首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A comprehensive dataset of direct observations is used to assess the representation of surface and atmospheric radiation budgets in general circulation models (GCMs). Based on combined measurements of surface and collocated top-of-the-atmosphere fluxes at more than 700 sites, a lack of absorption of solar radiation within the atmosphere is identified in the ECHAM3 GCM, indicating that the shortwave atmospheric absorption calculated in the current generation of GCMs, typically between 60 and 70 Wm-2, is too low by 10–20 Wm-2. The surface and atmospheric radiation budgets of a new version of the Max-Planck Institute GCM, the ECHAM4, differ considerably from other GCMs in both short- and longwave ranges. The amount of solar radiation absorbed in the atmosphere (90 Wm-2) is substantially larger than typically found in current GCMs, resulting in a lower absorption at the surface (147 Wm-2). It is shown that this revised disposition of solar energy within the climate system generally reduces the biases compared to the observational estimates of surface and atmospheric absorption. The enhanced shortwave absorption in the ECHAM4 atmosphere is due to an increase in both simulated clear-sky and cloud absorption compared to ECHAM3. The increased absorption in the cloud-free atmosphere is related to an enhanced absorption of water vapor, and is supported in stand-alone comparisons of the radiation scheme with synchronous observations. The increased cloud absorption, on the other hand, is shown to be predominantly spurious due to the coarse spectral resolution of the ECHAM4 radiation code, thus providing no physical explanation for the “anomalous cloud absorption” phenomenon. Quantitatively, however, an additional increase of atmospheric absorption due to clouds as in ECHAM4 is, at least at low latitudes, not in conflict with the observational estimates, though this does not rule out the possibility that other effects, such as highly absorbing aerosols, could equally contribute to close the gap between models and observations. At higher latitudes, however, the increased cloud absorption is not supported by the observational dataset. Overall, this study points out that not only the clouds, but also the cloud-free atmosphere might be responsible for the discrepancies between observational and simulated estimates of shortwave atmospheric absorption. The smaller absorption of solar radiation at the surface in ECHAM4 is compensated by an increased downward longwave flux (344 Wm-2), which is larger than in other GCMs. The enhanced downward longwave flux is supported by surface measurements and by a stand-alone validation of the radiation scheme for clear-sky conditions. The enhanced flux also ensures that a sufficient amount of energy is available at the surface to maintain a realistic intensity of the global hydrological cycle. In contrast, a one-handed revision of only the shortwave radiation budget to account for the increased shortwave absorption in GCM atmospheres may induce a global hydrological cycle that is too weak. Received: 26 February 1998 / Accepted: 18 May 1998  相似文献   

2.
《大气与海洋》2013,51(3):129-139
Abstract

Both the earth‐reflected shortwave and outgoing longwave radiation (OLR) fluxes at the top of the atmosphere (TOA) as well as surface‐absorbed solar fluxes from Canadian Regional Climate Model (CRCM) simulations of the Mackenzie River Basin for the period March 2000 to September 2003 are compared with the radiation fluxes deduced from satellite observations. The differences between the model and satellite solar fluxes at the TOA and at the surface, which are used in this paper to evaluate the CRCM performance, have opposite biases under clear skies and overcast conditions, suggesting that the surface albedo is underestimated while cloud albedo is overestimated. The slightly larger differences between the model and satellite fluxes at the surface compared to those at the TOA indicate the existence of a small positive atmospheric absorption bias in the model. The persistent overestimation of TOA reflected solar fluxes and underestimation of the surface‐absorbed solar fluxes by the CRCM under all sky conditions are consistent with the overestimation of cloud fraction by the CRCM. This results in a larger shortwave cloud radiative forcing (CRF) both at the TOA and at the surface in the CRCM simulation. The OLR from the CRCM agrees well with the satellite observations except for persistent negative biases during the winter months under all sky conditions. Under clear skies, the OLR is slightly underestimated by the CRCM during the winter months and overestimated in the other months. Under overcast conditions the OLR is underestimated by the CRCM, suggesting an underestimation of cloud‐top temperature by the CRCM. There is an improvement in differences between model and satellite fluxes compared to previously reported results largely because of changes to the treatment of the surface in the model.  相似文献   

3.
Direct climate responses to dust shortwave and longwave radiative forcing (RF) are studied using the NCAR Community Atmosphere Model Version 3 (CAM3). The simulated RF at the top of the atmosphere (TOA) is-0.45 W m-2 in the solar spectrum and +0.09 W m-2 in the thermal spectrum on a global average. The magnitude of surface RF is larger than the TOA forcing, with global mean shortwave forcing of-1.76 W m-2 and longwave forcing of +0.31 W m-2 . As a result, dust aerosol causes the absorption of 1.1 W m-2 in t...  相似文献   

4.
Summary Global maps of the monthly mean net upward longwave radiation flux at the ocean surface have been obtained for April, July, October 1985 and January 1986. These maps were produced by blending information obtained from a combination of general circulation model cloud radiative forcing fields, the top-of-the-atmosphere cloud radiative forcing from ERBE and TOVS profiles and sea surface temperature on ISCCP C1 tapes. The fields are compatible with known meteorological regimes of atmospheric water vapor content and cloudiness. There is a vast area of high net upward longwave radiation flux (> 80 W m–2) in the eastern Pacific Ocean throughout most of the year. Areas of low net upward longwave radiation flux (< 40 Wm–2) are the tropical convective regions and extra tropical regions that tend to have persistent low cloud cover. The technique used in this study relies on GCM simulations and so is subject to some of the uncertainties associated with the model. However, all input information regarding temperature, moisture and cloud cover is from satellite data having near global coverage. This feature of the procedure alone warrants its consideration for further use in compiling global maps of the net longwave radiation at the surface over the oceans.With 9 Figures  相似文献   

5.
Summary The distribution of cloud radiative forcing (CRF) at the top of the atmosphere over the Indian Ocean is investigated using satellite observations. Two key regions are considered: The eastern Indian Ocean and the Bay of Bengal which experience maximum upper-level cloudiness in winter and summer respectively. It is found that longwave CRF in the Bay of Bengal during summer is similar to that over the eastern Indian Ocean during winter. On the other hand shortwave CRF magnitude is larger in the Bay of Bengal. These differences explain the net CRF difference between the two regions. The stronger shortwave forcing seems to be related to the Upper-Level Cloudiness being larger over the Bay than over the eastern Indian Ocean. The reasons for the longwave CRF similarities are analysed in more details. Using the results from a convective system classification method, it is first shown that the longwave radiative properties of the individual systems do not vary much from one region to another. The distribution of the different kind of systems, a proxy for the vertical cloudiness structure, does not either indicate strong difference between the regions. It is then proposed that the substantial precipitable water vapour amount observed over the Bay of Bengal damps the effects of the upper-level cloudiness on radiation compared to the relatively dryer eastern Indian Ocean area; yielding to similar LW CRF in both region despite more Upper-Level Cloudiness over the Bay of Bengal. These observations are supported by idealised radiative transfer computations. The distribution of cloudiness and radiative forcing is then analysed over the whole tropical Indian Ocean for each season. July is characterized by a low longwave CRF regime (relative to January) over the most convectively active part of the Ocean. The non linear damping effect of water vapor on longwave CRF is also shown to contribute to this regime. Overall, this study reaffirms the need for simultaneous documentation of the cloud systems properties together with their moist environment in order to understand the overall net radiative signature of tropical convection at the top of the atmosphere (TOA).  相似文献   

6.
Summary The Indian summer monsoon, one of the earth's most vigorous and energetic seasonally occurring weather events, influences the global atmospheric circulation. Its onset, duration, and intensity are governed by large- and meso-scale geophysical processes, such as surface solar heating and air-sea interactions. In this paper, using innovative combinations of satellite sensor data, we investigate some of these fundamental processes which are closely tied to clouds and control the monsoon system's evolution. The study, which focuses on the monsoon period of June, 1979, examines the low-frequency variability of clouds and their effects on air-sea processes through an analysis of the complex influence clouds play on the surface heat and water budgets. First, the effects of clouds on both the solar and longwave components of the surface radiation budget are assessed using a cloud radiative forcing parameter. While the effects of clouds on the long-wave irradiance act in a manner opposite to their effects on the shortwave irradiance, only a partial compensation is found to take place and the net effect results in a maximum cloud forcing of 60 Wm–2 in the southwestern Arabian Sea. Second, employing satellite-derived precipitation and evaporation estimates, the paper analyzes the net surface fresh water budget variability around the monsoon onset. This budget is important in that fresh water affects the upper ocean density distribution and, consequently, the thermohaline circulation. Two regions are found to dominate the analysis: the western Arabian Sea, where evaporation is dominant by more than 10 mm day–1, and the eastern Arabian Sea, where precipitation is dominant by more than 10 mm day–1. Thus, a strong zonal gradient of fresh water at the surface is established during the monsoon. The last topic investigated is the intraseasonal variability of convection as analyzed using a cloud parameter indicative of deep convection. Cloud oscillations of 30–50 days, associated with the different phases of the monsoon, are found to propagate northward in the eastern Indian Ocean and eastward in the Bay of Bengal. Our analysis not only supports the hypothesis that the 30–50-day oscillation is driven by deep convection but also, and more importantly, suggests that the ocean thermal forcing is modulated by 30–50-day oscillations through cloud-induced surface radiative forcing. Although the results presented are limited in scope and preliminary because of the diffculty in quantifying the accuracy of the parameters examined, they do demonstrate: 1) the role of clouds in modulating the surface heat and water budgets, 2) the advantage of using combinations of multi-sensor and multi-platform satellite observations to quantify interrelated surface heat/water budget processes, and 3) the potential to examine the intraseasonal variability of air-sea interaction processes associated with the monsoon, even though these processes are not directly measurable from space.With 6 FiguresB. DiJulio passed away in September 1990.  相似文献   

7.
A version of the National Centre for Atmospheric Research (NCAR) coupled climate model is integrated under current climate conditions and in a series of experiments with climate forcings ranging from modest to very strong. The purpose of the experiments is to investigate the nature and behaviour of the climate feedback/sensitivity of the model, its evolution with time and climate state, the robustness of model parameterizations as forcing levels increase, and the possibility of a “runaway” warming under strong forcing. The model is integrated for 50 years, or to failure, after increasing the solar constant by 2.5, 10, 15, 25, 35, and 45% of its control value. The model successfully completes 50 years of integration for the 2.5, 10, 15, and 25% solar constant increases but fails for increases of 35% and 45%. The effective global climate sensitivity evolves with time and analysis indicates that a new equilibrium will be obtained for the 2.5, 10, and 15% cases but that runaway warming is underway for the 25% increase in solar constant. Feedback processes are analysed both locally and globally in terms of longwave and shortwave, clear-sky/surface, and cloud forcing components. Feedbacks in the system must be negative overall and of sufficient strength to balance the positive forcing if the system is to attain a new equilibrium. Longwave negative feedback processes strengthen in a reasonably linear fashion as temperature increases but shortwave feedback processes do not. In particular, solar cloud feedback becomes less negative and, for the 25% forcing case, eventually becomes positive, resulting in temperatures that “run away”. The conditions under which a runaway climate warming might occur have previously been investigated using simpler models. For sufficiently strong forcing, the greenhouse effect of increasing water vapour in a warmer atmosphere is expected to overwhelm the negative feedback of the longwave cooling to space as temperature increases. This is not, however, the reason for the climate instability experienced in the GCM. Instead, the model experiences a “cloud feedback” warming whereby the decrease in cloudiness that occurs when temperature increases beyond a critical value results in an increased absorption of solar radiation by the system, leading to the runaway warming.  相似文献   

8.
Summary The effect of clouds on longwave radiation budget at the top and base of the atmosphere is studied by using the HIRS2/MSU-retrieved temperature and humidity fields, and cloud fields and the International Satellite Cloud Climatology Project-produced fields. Detailed studies are carried out at four selected sites: one at Equatorial Eastern Pacific (ITCZ) area, one at Libyan Desert (Libya), one at Ottawa, Montreal (Ottawa), and one at central Europe (Europe). The monthly mean differences in outgoing longwave radiation (OLR) (the ISCCP-based OLR minus the HIRS2-based OLR), ranging from –2.8 Wm–2 at ITCZ to –15.4 Wm–2 at Ottawa, are less than the monthly mean differences in surface downward flux, ranging from –2.7 Wm–2 at Libya to 40.6 Wm–2 at the ITCZ. The large differences in surface downward flux are mainly due to large differences in cloud amount and moisture in the low levels of the atmosphere.Monthly mean OLR and surface downward flux can be derived either (1) from instantaneous temperature, humidity, and cloud fields over a month period or (2) from monthly mean temperature, humidity, and cloud fields. The monthly mean OLR and surface downward flux derived from the first approach is compared with the second. The differences in OLR are small, ranging from –0.05 Wm–2 to 6.2 Wm–2, and the differences in surface downward flux is also small, ranging from 0.4 Wm–2 to 6.4 Wm–2.List of Acronyms AVHRR Advanced Very High Resolution radiometer - ERB Earth Radiation Budget - ERBE Earth Radiation Budget Experiment - FGGE First Global GARP Experiment - GARP Global Atmospheric Research Program - GCM General Circulation Model - GISS Goddard Institute for Space Studies - GLA Goddard Laboratory for Atmospheres - GMS Geostationary Meteorological Satellite - GOES Geostationary Operational Environmental Satellite - HIRS2 High Resolution Infrared Radiation Sounder/2 - ISCCP International Satellite Cloud Climatology Project - IR Infrared - MSU Microwave Sounding Unit - NFOV Narrow Field of View - NOAA National Oceanic and Atmospheric Administration - NESDIS National Environmental Satellite Data Information Service - TOVS TIROS Operational Vertical Sounder With 4 Figures  相似文献   

9.
Among anthropogenic perturbations of the Earths atmosphere, greenhouse gases and aerosols are considered to have a major impact on the energy budget through their impact on radiative fluxes. We use three ensembles of simulations with the LMDZ general circulation model to investigate the radiative impacts of five species of greenhouse gases (CO2, CH4, N2O, CFC-11 and CFC-12) and sulfate aerosols for the period 1930–1989. Since our focus is on the atmospheric changes in clouds and radiation from greenhouse gases and aerosols, we prescribed sea-surface temperatures in these simulations. Besides the direct impact on radiation through the greenhouse effect and scattering of sunlight by aerosols, strong radiative impacts of both perturbations through changes in cloudiness are analysed. The increase in greenhouse gas concentration leads to a reduction of clouds at all atmospheric levels, thus decreasing the total greenhouse effect in the longwave spectrum and increasing absorption of solar radiation by reduction of cloud albedo. Increasing anthropogenic aerosol burden results in a decrease in high-level cloud cover through a cooling of the atmosphere, and an increase in the low-level cloud cover through the second aerosol indirect effect. The trend in low-level cloud lifetime due to aerosols is quantified to 0.5 min day–1 decade–1 for the simulation period. The different changes in high (decrease) and low-level (increase) cloudiness due to the response of cloud processes to aerosols impact shortwave radiation in a contrariwise manner, and the net effect is slightly positive. The total aerosol effect including the aerosol direct and first indirect effects remains strongly negative.  相似文献   

10.
UV attenuation in the cloudy atmosphere   总被引:1,自引:0,他引:1  
Ultraviolet (UV) energy absorption plays a very important role in the Earth–atmosphere system. Based on observational data for Beijing, we suggest that some atmospheric constituents utilize or transfer UV energy in chemical and photochemical (C&P) reactions, in addition to those which absorb UV energy directly. These constituents are primarily volatile organic compounds (VOCs) emitted from both vegetative and anthropogenic sources. The total UV energy loss in the cloudy atmosphere for Beijing in 1990 was 78.9 Wm−2. This attenuation was caused by ozone (48.3 Wm−2), other compounds in the atmosphere (26.6 Wm−2) and a scattering factor (4.0 Wm−2). Our results for a cloudy atmosphere in the Beijing area show that the absorption due to these other compounds occurs largely through the mediation of water vapor. This fraction of energy loss has not been fully accounted for in previous models. Observations and previous models results suggest that 1) a cloudy atmosphere absorbs 25∼30 Wm−2 more solar shortwave radiation than models predict; and 2) aerosols can significantly decrease the downward mean UV-visible radiation and the absorbed solar radiation at the surface by up to 28 and 23 Wm−2, respectively. Thus, quantitative study of UV and visible absorption by atmospheric constituents involved in homogeneous and heterogeneous C&P reactions is important for atmospheric models.  相似文献   

11.
Simulations of subtropical marine low clouds and their radiative properties by nine coupled ocean-atmosphere climate models participating in the fourth assesment report (AR4) of the intergovernmental panel on climate change (IPCC) are analyzed. Satellite observations of cloudiness and radiative fluxes at the top of the atmosphere (TOA) are utilized for comparison. The analysis is confined to the marine subtropics in an attempt to isolate low cloudiness from tropical convective systems. All analyzed models have a negative bias in the low cloud fraction (model mean bias of −15%). On the other hand, the models show an excess of cloud radiative cooling in the region (model mean excess of 13 W m−2). The latter bias is shown to mainly originate from too much shortwave reflection by the models clouds rather than biases in the clear-sky fluxes. These results confirm earlier studies, thus no major progress in simulating the marine subtropical clouds is noted. As a consequence of the combination of these two biases, this study suggests that all investigated models are likely to overestimate the radiative response to changes in low level subtropical cloudiness.  相似文献   

12.
利用毫米波云雷达、微波辐射计联合反演方法,对2015年11月11日安徽寿县的一次层状云过程的云参数进行了反演,将所得云参数加入到SBDART辐射传输模式中,进行辐射通量计算,并将计算的地面辐射通量与观测的地面辐射通量进行了对比分析。研究表明:1)利用毫米波雷达和微波辐射计数据联合反演的云参数比较可靠;2)利用SBDART模式并结合反演的云参数,可以准确实时地计算地面及其他高度层的长短波辐射通量;3)在反演的云参数中,光学厚度对地面各种辐射通量的影响是最大的,云层的光学厚度越大,到达地面的太阳短波辐射越小,地面反射短波辐射也越小。另外云底温度越高,云体向下发射的红外长波辐射越大。地面向上的长波辐射是地面温度的普朗克函数,随地面温度而变;4)云对地面的短波辐射强迫为负值,对地面有降温的作用。云对地面的长波辐射强迫是一个正值,对地面有一个增温的作用;5)云对地面的净辐射强迫随时间变化很大,它的正负与太阳高度角和云参数有关。  相似文献   

13.
准确估算青藏高原的云辐射效应,对分析该地区的近地面感热通量十分重要.本文首先利用加权平均方法,分别将中分辨率成像光谱仪(MODIS)、测云雷达(CPR)和云与地球辐射能量系统(CERES)的像元数据进行融合.利用这些数据,分析了青藏高原上多云个例(2017年5月5日)与少云个例(2017年8月2日)情况下的可见光通道和...  相似文献   

14.
Values of downward and upward flux densities of solar and terrestrial radiation were continuously recorded between 1 December 2001 and 30 November 2002 using a four-components radiometer at S. Pietro Capofiume (SPC) in northern Italy (44°39′N, 11°37′E, alt. 11 m a.m.s.l.), which is characterized by a weakly-reflective surface. The aim of the study was to investigate the effects of clouds on surface radiation balance (SRB); the cloud fraction (N) has been retrieved through the inverted form of the parameterization proposed by Kasten and Czeplak [Solar Energy 24 (1980) 177] and cloud types estimated following the methodology of Duchon and O'Malley [J. Appl. Meteorol. 38 (1999) 132]. The cloud radiative forcing (CRF) was evaluated through the Bintanja and Van den Broeke [Int. J. Climatol. 16 (1996) 1281] formula and then associated with cloud type. Experimental results showed that during the measuring period the net shortwave (Sw) balance always decreased with increasing N, whereas the net longwave (Lw) balance increased in all seasons. The net radiation available at the surface decreased with increasing N in all seasons except in winter, where no significant dependency was detected.The analysis of the cloud radiative forcing indicates that all seasons were characterized by a net cooling of the surface except winter, where clouds seem to have no effects on the surface warming or cooling. Taking into account the dependence on solar radiation cycle, an intercomparison between the retrieved cloud types seems to indicate that the effect of stratus was a slight cooling whereas that of cumulus clouds was a stronger cooling of the surface. On the contrary, cirrus clouds seem to have slight warming effect on the surface.The annual trends of mean monthly values of shortwave and longwave radiation balances confirmed that the measurement site is characterized by a temperate climate. Moreover, in spite of the cooling effect of clouds, a monthly radiative energy surplus is available all year long for surface–atmosphere energy exchanges. The analysis is also instrumental for the detection of SRB variations.  相似文献   

15.
As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS,and the transport model of BC aerosols has also been established and combined with the RIEMS model.Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.  相似文献   

16.
Summary Interannual variability of meteorological conditions produces cloud amount sequences that statistically cannot be regarded as samples from the same population. Consequently in order to treat cloud amount distributions the traditional methods of mathematical statistics are useless. In this paper a method is presented that enables to approximate the cloud amount histograms by means of mixtures of Gaussian components. When a component can be found that is common to the histograms of different years, it may be regarded as a characteristic of a quasistationary cloudiness regime that is induced by stable meteorological conditions above the respective target area during the given period.The procedure to separate a cloud amount frequency distribution into Gaussian components is demonstrated on the basis of an example of March–May cloudiness analysis in the mid-ocean regions of the belt 0°–13.5° S. The monthly mean cloud amount data in the (500 km)2 squares have been determined from Nimbus-7 short-wave albedo measurements in 1979–1986. It has been demonstrated that even in the years that are not affected by the El Niño event the interannual variability of the autumn cloud amount histograms is essential at the 95% significance level. But separating the frequency distributions into Gaussian components, a part can be found that is common to all the autumns and, thus, may be regarded as a characteristic of the contemporary climate.With 6 Figures  相似文献   

17.
This study is based on ground-based measurements of downward surface shortwave irradiance (SW), columnar water vapour (wv), and aerosol optical depth (τ) obtained at Thule Air Base (Greenland) in 2007–2010, together with MODIS observations of the surface shortwave albedo (A). Radiative transfer model calculations are used in combination with measurements to separate the radiative effect of A (ΔSWA), wv (ΔSWwv), and aerosols (ΔSWτ) in modulating SW in cloud-free conditions. The shortwave radiation at the surface is mainly affected by water vapour absorption, which produces a reduction of SW as low as ?100 Wm?2 (?18%). The seasonal change of A produces an increase of SW by up to +25 Wm?2 (+4.5%). The annual mean radiative effect is estimated to be ?(21–22) Wm?2 for wv, and +(2–3) Wm?2 for A. An increase by +0.065 cm in the annual mean wv, to which corresponds an absolute increase in ΔSWwv by 0.93 Wm?2 (4.3%), has been observed to occur between 2007 and 2010. In the same period, the annual mean A has decreased by ?0.027, with a corresponding decrease in ΔSWA by 0.41 Wm?2 (?14.9%). Atmospheric aerosols produce a reduction of SW as low as ?32 Wm?2 (?6.7%). The instantaneous aerosol radiative forcing (RFτ) reaches values of ?28 Wm?2 and shows a strong dependency on surface albedo. The derived radiative forcing efficiency (FEτ) for solar zenith angles between 55° and 70° is estimated to be (?120.6 ± 4.3) for 0.1 < A < 0.2, and (?41.2 ± 1.6) Wm?2 for 0.5 < A < 0.6.  相似文献   

18.
Madden?CJulian Oscillation (MJO) signals have been detected using highly sampled observations from the U.S. DOE ARM Climate Research Facility located at the Tropical Western Pacific Manus site. Using downwelling shortwave radiative fluxes and derived shortwave fractional sky cover, and the statistical tools of wavelet, cross wavelet, and Fourier spectrum power, we report finding major convective signals and their phase change from surface observations spanning from 1996 to 2006. Our findings are confirmed with the satellite-gauge combined values of precipitation from the NASA Global Precipitation Climatology Project and the NOAA interpolated outgoing longwave radiation for the same location. We find that the Manus MJO signal is weakest during the strongest 1997?C1998 El Ni?o Southern Oscillation (ENSO) year. A significant 3?C5-month lead in boreal winter is identified further between Manus MJO and NOAA NINO3.4 sea surface temperature (former leads latter). A striking inverse relationship is found also between the instantaneous synoptic and intraseasonal phenomena over Manus. To further study the interaction between intraseasonal and diurnal scale variability, we composite the diurnal cycle of cloudiness for 21-MJO events that have passed over Manus. Our diurnal composite analysis of shortwave and longwave fractional sky covers indicates that during the MJO peak (strong convection), the diurnal amplitude of cloudiness is reduced substantially, while the diurnal mean cloudiness reaches the highest value and there are no significant phase changes. We argue that the increasing diurnal mean and decreasing diurnal amplitude are caused by the systematic convective cloud formation that is associated with the wet phase of the MJO, while the diurnal phase is still regulated by the well-defined solar forcing. This confirms our previous finding of the anti-phase relationship between the synoptic and intraseasonal phenomena. The detection of the MJO over the Manus site provides further opportunities in using other ground-based remote sensing instruments to investigate the vertical distributions of clouds and radiative heatings of the MJO that currently is impossible from satellite observations.  相似文献   

19.
Snow surface and sea-ice energy budgets were measured near 87.5°N during the Arctic Summer Cloud Ocean Study (ASCOS), from August to early September 2008. Surface temperature indicated four distinct temperature regimes, characterized by varying cloud, thermodynamic and solar properties. An initial warm, melt-season regime was interrupted by a 3-day cold regime where temperatures dropped from near zero to ?7°C. Subsequently mean energy budget residuals remained small and near zero for 1 week until once again temperatures dropped rapidly and the energy budget residuals became negative. Energy budget transitions were dominated by the net radiative fluxes, largely controlled by the cloudiness. Variable heat, moisture and cloud distributions were associated with changing air-masses. Surface cloud radiative forcing, the net radiative effect of clouds on the surface relative to clear skies, is estimated. Shortwave cloud forcing ranged between ?50 W m?2 and zero and varied significantly with surface albedo, solar zenith angle and cloud liquid water. Longwave cloud forcing was larger and generally ranged between 65 and 85 W m?2, except when the cloud fraction was tenuous or contained little liquid water; thus the net effect of the clouds was to warm the surface. Both cold periods occurred under tenuous, or altogether absent, low-level clouds containing little liquid water, effectively reducing the cloud greenhouse effect. Freeze-up progression was enhanced by a combination of increasing solar zenith angles and surface albedo, while inhibited by a large, positive surface cloud forcing until a new air-mass with considerably less cloudiness advected over the experiment area.  相似文献   

20.
RegCM4对中国东部区域气候模拟的辐射收支分析   总被引:2,自引:0,他引:2       下载免费PDF全文
利用卫星和再分析数据,评估了区域气候模式Reg CM4对中国东部地区辐射收支的基本模拟能力,重点关注地表净短波(SNS)、地表净长波(SNL)、大气顶净短波(TNS)、大气顶净长波(TNL)4个辐射分量。结果表明:1)短波辐射的误差值在夏季较大,而长波辐射的误差值在冬季较大。但各辐射分量模拟误差的空间分布在冬、夏季都有较好的一致性。2)对于地表辐射通量,SNS表现为正偏差(向下净短波偏多),在各分量中误差最大,区域平均误差值近50 W/m2;SNL表现为负偏差(向上净长波偏多);对于大气顶辐射通量,TNS和TNL分别表现为"北负南正"的误差分布和整体正偏差。3)利用空间相关和散点线性回归方法对4个辐射分量的模拟误差进行归因分析,发现在云量、地表反照率、地表温度三个直接影响因子中,云量模拟误差的贡献最大,中国东部地区云量模拟显著偏少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号