首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 621 毫秒
1.
The data on optical, X-ray and gamma emission from proton flares, as well as direct observations of flare-associated phenomena, show energetic proton acceleration in the corona rather than in the flare region. In the present paper, the acceleration of protons and accompanying relativistic electrons is accounted for by a shock wave arising during the development of a large flare. We deal with a regular acceleration mechanism due to multiple reflection of resonance protons and fast electrons from a collisionless shock wave front which serves as a moving mirror. The height of the most effective acceleration in the solar corona is determined. The accelerated particle energy and density are estimated. It is shown in particular that a transverse collisionless shock wave may produce the required flux of protons with energy of 10 MeV and of relativistic electrons of 1–10 MeV.The proposed scheme may also serve as an injection mechanism when the protons are accelerated up to relativistic energies by other methods.  相似文献   

2.
As a possible mechanism for particle acceleration in the impulsive phase of solar flares, a new particle acceleration mechanism in shock waves is proposed; a collisionless fast magnetosonic shock wave can promptly accelerate protons and electrons to relativistic energies, which was found by theory and relativistic particle simulation. The simultaneous acceleration of protons and electrons takes place in a rather strong magnetic field such that ce pe . For a weak magnetic field ( ce pe ), strong acceleration occurs to protons only. Resonant protons gain relativistic energies within the order of the ion cyclotron period (much less than 1 s for solar plasma parameters). The electron acceleration time is shorter than the ion-cyclotron period.  相似文献   

3.
We present a sample of solar energetic particle events observed between November 18 and December 31, 1982 by the HELIOS 1, the VENERA 13, and IMP 8 spacecraft. During the entire time period all three spacecraft were magnetically connected to the western hemisphere of the Sun with varying radial and angular distances from the flares. Eleven proton events, all of them associated with interplanetary shocks, were observed by the three spacecraft. These events are visible in the low-energy (about 4 MeV) as well as the high-energy (30 MeV) protons. In the largest events protons were observed up to energies of about 100 MeV. The shocks were rather fast and in some cases extended to more than 90% east of the flare site. Assuming a symmetrical configuration, this would correspond to a total angular extent of some interplanetary shocks of about 180%. In addition, due to the use of three spacecraft at different locations we find some indication for the shape of the shock front: the shocks are fastest close to the flare normal and are slower at the eastern flank. For particle acceleration we find that close to the flare normal the shock is most effective in accelerating energetic particles. This efficiency decreases for observers connected to the eastern flank of the shock. In this case, the efficiency of shock acceleration for high-energy protons decreases faster than for low-energy protons. Observation of the time-intensity profiles combined with variations of the anisotropy and of the steepness of the proton spectrum allows one in general to define two components of an event which we term solar and interplanetary. We attempt to describe the results in terms of a radially variable efficiency of shock acceleration. Under the assumption that the shock is responsible not only for the interplanetary, but also for the solar component, we find evidence for a very efficient particle acceleration while the shock is still close to the Sun, e.g., in the corona. In addition, we discuss this series of strong flares and interplanetary shocks as a possible source for the formation of a superevent.  相似文献   

4.
Second-step acceleration of nonrelativistic protons and ions in impulsive solar flares is discussed extending our earlier calculations for relativistic electrons. We derive the relevant particle transport equation, discussing in detail the influence of the particle's effective charge and mass number on the various momentum gain (stochastic acceleration, diffusive shock wave acceleration) and loss (Coulomb interactions, particle escape) processes. Analytical solutions for the ion-momentum spectra in the hard-sphere approximation are given. The inclusion of Coulomb losses modify the particle spectra significantly at kinetic energies smaller than E B = 0.64( e /5.0) MeV nucl.–1 from the well-known Bessel function variation in long-duration flares. For equal injection conditions this modification explains the observed much smaller ion fluxes from impulsive flares at high energies as compared to long-duration flares. We also calculate the 3He/4He-isotope variation as a function of momentum in impulsive flares in the hard-sphere approximation and find significant variations near E m = 0.38(T e /2 × 106 K) MeV nucl.–1, where T e is the electron temperature of the coronal medium.  相似文献   

5.
This paper provides a comprehensive analysis of the dynamics of the flow of minor ion species in the solar wind under the combined influences of gravity, Coulomb friction (with protons), rotational forces (arising from the Sun's rotation and the interplanetary spiral magnetic field) and wave forces (induced in the minor ion flow by Alfvén waves propagating in the solar wind). It is assumed that the solar wind can be considered as a proton-electron plasma which is, to a first approximation, unaffected by the presence of minor ions. In the dense hot region near the Sun Coulomb friction accelerates minor ions outwards against the gravitational force, part of which is cancelled by the charge-separation electric field. Once the initial acceleration has been achieved, wave and rotational forces assist Coulomb friction in further increasing the minor ion speed so that it becomes comparable with, or perhaps even exceeds, the solar wind speed. A characteristic feature of the non-resonant wave force is that it tends to bring the minor ion flow into an equilibrium where the radial speed matches the Alfvén speed relative to the solar wind speed, whereas Coulomb friction and rotational forces tend to bring the flow into an equilibrium where the radial speed of the minor ions equals the solar wind speed. Therefore, provided that there is sufficient wave energy and Coulomb friction is weak, the minor ion speed can be trapped between these two speeds. This inteststing result is in qualitative agreement with observational findings to the effect that the differential flow speed between helium ions and protons is controlled by the ratio of the solar wind expansion time to the ion-proton collision time. If the thermal speeds of the protons and minor ions are small compared to the Alfvén speed, two stable equilibrium speeds can exist because the rapid decrease in the Coulomb cross-section with increasing differential flow speed allows the non-resonant wave force to balance Coulomb friction at more than one ion speed. However, it must be emphasized that resonant wave acceleration and/or strong ion partial pressure gradients are required to achieve radial speeds of minor ions in excess of the proton speed, since, as is shown in Section 4, the non-resonant wave acceleration on protons and minor ions are identical when their radial speeds are the same, with the result that, in the solar wind, non-resonant wave acceleration tends (asymptotically) to equalize minor ion and proton speeds.  相似文献   

6.
T. Moran  P. Foukal 《Solar physics》1991,135(1):179-191
We describe an electrograph instrument designed for measurement of macroscopic electric fields in solar plasmas, using the polarization dependence of line width in Stark-broadened hydrogen Paschen emission lines. Observations of quiescent prominences and limb chromosphere with our electrograph at the NSO/Sac Peak Evans Coronal Facility provide upper limits of 5–10 V cm–1 for transverse macroscopic electric fields in these structures, averaged over an area of about 5 × 7 arc sec. Random thermal motions of hydrogen ions across magnetic field lines generate a quasi-static electric field, which should be distinguishable from pressure broadening in the intensely magnetized chromosphere over a sunspot, given an electrograph sensitivity a factor 2–3 better than that achieved here. Future electrograph measurements of limb flares, post-flare loops and eruptive prominences, even at 5 V cm–1 sensitivity, could provide a useful new test of reconnection and discharge effects in such dynamic structures.  相似文献   

7.
Quasi-steady high-temperature current sheets are an energy source during the main or hot phase of solar flares. Such sheets are shown to be stabilized with respect to the tearing instability by a small transverse component of magnetic field existing in the sheets.  相似文献   

8.
Starting with the quasi-linear equation of the distribution function of particles in a regular electric field, a combined diffusion coefficient in the momentum space conbining the effects of the regular field and a turbulent field is obtained and a combined mechanism of acceleration by the regular and turbulent fields in the neutral sheet of solar proton flares is proposed. It is shown by calculation that conditions in solar proton flares are such that the charged particles can be effectively accelerated to tens of MeV, even ~1 GeV. It is shown that the combined acceleration by a regular electric field and ion-acoustic turbulence pumps the protons and other heavy ions into ranges of energy where they can be accelerated by Langmuir turbulence. By considering the combined acceleration by Langmuir turbulence and the regular electric field, the observed spectrum of energetic protons and the power-law spectrum of energetic electrons can be reproduced.  相似文献   

9.
The reciprocal influence of the electrons and protons, on one side, and the -particles, on the other side in the quiet solar wind is investigated within the framework of a conductive three-fluid model (with frictional forces included). For this purpose two mathematical methods are used, namely: I. Simultaneous solution of the fluid equations for all three species; and II. Solution of two-fluid equations (for electrons and protons) followed by that of a modified one-fluid equation for the -particles (in which the two-fluid solutions are used for electrons and protons).The results of our investigation indicate the following: (a)The macroscopic -particle characteristics as obtained from the two methods of solution are almost identical. Thus, the differences between the three-fluid and two-fluid characteristics of the electrons and protons represent a second order (and negligible) effect on the -particle characteristics. In both approaches, the frictional interaction between -particles and protons raises the (lower) -particle streaming velocity to that of the protons and decreases the relative to proton density ratio to a value about 0.035, as observed at 1 AU, (b)The electron and proton characteristics obtained from three-fluid and two-fluid solutions are similar, except for the proton temperature. The two-fluid solution providesT p-values which, though within the observational error, are larger than those obtained from the simultaneous three-fluid solution (at 1 AU, the difference amounts to about 30%). Thus, the -particles affect the temperature profile of the protons in the solar wind through heat exchange (mainly), dynamical friction, as well as through their contribution to the interplanetary electrostatic field.  相似文献   

10.
Competition between stochastic energy gains and collisional energy losses is known to lead to preferential acceleration of heavy ions in flare loops. Ion acceleration in a reconnecting current sheet is shown to mitigate the influence of collisional energy losses on stochastic particle acceleration in impulsive solar flares. This effect decreases the sensitivity of the resulting abundance ratios on initial ion charge states. The resulting abundances are determined by the fact that the energy loss rate falls off rapidly with increasing energy. As an example, the expected Fe/O enhancement ratios are computed and shown to be comparable with those observed with ACE SEPICA in several impulsive flares in 1998. One consequence of the model is that the preferential acceleration of heavy ions can occur only when the plasma gas pressure is large enough, m e/m p, which may explain the observed correlation between the heavy ion enrichment and selective 3He acceleration in impulsive flares.  相似文献   

11.
The position of bright knots of 30 flares at their very beginning relative to the high-resolution isogauss maps of the longitudinal component (H ) and maps of the transverse component (H ) of magnetic field are considered for seven days during the passage of the active and large spot group in Sept. 1963 (see Table I and maps on Figures 1–8).The flare bright knots occur simultaneously in regions of opposite magnetic polarity, and the majority of these knots are adjacent to neutral line H = 0, although not coinciding precisely with this line (Figure 9). Lenticular form of flare knots and the motions of bright material of flares is restrained by transversal field H . Also flares are closely associated (83%) with so-called bifurcated regions, where specific crossing of transverse components takes place (Figures 4–5). There is well-expressed (80%) coincidence of flare knots with the strongest (positive or negative) electric currents as determined from the relation j = c/4 rot H. The relation of results obtained to some existing theories of flares is briefly discussed.U.S. Nat. Acad. of Science - U.S.S.R. Acad. Nauk. Exchange Scientist Program; now at CSIRO Division of Physics, Australia.  相似文献   

12.
Except for protons, the chemical composition of solar cosmic rays is very similar to the abundance of the elements at the photosphere of the Sun. If we consider the relative abundance ratio of protons to -particles (P/) at constant rigidity, this ratio is highly variable from one solar cosmic ray event to another. This ratio observed at the Earth, however, decreases monotonically with time from the onset of solar flares and, furthermore, is dependent on the heliocentric distance of the parent flares from the central meridian of the solar disk. P/'s which have been measured before the onset of SC geomagnetic storms change from 1.5 to 50 or more, being a function of the westward position of the source from the east limb of the Sun. These variations with respect to time and heliocentric distance suggest that the propagation of solar cosmic rays is strongly modulated in the interplanetary space. The major part of the -particles seem to propagate as if they are trapped within the magnetic clouds which produce SC geomagnetic and cosmic ray storms at the earth.The chemical composition and rigidity spectra of solar cosmic rays suggest that solar cosmic rays are mainly accelerated by the Fermi mechanism in solar flares. The observed variation of P/'s is produced mainly through the difference between the propagation characteristics of protons and -particles.NAS-NRC Associate with NASA.  相似文献   

13.
A model for second-step electron acceleration in impulsive solar flares is presented. We have extended the theory of stochastic particle acceleration to include Coulomb energy losses which become important at low coronal heights. This inclusion successfully explains the observed steepening of interplanetary electron spectra below 3 MeV following impulsive solar flares taking place at low coronal heights. It also explains the observed spectral differences of relativistic electrons in long-duration and impulsive flares.  相似文献   

14.
Feffer  P. T.  Lin  R. P.  Slassi-Sennou  S.  McBride  S.  Primbsch  J. H.  Zimmer  G.  Pelling  R. M.  Pehl  R.  Madden  N.  Malone  D.  Cork  C.  Luke  P.  Vedrenne  G.  Cotin  F. 《Solar physics》1997,171(2):419-445
The HIgh-REsolution Gamma-ray and hard X-ray Spectrometer (HIREGS) consists of an actively shielded array of twelve liquid-nitrogen-cooled germanium detectors designed to provide unprecedented spectral resolution and narrow-line sensitivity for solar gamma-ray line observations. Two long-duration, circumpolar balloon flights of HIREGS in Antarctica (10–24 January, 1992 and 31 December, 1992–10 January, 1993) provided 90.9 and 20.4 hours of solar observations, respectively. During the observations, eleven soft X-ray bursts at C levels and above (largest M1.7) occurred, and three small solar hard X-ray bursts were detected by the Compton Gamma-Ray Observatory. HIREGS detected a significant increase above 30 keV in one. No solar gamma-ray line emission was detected. Limits on the 2.223-MeV line and the hard X-ray emission are used to estimate the relative contribution of protons and electrons to the energy in flares, and to coronal heating. For the 2.223-MeV line, the upper limit fluence is 0.8 ph cm-2 in the flares, and the upper limit flux is 1.8 × 10-4 ph s-1 cm-2 in the absence of flares. These limits imply that 6 × 1030 (2) protons above 30 MeV were accelerated in the flares, assuming standard photospheric abundances and a thick target model. The total energy contained in the accelerated protons >30 MeV is 4 × 1026 ergs, but this limit can be more than 1030 ergs if the spectrum extends down to 1 MeV. The upper limit on the total energy in accelerated electrons during the observed flares can also exceed 1030 ergs if the spectrum goes down to 7 keV. Quiet-Sun observations indicate that 1026erg s-1 are deposited by energetic protons >1 MeV, well below the1027 –1028 erg s-1 required for coronal heating, while <3 × 1027 erg s-1 are deposited by energetic electrons, which does not exclude the possibility of coronal heating by quiet-time accelerated electrons. The quiet-Sun observations also suggest that if protons stored in the corona are to supply the energy for flares, as suggested by Elliot (1964), the proton spectrum must extend down to at least 2 MeV. However, collisional losses at typical coronal-loop densities prevent those low-energy protons from being stored for 104 s. It therefore seems unlikely that the energy for flares could come from energetic protons stored over long periods.  相似文献   

15.
Hamilton  B.  McCLEMENTS  K.G.  Fletcher  L.  Thyagaraja  A. 《Solar physics》2003,214(2):339-352
An explicitly energy-conserving full orbit code CUEBIT, developed originally to describe energetic particle effects in laboratory fusion experiments, has been applied to the problem of proton acceleration in solar flares. The model fields are obtained from solutions of the linearised MHD equations for reconnecting modes at an X-type neutral point, with the additional ingredient of a longitudinal magnetic field component. To accelerate protons to the highest observed energies on flare timescales, it is necessary to invoke anomalous resistivity in the MHD solution. It is shown that the addition of a longitudinal field component greatly increases the efficiency of ion acceleration, essentially because it greatly reduces the magnitude of drift motions away from the vicinity of the X-point, where the accelerating component of the electric field is largest. Using plasma parameters consistent with flare observations, we obtain proton distributions extending up to -ray-emitting energies (>1 MeV). In some cases the energy distributions exhibit a bump-on-tail in the MeV range. In general, the shape of the distribution is sensitive to the model parameters.  相似文献   

16.
R. P. Lin 《Solar physics》1970,12(2):266-303
Observations of prompt 40 keV solar flare electron events by the IMP series of satellites in the period August, 1966 to December, 1967 are tabulated along with prompt energetic solar proton events in the period 1964–1967. The interrelationship of the various types of energetic particle emission by the sun, including relativistic energy electrons reported by Cline and McDonald (1968) are investigated. Relativistic energy electron emission is found to occur only during proton events. The solar optical, radio and X-ray emission associated with these various energetic particle emissions as well as the propagation characteristics of each particle species are examined in order to study the particle acceleration and emission mechanisms in a solar flare. Evidence is presented for two separate particle acceleration and/or emission mechanisms, one of which produces 40 keV electrons and the other of which produces solar proton and possibly relativistic energy electrons. It is found that solar flares can be divided into three categories depending on their energetic particle emission: (1) small flares with no accompanying energetic phenomena either in particles, radio or X-ray emission; (2) small flares which produce low energy electrons and which are accompanied by type III and microwave radio bursts and energetic ( 20 keV) X-ray bursts; and (3) major solar flare eruptions characterized by energetic solar proton production and type II and IV radio bursts and accompanied by intense microwave and X-ray emission and relativistic energy electrons.  相似文献   

17.
This paper presents an integrated analysis of GOES 6, 7 and neutron monitor observations of solar cosmic-ray event following the 1990 May 24 solar flare. We have used a model which includes particle injection at the Sun and at the interplanetary shock front and particle propagation through the interplanetary medium. The model does not attempt to simulate the physical processes of coronal transport and shock acceleration, therefore the injections at the Sun and at the shock are represented by source functions in the particle transport equation. By fitting anisotropy and angle-average intensity profiles of high-energy (>30 MeV) protons as derived from the model to the ones observed by neutron monitors and at GOES 6 and 7, we have determined the parameters of particle transport, the injection rate and spectrum at the source. We have made a direct fit of uncorrected GOES data with both primary and secondary proton channels taken into account.The 1990 May 24–26 energetic proton event had a double-peaked temporal structure at energies 100 MeV. The Moreton (shock) wave nearby the flare core was seen clearly before the first injection of accelerated particles into the interplanetary medium. Some (correlated with this shock) acceleration mechanism which operates in the solar corona at a height up to one solar radius is regarded as a source of the first (prompt) increase in GOES and neutron monitor counting rates. The proton injection spectrum during this increase is found to be hard (spectral index 1.6) at lower energies ( 30 MeV) with a rapid steepening above 300 MeV. Large values of the mean free path ( 1.8 AU for 1 GV protons in the vicinity of the Earth) led to a high anisotropy of arriving protons. The second (delayed) proton increase was presumably produced by acceleration/injection of particles by an interplanetary shock wave at height of 10 solar radii. Our analysis of the 1990 May 24–26 event is in favour of the general idea that a number of components of energetic particles may be produced while the flare process develops towards larger spatial/temporal scales.Visiting Associate from St. Petersburg State Technical University, St. Petersburg 195251, Russia.  相似文献   

18.
Frances Tang 《Solar physics》1985,102(1-2):131-145
Chromospheric flares are the footpoints of closed coronal field lines. In this paper we present different flare morphologies from observations and examine the implied coronal field configurations above the flaring region. Flares are grouped according to the number of ribbons, from unresolved compact point-like flare to four-ribbon flares. Quiet region flares having characteristics all their own are also presented here.We find that compact, unresolved point-like flares have two distinct footpoints when viewed in offband H. The footpoints of some of the compact flares also show increased separation as a function of time.Unlike large two-ribbon flares, the ribbons of many small and/or short-lived two-ribbon flares usually have no measurable separation of ribbons.Multiple-ribbon (three or more ribbon) flares consist of two or more pairs of two-ribbons, or two or more sets of field lines. Parity of the ribbons in multiple-ribbon flares, or the lack of it, depends on the magnetic makeup of the locale of the ribbons.Flares in old quiet regions resulting from sudden filament eruptions show discrete small patches of emissions reflecting the spottiness of decayed and dispersed field of quiet region.  相似文献   

19.
Electron and proton acceleration by a super-Dreicer electric field is investigated in the non-neutral reconnecting current sheet (RCS) with a non-zero longitudinal component of the magnetic field ('guiding field'). The guiding field is assumed parallel to the direction of electric field and constant within an RCS. The other two magnetic field components, transverse and tangential, are considered to vary with distances from the X null point of an RCS. The proton and electron energy spectra are calculated numerically from a motion equation using the test particle approach for model RCSs with constant and variable densities. In the presence of a strong or moderate guiding field, protons were found fully or partially separated from electrons at ejection from an RCS into the opposite, 'electron' and 'proton', semiplanes. In the case of a weak guiding field, both protons and electrons are ejected symmetrically in equal proportions as neutral beams. The particles ejected from an RCS with a very weak or very strong guiding field have power-law energy spectra with spectral indices of about 1.5 for protons and 2.0 for electrons. For a moderate guiding field, the energy spectra of electrons ejected into the opposite semiplanes are mixed, i.e. in the 'electron-dominated' semiplane power-law energy spectra for electrons and thermal-like for protons, while in the 'proton' semiplane they are symmetrically mirrored.  相似文献   

20.
This paper extends some previous work on the acceleration of minor ions in the solar wind to include the effects of wave acceleration and heating arising from minor ions interacting via the gyroresonance with ion cyclotron waves. Resonant wave acceleration is made up of two contributions, the first, and generally the more important, is a local acceleration which is proportional to the wave power and the number of resonant particles and is also sensitive to the details of the distribution function; while the other contribution is basically fluid dynamic in character, arises from the inhomogeneity of the medium and is proportional to the radial gradient of the resonant wave power. Under suitable cir-cumstances both contributions exhibit the feature that heavier ions receive greater acceleration than lighter ones. Also the kinematics of the resonance shows that the resonance wave acceleration switches off above a maximum differential speed, between ions and protons, which increases with increasing ratio of mass to charge. We also examine briefly possible beam instabilities driven by the streaming of minor ions relative to protons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号