低层云量和云水含量。在垂直结构模拟方面,FGOALS-s2模式能较好地模拟出高原东侧低云主导的特征,其模拟的云顶高度与卫星资料更为接近;而FGOALS-g2模式则高估了该地区的平均云顶高度。分析表明,两个模式均低估了高原东侧的低层稳定度,同时不同程度地低估了该地区中低层水平水汽输送,导致层云云量的模拟偏少。此外,FGOALS-g2高估了高原东侧的上升运动和垂直水汽输送,使得模拟的低云偏少而云顶高度偏高。  相似文献   

3.
与其他耦合环流模式一样,LASG耦合模式FGCM-0也存在虚假的“双ITCZ”。为了认识FGCM-0中“双ITCZ”,首先研究了FGCM-0的大气分量模式,剧INCAR(美国国家大气研究中心)的公用气候模式CCM3对秘鲁和加利福尼亚沿岸低云以及低层大气整体稳定度的模拟能力。发现:尽管CCM3模拟的低层大气整体稳定度与利用NCEP(美国国家环境预报中心)再分析资料分析的结果较一致,但模拟的低云量比ISCCP(国际卫星云气候计划)观测值显偏少。利用ISCCP低云量与由NCEP再分析温度场分析的低层整体稳定度之间的回归关系,修改了CCM3中低云参数化方案,并用于敏感性试验,以研究副热带东太平洋低云对FGCM-0中“双ITCZ”的影响。结果发现,修改的方案能显增强对低云量的模拟,秘鲁沿岸冷海域低云量增加能显减弱赤道以南热带东太平洋海表面温度(SST)的暖偏差,但同时也将使赤道冷舌增强、向西伸展更远;加利福尼亚沿岸低云量增加可以有效减弱赤道以北ITCZ区SST暖偏差。为了检验秘鲁沿岸SST与低云间的正反馈,又实施了一个控制秘鲁沿岸SST的敏感性试验,结果表明:控制秘鲁沿岸SST抑制其增暖,对自东南太平洋向西北至中、西赤道太平洋广大区域产生的影响,与增加秘鲁沿岸低云量产生的影响相似。  相似文献   

4.
The response of low-level clouds to climate change has been identified as a major contributor to the uncertainty in climate sensitivity estimates among climate models. By analyzing the behaviour of low-level clouds in a hierarchy of models (coupled ocean-atmosphere model, atmospheric general circulation model, aqua-planet model, single-column model) using the same physical parameterizations, this study proposes an interpretation of the strong positive low-cloud feedback predicted by the IPSL-CM5A climate model under climate change. In a warmer climate, the model predicts an enhanced clear-sky radiative cooling, stronger surface turbulent fluxes, a deepening and a drying of the planetary boundary layer, and a decrease of tropical low-clouds in regimes of weak subsidence. We show that the decrease of low-level clouds critically depends on the change in the vertical advection of moist static energy from the free troposphere to the boundary-layer. This change is dominated by variations in the vertical gradient of moist static energy between the surface and the free troposphere just above the boundary-layer. In a warmer climate, the thermodynamical relationship of Clausius-Clapeyron increases this vertical gradient, and then the import by large-scale subsidence of low moist static energy and dry air into the boundary layer. This results in a decrease of the low-level cloudiness and in a weakening of the radiative cooling of the boundary layer by low-level clouds. The energetic framework proposed in this study might help to interpret inter-model differences in low-cloud feedbacks under climate change.  相似文献   

5.
Two competing cloud-radiative feedbacks identified in previous studies i.e., cloud albedo feedback and the super greenhouse effect, are examined in a sensitivity study with a global coupled ocean-atmosphere general circulation model. Cloud albedo feedback is strengthened in a sensitivity experiment by lowering the sea-surface temperature (SST) threshold in the specified cloud albedo feedback scheme. This simple parameterization requires coincident warm SSTs and deep convection for upper-level cloud albedos to increase. The enhanced cloud albedo feedback in the sensitivity experiment results in decreased maximum values of SST and cooler surface temperatures over most areas of the planet. There is also a cooling of the tropical troposphere with attendant global changes of atmospheric circulation reminiscent of those observed during La Niña or cold events in the Southern Oscillation. The strengthening of the cloud albedo feedback only occurs over warm tropical oceans (e.g., the western Pacific warm pool), where there is increased albedo, decreased absorbed solar radiation at the surface, stronger surface westerlies, enhanced westward currents, lower temperatures, and decreased precipitation and evaporation. However, the weakened convection over the tropical western Pacific Ocean alters the large-scale circulation in the tropics such that there is increased upper-level divergence over tropical land areas and the tropical Indian Ocean. This results in increased precipitation in those regions and intensified monsoonal regimes. The enhanced precipitation over tropical land areas produces increased clouds and albedo and wetter and cooler land surfaces. These additional contributions to decreased absorbed solar input at the surface combine with similar changes over the tropical oceans to produce the global cooling associated with the stronger cloud albedo feedback. Increased low-level moisture convergence and precipitation over the tropical Indian Ocean enhance slightly the super greenhouse effect there. But the stronger cloud albedo feedback is still the dominant effect, although cooling of SSTs in that region is less than in the tropical western Pacific Ocean. The sensitivity experiment demonstrates how a regional change of radiative forcing is quickly transmitted globally through a combination of radiative and dynamical processes in the coupled model. This study points to the uncertainties involved with the parameterization of cloud albedo and the major implications of such parameterizations concerning the maximum values of SST, global climate sensitivity, and climate change.Support is provided by the Office of Health and Environmental Research of the U.S. Department of Energy, as part of its Carbon Dioxide Research Program.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

6.
Warm sea-surface temperature (SST) biases in the southeastern tropical Atlantic (SETA), which is defined by a region from 5°E to the west coast of southern Africa and from 10°S to 30°S, are a common problem in many current and previous generation climate models. The Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble provides a useful framework to tackle the complex issues concerning causes of the SST bias. In this study, we tested a number of previously proposed mechanisms responsible for the SETA SST bias and found the following results. First, the multi-model ensemble mean shows a positive shortwave radiation bias of ~20 W m?2, consistent with models’ deficiency in simulating low-level clouds. This shortwave radiation error, however, is overwhelmed by larger errors in the simulated surface turbulent heat and longwave radiation fluxes, resulting in excessive heat loss from the ocean. The result holds for atmosphere-only model simulations from the same multi-model ensemble, where the effect of SST biases on surface heat fluxes is removed, and is not sensitive to whether the analysis region is chosen to coincide with the maximum warm SST bias along the coast or with the main SETA stratocumulus deck away from the coast. This combined with the fact that there is no statistically significant relationship between simulated SST biases and surface heat flux biases among CMIP5 models suggests that the shortwave radiation bias caused by poorly simulated low-level clouds is not the leading cause of the warm SST bias. Second, the majority of CMIP5 models underestimate upwelling strength along the Benguela coast, which is linked to the unrealistically weak alongshore wind stress simulated by the models. However, a correlation analysis between the model simulated vertical velocities and SST biases does not reveal a statistically significant relationship between the two, suggesting that the deficient coastal upwelling in the models is not simply related to the warm SST bias via vertical heat advection. Third, SETA SST biases in CMIP5 models are correlated with surface and subsurface ocean temperature biases in the equatorial region, suggesting that the equatorial temperature bias remotely contributes to the SETA SST bias. Finally, we found that all CMIP5 models simulate a southward displaced Angola–Benguela front (ABF), which in many models is more than 10° south of its observed location. Furthermore, SETA SST biases are most significantly correlated with ABF latitude, which suggests that the inability of CMIP5 models to accurately simulate the ABF is a leading cause of the SETA SST bias. This is supported by simulations with the oceanic component of one of the CMIP5 models, which is forced with observationally derived surface fluxes. The results show that even with the observationally derived surface atmospheric forcing, the ocean model generates a significant warm SST bias near the ABF, underlining the important role of ocean dynamics in SETA SST bias problem. Further model simulations were conducted to address the impact of the SETA SST biases. The results indicate a significant remote influence of the SETA SST bias on global model simulations of tropical climate, underscoring the importance and urgency to reduce the SETA SST bias in global climate models.  相似文献   

7.
Knowledge of cloud properties and their vertical structure is important for meteorological studies due to their impact on both the Earth’s radiation budget and adiabatic heating within the atmosphere. The objective of this study is to evaluate bulk cloud properties and vertical distribution simulated by the US National Oceanic and Atmospheric Administration National Centers for Environmental Prediction Global Forecast System (GFS) using three global satellite products. Cloud variables evaluated include the occurrence and fraction of clouds in up to three layers, cloud optical depth, liquid water path, and ice water path. Cloud vertical structure data are retrieved from both active (CloudSat/CALIPSO) and passive sensors and are subsequently compared with GFS model results. In general, the GFS model captures the spatial patterns of hydrometeors reasonably well and follows the general features seen in satellite measurements, but large discrepancies exist in low-level cloud properties. More boundary layer clouds over the interior continents were generated by the GFS model whereas satellite retrievals showed more low-level clouds over oceans. Although the frequencies of global multi-layer clouds from observations are similar to those from the model, latitudinal variations show discrepancies in terms of structure and pattern. The modeled cloud optical depth over storm track region and subtropical region is less than that from the passive sensor and is overestimated for deep convective clouds. The distributions of ice water path (IWP) agree better with satellite observations than do liquid water path (LWP) distributions. Discrepancies in LWP/IWP distributions between observations and the model are attributed to differences in cloud water mixing ratio and mean relative humidity fields, which are major control variables determining the formation of clouds.  相似文献   

8.
南海及周边地区云量分布及低云量与南海海温的关系   总被引:3,自引:1,他引:2  
张亚洲 《气象科学》2012,32(3):260-268
利用国际卫星云气候计划提供的月平均云气候资料集,分析了南海及周边地区云量的分布特征,并进一步研究了低云量与南海海温的关系。结果表明:(1)南海及周边地区总云量分布存在显著的季节性差异特征。(2)低云主要分布在南海海区,中云为华南地区,而高云则主要位于靠近赤道区域。(3)低云受海表温度影响较大,而中高云则主要与强对流相对应。低云主要分布于南海海表冷水中心南侧的暖水区内的温度梯度区,其高值区分布与海表温度梯度分布基本一致,海表温度梯度的大小与高值中心的低云量成正比。(4)低云量高值中心位置与水平海温梯度区两侧基本一致,高温暖水受西边界强迫上升在海表层辐合,有利于低云的生成。  相似文献   

9.
This work examines the relevance of a classical two-column modeling framework of the tropical climate in terms of observed natural variability. A method is developed to analyze the observed tropical climate in a simple framework that features a moist, ascending column and a dry, subsiding one. This method is used to analyze the natural variability of the tropical climate in the ERA40 reanalysis and in ISCCP satellite data. It appears that the seasonal cycle of the tropic-wide sea surface temperature (SST) is almost linearly linked to the seasonal cycle of the relative area of the moist regions, as predicted by the sensitivity of the two-column models. A more detailed analysis shows that this link is the product of a complex interaction and adjustments between the moist and dry regions. The seasonal cycle of low-cloud cover in the dry regions also appears to interact with the SST seasonal cycle: the low-cloud cover influences the tropic-wide SST via its direct radiative forcing on the local SST and it appears to be controlled by the SST difference between moist and dry regions. By contrast, the SST interannual variability appears to be driven by the El Ni?o Southern Oscillation (ENSO), with no significant impact from the changes in the relative area of the moist regions or in the low-cloud cover in the dry regions independently of the ENSO. ENSO-related changes in the area of moist regions and low-cloud cover constitute negative feedbacks on the ENSO-related SST variability.  相似文献   

10.
全球气候模式(GCM)中云的参数化方案具有不确定性,了解云的时、空变化能为参数化方案提供有效参考。利用搭载在属于A-Train卫星序列的CloudSat和CALIPSO上的94 GHz云廓线雷达(CPR)以及正交极化云-气溶胶激光雷达(CALIOP)联合的2级云分类产品,分析了2007年3月-2010年2月8种云类及三相态的云量地理分布、纬向垂直分布的季节变化特征以及云层分布概率。结果发现,卷云的分布体系与深对流云相似,主要集中在西太平洋暖池、全球各季风区及赤道辐合带,分布格局与气压带、风带季节性移动一致。层云与层积云主要分布在中低纬度非季风区以及中高纬度的洋面上。高积云与高层云的分布形成明显的海陆差异,雨层云与积云的分布形成明显的纬度差异。冰云分布与卷云相似,云高随纬度递增而递减;水云分布与层积云相似,平均分布于2 km高度;混合云集中于高纬度地区及赤道辐合带,中纬度地区随纬度变化集中于海拔0-10 km的弧形带。层状云多以多层云形式出现,积状云多以单、双层云的形式出现,层状云的云重叠现象比积状云更显著。积状和层状云的分布特征与积云和层云降水的分布特征基本一致,验证了不同类型降水的卫星观测结果,同时为气候模式的云量诊断方案提供对比验证的数据。   相似文献   

11.
Yafei YAN  Yimin LIU 《大气科学进展》2019,36(10):1089-1102
Cloud is essential in the atmosphere, condensing water vapor and generating strong convective or large-scale persistent precipitation. In this work, the relationships between cloud vertical macro- or microphysical properties, radiative heating rate, and precipitation for convective and stratiform clouds in boreal summer over the Tibetan Plateau (TP) are analyzed and compared with its neighboring land and tropical oceans based on CloudSat/CALIPSO satellite measurements and TRMM precipitation data. The precipitation intensity caused by convective clouds is twofold stronger than that by stratiform clouds. The vertical macrophysics of both cloud types show similar features over the TP, with the region weakening the precipitation intensity and compressing the cloud vertical expansion and variation in cloud top height, but having an uplift effect on the average cloud top height. The vertical microphysics of both cloud types under conditions of no rain over the TP are characterized by lower-level ice water, ice particles with a relatively larger range of sizes, and a relatively lower occurrence of denser ice particles. The features are similar to other regions when precipitation enhances, but convective clouds gather denser and larger ice particles than stratiform clouds over the TP. The atmospheric shortwave (longwave) heating (cooling) rate strengthens with increased precipitation for both cloud types. The longwave cooling layer is thicker when the rainfall rate is less than 100 mm d?1, but the net heating layer is typically compressed for the profiles of both cloud types over the TP. This study provides insights into the associations between clouds and precipitation, and an observational basis for improving the simulation of convective and stratiform clouds over the TP in climate models.  相似文献   

12.
We diagnose climate feedback parameters and CO2 forcing including rapid adjustment in twelve atmosphere/mixed-layer-ocean (“slab”) climate models from the CMIP3/CFMIP-1 project (the AR4 ensemble) and fifteen parameter-perturbed versions of the HadSM3 slab model (the PPE). In both ensembles, differences in climate feedbacks can account for approximately twice as much of the range in climate sensitivity as differences in CO2 forcing. In the AR4 ensemble, cloud effects can explain the full range of climate sensitivities, and cloud feedback components contribute four times as much as cloud components of CO2 forcing to the range. Non-cloud feedbacks are required to fully account for the high sensitivities of some models however. The largest contribution to the high sensitivity of HadGEM1 is from a high latitude clear-sky shortwave feedback, and clear-sky longwave feedbacks contribute substantially to the highest sensitivity members of the PPE. Differences in low latitude ocean regions (30°N/S) contribute more to the range than those in mid-latitude oceans (30–55°N/S), low/mid latitude land (55°N/S) or high latitude ocean/land (55–90°N/S), but contributions from these other regions are required to account fully for the higher model sensitivities, for example from land areas in IPSL CM4. Net cloud feedback components over the low latitude oceans sorted into percentile ranges of lower tropospheric stability (LTS) show largest differences among models in stable regions, mainly due to their shortwave components, most of which are positive in spite of increasing LTS. Differences in the mid-stability range are smaller, but cover a larger area, contributing a comparable amount to the range in climate sensitivity. These are strongly anti-correlated with changes in subsidence. Cloud components of CO2 forcing also show the largest differences in stable regions, and are strongly anticorrelated with changes in estimated inversion strength (EIS). This is qualitatively consistent with what would be expected from observed relationships between EIS and low-level cloud fraction. We identify a number of cases where individual models show unusually strong forcings and feedbacks compared to other members of the ensemble. We encourage modelling groups to investigate unusual model behaviours further with sensitivity experiments. Most of the models fail to correctly reproduce the observed relationships between stability and cloud radiative effect in the subtropics, indicating that there remains considerable room for model improvements in the future.  相似文献   

13.
This paper aims at characterizing how different key cloud properties (cloud fraction, cloud vertical distribution, cloud reflectance, a surrogate of the cloud optical depth) vary as a function of the others over the tropical oceans. The correlations between the different cloud properties are built from 2?years of collocated A-train observations (CALIPSO-GOCCP and MODIS) at a scale close to cloud processes; it results in a characterization of the physical processes in tropical clouds, that can be used to better understand cloud behaviors, and constitute a powerful tool to develop and evaluate cloud parameterizations in climate models. First, we examine a case study of shallow cumulus cloud observed simultaneously by the two sensors (CALIPSO, MODIS), and develop a methodology that allows to build global scale statistics by keeping the separation between clear and cloudy areas at the pixel level (250, 330?m). Then we build statistical instantaneous relationships between the cloud cover, the cloud vertical distribution and the cloud reflectance. The vertical cloud distribution indicates that the optically thin clouds (optical thickness <1.5) dominate the boundary layer over the trade wind regions. Optically thick clouds (optical thickness >3.4) are composed of high and mid-level clouds associated with deep convection along the ITCZ and SPCZ and over the warm pool, and by stratocumulus low level clouds located along the East coast of tropical oceans. The cloud properties are analyzed as a function of the large scale circulation regime. Optically thick high clouds are dominant in convective regions (CF?>?80?%), while low level clouds with low optical thickness (<3.5) are present in regimes of subsidence but in convective regimes as well, associated principally to low cloud fractions (CF?<?50?%). A focus on low-level clouds allows us to quantify how the cloud optical depth increases with cloud top altitude and with cloud fraction.  相似文献   

14.
云是天气与气候变化的重要影响因子,准确估量云顶高度和云量对分析云特性、降水及强天气预报、估算云辐射强迫等都具有重要意义。利用2006-2010年6-8月CloudSat卫星搭载的微波云廓线雷达(CPR,简称微波雷达)和CALIPSO卫星搭载的云-气溶胶偏振激光雷达(CALIOP,简称激光雷达)的探测资料,分析了全球云顶高度及云量的空间分布特征。结果表明,热带地区微波雷达探测云顶高度平均比激光雷达低约4 km,但均超过12 km;副热带洋面云顶高度在4 km以下,且两部雷达探测的云顶高度差异存在地域性。微波雷达对薄云、云砧及云顶高度低于2.5 km的低云存在漏判,对厚云的云顶高度偏低估;微波雷达探测的全球总云量均值为51.1%,比激光雷达少23.3%;两者给出的云量分布也存在显著的海-陆差异,其中洋面云量差异更大,如微波雷达测出局部洋面云量为80%,而激光雷达的探测结果却超过90%。由于激光雷达发射波长短,对云顶微小粒子比较敏感,而微波雷达波长较长,对相对较小粒子的探测存在局限性。因此,激光雷达对云顶高度的探测优于微波雷达。此结果不仅加强了对激光雷达和微波雷达探测原理的认识,而且进一步理解了云的气候特征。  相似文献   

15.
中国地区云光学厚度和云滴有效半径变化趋势   总被引:3,自引:0,他引:3  
段皎  刘煜 《气象科技》2011,39(4):408-416
利用ISCCP最新的D2云气候资料集和MODIS云的资料,给出中国地区云的光学厚度和云滴有效半径的分布特征;分别对季节平均和年平均时间序列进行线性趋势分析,并进行了显著性检验。结果表明:夏季云的光学厚度和有效半径的变化趋势最显著。结合云量变化情况,可发现云滴有效半径的变化对云光学厚度的影响可能在夏季最大,也就是说,气溶胶的间接气候效应可能在夏季最强;云量、云光学厚度和云滴有效半径的变化也表明长江以南地区和青藏高原地区可能是气溶胶间接气候效应比较显著的地区。中国地区冰云光学厚度与有效直径的相关具有很强的区域特征,说明冰云的微物理机制比水云更复杂。  相似文献   

16.
Knowledge of cloud vertical structure is important for meteorological and climate studies due to the impact of clouds on both the Earth’s radiation budget and atmospheric adiabatic heating. Yet it is among the most difficult quantities to observe. In this study, we develop a long-term (10 years) radiosonde-based cloud profile product over the Southern Great Plains and along with ground-based and space-borne remote sensing products, use it to evaluate cloud layer distributions simulated by the National Centers for Environmental Prediction global forecast system (GFS) model. The primary objective of this study is to identify advantages and limitations associated with different cloud layer detection methods and model simulations. Cloud occurrence frequencies are evaluated on monthly, annual, and seasonal scales. Cloud vertical distributions from all datasets are bimodal with a lower peak located in the boundary layer and an upper peak located in the high troposphere. In general, radiosonde low-level cloud retrievals bear close resemblance to the ground-based remote sensing product in terms of their variability and gross spatial patterns. The ground-based remote sensing approach tends to underestimate high clouds relative to the radiosonde-based estimation and satellite products which tend to underestimate low clouds. As such, caution must be exercised to use any single product. Overall, the GFS model simulates less low-level and more high-level clouds than observations. In terms of total cloud cover, GFS model simulations agree fairly well with the ground-based remote sensing product. A large wet bias is revealed in GFS-simulated relative humidity fields at high levels in the atmosphere.  相似文献   

17.
Cloud and precipitation parameterization schemes are evaluated, and their sensitivity to the method and/or parameters used to determine cloud physical processes is examined using a singlecolumn version of the Unified Model (SCUM). In the experiment for TWP-ICE, cloud fraction is overestimated (underestimated) in the upper (lower) troposphere due to the wet (dry) bias. The precipitation rate is well simulated during the active monsoon period, but overestimated during the suppressed monsoon and clear skies periods. In the moist convection scheme, trigger condition and entrainment process affect the lower tropospheric humidity through the impact on convective occurrence frequency and intensity, respectively. Strengthening the trigger condition and using the adaptive entrainment method alleviate the low-level dry bias. In the microphysics scheme, more large-scale precipitation is produced with prognostic rain, due to rain sedimentation considering vertical velocity of rain drop, than with diagnostic rain. Less ice/snow deposition with the prognostic two-ice category results in lower ice water content and upper-level cloud fraction than with the diagnostic splitting method for the twoice category. In the cloud macrophysics scheme, the prognostic cloud fraction and cloud/ice water content scheme produces a larger cloud fraction and more cloud/ice water content than the diagnostic scheme, mainly due to detrainment from moist convection (cloud source) that surpasses the effect of convective heating and drying (cloud sink). This affects temperature by influencing the radiative, convective, and microphysical processes. The experiment with combined modifications in cloud and precipitation schemes shows that interaction between modified moist convection and cloud macrophysics schemes results in more alleviation of the cold bias not only at the lower levels but also at the upper levels.  相似文献   

18.
The sensitivity of climate to an increase in sea surface temperature (SST) and CO2, as well as cloud feedback processes, is analyzed through a series of aquaplanet experiments listed in the Coupled Model Intercomparison Project. Rainfall is strengthened in a +4K anomaly SST experiment due to the enhanced surface evaporation; while in a quadruple CO2 experiment, precipitation and total cloud cover are appreciably weakened. In both the +4K and quadruple CO2 (4xCO2) experiments, the Hadley cell is impaired, with an increase in moderate subsidence and a decrease in the frequency of strong convective activity. Regarding cloud radiation forcing (CRF), the analysis technique of Bony et al. (Climate Dynamics, 22:71–86, 2004) is used to sort cloud variables by dynamic regimes using the 500-hPa vertical velocity in tropical areas (30°S–30°N). Results show that the tropically averaged CRF change is negative and is dominated mainly by the thermodynamic component. Within convective regimes, the behavior of longwave CRF is different in the +4K and 4xCO2 experiments, with positive and negative changes, respectively. The globally averaged CRF also reveals a negative change in both aquaplanet and Earthlike experiments, implying that clouds may play a role in decelerating global warming. The calculated climate sensitivity demonstrates that our results are close to those obtained from other models, with 0.384 and 0.584?Km2?W?1 for aquaplanet and Earthlike experiments, respectively.  相似文献   

19.
云的形成是产生降雨的必要条件,云和降水之间存在着极为密切而复杂的联系。利用常规站点数据和ISCCP卫星数据等资料分析了夏季中国地区云的多种特征参数的变化与降水变化在时空分布上的联系。站点数据结果表明总云量、低云量与降水的距平在全国范围内表现出显著的正相关关系;在通过0.05水平显著性检验的站点上,云量和降水距平百分率之间的线性关系较明显,总云量每增加1.00%降水增加2.23%,低云量每增加1.00%降水增加0.46%。ISCCP数据结果显示总云云量、光学厚度和云水路径以及高云中的卷层云和深对流云云量与降水距平呈非常好的正相关关系。采用K-means聚类分析方法并参考中国地理气候分布特点,将中国分为9个气候区,以小波相干分析和交叉小波分析对各个气候区夏季云量和降水距平百分率序列在时频域内多尺度特征的关系做了进一步研究。结果显示9个气候区夏季白天总云量和低云量与降水变化在2~4年(a)和5~8a的尺度周期都具有较强的相干性与共振周期,且处于正相关位相。在时空分布和时频域上,中国地区夏季云和降水的变化之间都存在非常显著的正相关关系,尤其是低云量。云和降水变化之间具有强相干性与共振周期是两者之间正相关联系的原因。  相似文献   

20.
Many coupled general circulation models (CGCMs) suffer from serious model bias in the zonal gradient of sea surface temperature (SST) in the equatorial Atlantic. The bias of the equatorial Atlantic SST (EASST) may affect the interannual variability of the equatorial Atlantic, which in turn may influence the state of the tropical Pacific. In this paper we investigate the impact of the bias and the interannual variability of the EASST on the tropical Pacific in a CGCM. To determine the impact of the interannual variability of the EASST on the tropical Pacific, we compare a run in a fully coupled mode (CTL run) and a run in which the EASST is nudged toward the climatological monthly mean of the SST in the CTL run, but full air-sea coupling is allowed elsewhere (AT_m run). We find that, when the interannual variability of the EASST is excluded, the thermocline depth in the eastern equatorial Pacific is deepened, and the amplitude of the El Niño/Southern Oscillation is reduced by 30 % compared to the CTL run. The impact of the bias of the EASST on the tropical Pacific is investigated by comparing the AT_m run and a run in which the EASST is nudged toward the observed climatological monthly mean SST (AT_o run). It is found that, when the bias of the EASST is removed (i.e. AT_o run), the Gill–Matsuno type response to the warm SST anomalies in the western equatorial Atlantic induces low-level cyclonic anomalies in the eastern South Pacific, which leads to a deeper thermocline and colder SST in the South Pacific as compared to AT_m. The colder SST in the South Pacific reduces the precipitation along the South Pacific convergence zone. Our results of the model experiments demonstrate the importance of the EASST to the tropical Pacific climate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号