首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
利用模板匹配方法对2015年11月23日青海省祁连县M_S5.2地震进行遗漏地震检测研究,由于主震后短时间内目录中遗漏事件较多,故对主震后1天的连续波形进行检测。主震后1天内青海测震台网记录到的余震个数(包括单台)共62个,选取主震后M_L1.0以上余震30个作为模板事件,通过匹配滤波的方式扫描出遗漏地震31个,约为台网目录给出的0.5倍。基于包络差峰值振幅与震级的线性关系估测检测事件的震级参数,最后将检测后的余震目录与台网余震目录在主震后1天内的最小完备震级进行对比分析,结果发现检测后最小完备震级从M_L1.2降到了M_L0.7,得到青海测震台网在祁连地区最小完整性震级为M_L0.7。  相似文献   

2.
A catalog for northeast India and the adjoining region for the period 1897–2009 with 4,497 earthquakes events is compiled for homogenization to moment magnitude M w,GCMT in the magnitude range 3–8.7. Relations for conversion of m b and M s magnitudes to M w,GCMT are derived using three different methods, namely, linear standard regression, inverted standard regression (ISR) and orthogonal standard regression (OSR), for different magnitude ranges based on events data for the catalog period 1976–2006. The OSR relations for M s to M w,GCMT conversion derived in this paper have significantly lower errors in regression parameters compared to the relations reported in other studies. Since the number of events with magnitude ≥7 for this region is scanty, we, therefore, considered whole India region to obtain the regression relationships between M w,GCMT and M s,ISC. A relationship between M w,GCMT and M w,NEIC is also obtained based on 17 events for the range 5.2 ≤ magnitude ≤ 6.6. A unified homogeneous catalog prepared using the conversion relations derived in this paper can serve as a reference catalog for seismic hazard assessment studies in northeast India and the adjoining region.  相似文献   

3.
We try to give a quantitative and global discrimination function by studying m b/M S data using Fisher method that is a kind of pattern recognition methods. The reliability of the function is also analyzed. The results show that this criterion works well and has a global feature, which can be used as first-level filtering criterions in event identification. The quantitative and linear discrimination function makes it possible to identify events automatically and achieve the goal to react the events quickly and effectively. Contribution No.05FE3018, Institute of Geophysics, China Earthquake Administrtion.  相似文献   

4.
中强地震发生后,地震检测因受到尾波的干扰可能会遗漏部分微震事件,影响地震目录的完备性。文章利用波形模板匹配方法对2020年新疆伽师MS6.4地震序列开展微震检测,相比原始的中国地震台网中心统一地震目录,新检测出1 756个微震事件,地震数量增加了1.3倍。基于检测后的余震目录计算最小完备震级为ML1.2,地震活动性b值为0.76,较原始目录的ML1.6和0.77均有所降低。通过伽师震源区地震序列活动特征分析,结果表明前震序列在主震前短时间内(前36小时)出现地震活动的密集增强,相应的b值显示为低值;主震发生后地震序列完备震级较高,随着时间的推移,完备震级缓慢降低并趋于稳定,并且呈周期性的波动。本研究提高了伽师震源区地震目录的完备性,为精细化描述该地区地震序列时空演化特征提供了关键数据基础。  相似文献   

5.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

6.
The G-R relation lgN=a-bM (1954) is an empirical formula used widely in the seismicity research. But the linearity of b curves has great difference in different time and space domains. An interested question in this paper is that in how large a space-time-strength domain the b value has certain physical connotation. This study told us that we can get optimal statistical results of b value in those space-time domains which can develop correspondent strong shocks with magnitude interval (M s≥8.5, 8.0≤M s<8.5, 7.0≤M s<8.0). Thus, the possible seismogenic areas in which strong shocks with different magnitude intervals develop can be inferred in different regions of the mainland of China. Finally, some new problems are proposed, such as the delimitation of seismic province, the seismicity parameter determination in seismic hazard analysis and in earthquake predictions by using b value. Contribution No. 96A-0074, Institute of Geophysics, SSB, China.  相似文献   

7.
IntroductionIn the book Future CataS~ologr published in 1992, we proposed a viewpoiflt on using the"criterion of activity in quiescence" to predict big eathquake (MsZ7) (GUO, et al, 1992), and predicted in the book that in futore several years or in ten years a big earthquake (Ms27) will be possible to occur in the Zhongdian and nearby in Yunnan Province. In the 1994 nation-wide earthquake tendency consultation meeting we pointed out, once more, in the Zhongdian region of Yunnan Province…  相似文献   

8.
Empirical Global Relations Converting M S and m b to Moment Magnitude   总被引:1,自引:0,他引:1  
The existence of several magnitude scales used by seismological centers all over the world and the compilation of earthquake catalogs by many authors have rendered globally valid relations connecting magnitude scales a necessity. This would allow the creation of a homogeneous global earthquake catalog, a useful tool for earthquake research. Of special interest is the definition of global relations converting different magnitude scales to the most reliable and useful scale of magnitude, the moment magnitude, M W. In order to accomplish this, a very large sample of data from international seismological sources (ISC, NEIC, HRVD, etc.) has been collected and processed. The magnitude scales tested against M W are the surface wave magnitude, M S, the body wave magnitude, m b, and the local magnitude, M L. The moment magnitudes adopted have been taken from the CMT solutions of HRVD and USGS. The data set used in this study contains 20,407 earthquakes, which occurred all over the world during the time period 1.1.1976–31.5.2003, for which moment magnitudes are available. It is shown that well-defined relations hold between M W and m b and M S and that these relations can be reliably used for compiling homogeneous, with respect to magnitude, earthquake catalogs.  相似文献   

9.
On July 20, 1995, an earthquake of M L=4.1 occurred in Huailai basin, northwest of Beijing, with epicenter coordinates 40.326°N, 115.448°E and focal depth 5.5 km. Following the main shock, seismicity sharply increased in the basin. This earthquake sequence was recorded by Sino-European Cooperative Huailai Digital Seismograph Network (HDSN) and the hypocentres were precisely located. About 2 hours after the occurrence of the main shock, a smaller event of M L=2.0 took place at 40.323°N, 115.447°E with a focal depth of 5.0 km, which is very close to the main shock. Using the M L=2.0 earthquake as an empirical Green’s function, a regularization method was applied to retrieve the far-field source-time function (STF) of the main shock. Considering the records of HDSN are the type of velocity, to depress high frequency noise, we removed instrument response from the records of the two events, then integrated them to get displacement seismogram before applying the regularization method. From the 5 field stations, P phases in vertical direction which mostly are about 0.5 s in length were used. The STFs obtained from each seismic phases are in good agreement, showing that the M L=4.1 earthquake consisted of two events. STFs from each station demonstrate an obvious “seismic Doppler effect”. Assuming the nodal plane striking 37° and dipping 40°, determined by using P wave first motion data and aftershock distribution, is the fault plane, through a trial and error method, the following results were drawn: Both of the events lasted about 0.1 s, the rupture length of the first one is 0.5 km, longer than the second one which is 0.3 km, and the rupture velocity of the first event is 5.0 km/s, larger than that of the second one which is about 3.0 km/s; the second event took place 0.06 s later than the first one; on the fault plane, the first event ruptured in the direction γ=140° measured clockwise from the strike of the fault, while the second event ruptured at γ=80°, the initial point of the second one locates at γ=−100° and 0.52 km from the beginning point of the first one. Using far-field ground displacement spectrum measurement method, the following source parameters about the M L=4.1 earthquake were also reached: the scalar earthquake moment is 3.3×1013 N·m, stress drop 4.6 MPa, rupture radius 0.16 km. Contribution No. 99FE2022, Institute of Geophysics, China Seismological Bureau. This study is supported by the Chinese Joint Seismological Science Foundation (95-07-411).  相似文献   

10.
By linear regression and orthogonal regression methods, comparisons are made between different magnitudes (lo-cal magnitude ML, surface wave magnitudes MS and MS7, long-period body wave magnitude mB and short-period body wave magnitude mb) determined by Institute of Geophysics, China Earthquake Administration, on the basis of observation data collected by China Seismograph Network between 1983 and 2004. Empirical relations between different magnitudes have been obtained. The result shows that: 1 As different magnitude scales reflect radiated energy by seismic waves within different periods, earthquake magnitudes can be described more objectively by using different scales for earthquakes of different magnitudes. When the epicentral distance is less than 1 000 km, local magnitude ML can be a preferable scale; In case M<4.5, there is little difference between the magnitude scales; In case 4.5MS, i.e., MS underestimates magnitudes of such events, therefore, mB can be a better choice; In case M>6.0, MS>mB>mb, both mB and mb underestimate the magnitudes, so MS is a preferable scale for deter-mining magnitudes of such events (6.08.5, a saturation phenomenon appears in MS, which cannot give an accurate reflection of the magnitudes of such large events; 2 In China, when the epicentral distance is less than 1 000 km, there is almost no difference between ML and MS, and thus there is no need to convert be-tween the two magnitudes in practice; 3 Although MS and MS7 are both surface wave magnitudes, MS is in general greater than MS7 by 0.2~0.3 magnitude, because different instruments and calculation formulae are used; 4 mB is almost equal to mb for earthquakes around mB4.0, but mB is larger than mb for those of mB≥4.5, because the periods of seismic waves used for measuring mB and mb are different though the calculation formulae are the same.  相似文献   

11.
Any pair ofm L gz ,m L g b,mmxz andmm x h in the eastern six provinces of China show good linear relation this makes it easy to convert from one scale to another.mm x h may replaceM L (ECH) as the local earthquake magnitude scale for the eastern six provinces, yet retaining the level ofM L (ECH). The scalemm x h is 0.36 magnitude units higher thanM L (SC) for southern California. By comparingRm a x (Δ) withR 3 (Δ) of Yunnan, it is found that the γ-value ofMAX phase of about 1 section in Yunnan region is half as large as that in the eastern six provinces of China. Observation indicates thatmm x hmb for magnitude 4–5. It follows therefore thatmb (ECH)≈mb (WUS). This is supported by the result that the attenuation coefficient, the γ-value in eastern China is the same as in western United States.  相似文献   

12.
本文基于匹配滤波技术,通过SEPD(Seismic Events and Phase Detection)对2018年11月25日新疆博乐MS4.9地震序列进行检测,检测出遗漏地震32条,84.4%地震为ML0.0—1.0,9.4%地震小于ML0.0,较地震目录中原有15条地震多213%,检测出的遗漏地震事件使地震目录更加完整。检测后的最小完整性震级由检测前的ML1.6减至ML0.8,地震目录最小完整性震级的减小有利于地震工作者对区域地震活动性作出更准确全面的结论,并使地震危险性分析更可靠。  相似文献   

13.
2022年1月8日青海省海北州门源县发生MS6.9地震,震中距离2016年1月21日门源MS6.4地震震中约33km,两次门源地震均发生在冷龙岭断裂附近,但在震源机制、主发震断层破裂过程及地震序列余震活动等方面显著不同。针对两次门源地震序列的比较分析,对研究冷龙岭断裂及其附近区域强震序列和余震衰减特征等具有重要研究意义。通过对比分析2022年门源MS6.9地震和2016年门源MS6.4地震余震的时空演化特征,发现二者在震源过程和断层破裂尺度上存在明显差异,前者发震断层破裂充分,震后能量释放充分,余震丰富且震级偏高;而后者发震断层未破裂至地表,余震震级水平偏低。综合分析两次门源地震序列表现出来的差异性,认为其可能与地震发震断层的破裂过程密切相关,且同时受到区域构造环境的影响。  相似文献   

14.
The use of regional attenuation in computing the local magnitude, ML, from strong motion data gathered at distances less than 100 km may lead to systematic underestimates approaching 0·5 magnitude units (Trifunac & Herak, Soil Dynamics and Earthquake Engineering, 1992, 18, 229-41). The use of the attenuation law Att(Δ), for example, with synthetic estimates of Wood-Anderson seismometer response, during the Loma Preita earthquake, leads to estimates of ML which agree with the surface wave and moment magnitudes, and which are essentially distance-independent.  相似文献   

15.
We re-examine the utility of teleseismic seismic complexity discriminants in a multivariate setting using United Kingdom array data. We measure a complexity discriminant taken on array beams by simply taking the logarithm of the ratio of the P-wave coda signal to that of the first arriving direct P wave (βCF). The single station complexity discriminant shows marginal performance with shallow earthquakes having more complex signatures than those from explosions or deep earthquakes. Inclusion of secondary phases in the coda window can also degrade performance. However, performance improves markedly when two-station complexity discriminants are formed showing false alarm rates similar to those observed for network mbMs. This suggests that multistation complexity discriminants may ameliorate some of the problems associated with mbMs discrimination at lower magnitudes. Additionally, when complexity discriminants are combined with mbMs there is a tendency for explosions, shallow earthquakes and deep earthquakes to form three distinct populations. Thus, complexity discriminants may follow a logic that is similar to mbMs in terms of the separation of shallow earthquakes from nuclear explosions, although the underlying physics of the two discriminants is significantly different.  相似文献   

16.
Since 1979 the repeated observations and experiments of geomagnetic total intensity and vertical component have been carried out for ten years in the geomagetic network which is located in Jiangsu Province, China. Three earthquakes aboveM s 5.0 occurred during the decade, and some seismomagnetic effects were observed. The observation results show that the anomalies of the vertical geomagnetic component can’t be observed untill some months before the earthquake (M s>5.0) in this area. In this paper it is suggested that a densely distributed network for continuous observation of geomagnetic vertical component may catch seismomagnetic anomalies and thus improve earthquake prediction in the light of the geomagnetic measurements of the mid — or — low latitude locations. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 80–87, 1991. This study is sponsored by the Chinese Joint Seismological Science Foundation.  相似文献   

17.
Introduction Gutenberg (1945a, b) introduced body wave magnitude based on P, PP and S waves (with a period of 0.5~12.0 s) of teleseismic events. Body wave magnitude includes mb determined with short-period seismograph and mB determined with middle- and long-period seismographs. Some-times it is written as m, which is referred to as unified earthquake magnitude. mb represents earth-quake magnitude measured with body wave amplitude around 1 s, while mB represents earthquake magnitude measured …  相似文献   

18.
2017年8月8日青藏高原东缘四川九寨沟地区发生7.0级强震,依据前人研究结果分析九寨沟7.0级地震发震构造,并计算震前应力状态。结果显示:本次地震受到构造和历史强震的影响,是发生在历史强震引起的应力加载区域。另外,采用中国地震台网1990年以来的地震目录,在评估目录完整性的基础上,利用最大似然法计算得到2017年8月8日九寨沟7.0级地震前震源区及邻区地震b值空间图像。结果显示,九寨沟7.0级地震发生在四川北部地区显著低b值高应力异常区域内部(0.82b0.75)。所以,研究区域内外历史强震可能促进了九寨沟7.0级地震的发生。  相似文献   

19.
The time-space distribution characteristics of fault deformation anomaly in the near-source region and its outlying zone in the seismogenic process of the Jingtai M s=5.9 earthquake occurred on June 6, 2000 in Gansu Province is studied preliminarily. The distribution scope of fault deformation anomaly before the earthquake is wide, the anomaly shape is complicated and the pattern anomalous zone of fault deformation (strain) information index is obvious. The shape and amplitude of fault deformation anomaly in different regions differ significantly, which is closely related with the tectonic location of anomaly. The fault deformation anomaly of α, β, and γ phases along the western segment of Haiyuan fault zone shows the process from the quasi-linearity to non-linearity of fault movement in the near-source region, matches the high-value anomalous area of fault deformation (strain) information index, and reflects the high strain accumulation in the seismogenic region. However, the anomaly of abrupt jump and cusp with a large amplitude occurred in the areas far from the earthquake, such as Liupanshan fault zone which is the tectonic convergent section does not reflect the strain accumulation of its location, maybe it is a sign that the regional tectonic stress field is strengthened in the seismogenic process. Based on the above-mentioned facts and combined with the preliminary summary of experiences and lessons in the intermediate and short-term prediction of the Jingtai M s=5.9 earthquake, we study and explore the application of fault deformation anomaly to earthquake judgment. Foundation item: National Key Basic Research Development Program (G1998040703 and G1998040705), and State Scientific and Technological Project of the “Ninth Five-Year Plan” (96-913-09-01-02-03 and 96-913-09-02-02-03), China.  相似文献   

20.
We use 576 earthquakes of magnitude, M w, 3.3 to 6.8 that occurred within the region 33° N–42.5° N, 19° E–30° E in the time period 1969 to 2007 to investigate the stability of the relation between moment magnitude, M w, and local magnitude, M L, for earthquakes in Greece and the surrounding regions. We compare M w to M L as reported in the monthly bulletins of the National Observatory of Athens (NOA) and to M L as reported in the bulletins of the Seismological Station of the Aristotle University of Thessaloniki. All earthquakes have been analyzed through regional or teleseismic waveform inversion, to obtain M w, and have measured maximum trace amplitudes on the Wood–Anderson seismograph in Athens, which has been in operation since 1964. We show that the Athens Wood–Anderson seismograph performance has changed through time, affecting the computed by NOA M L by at least 0.1 magnitude units. Specifically, since the beginning of 1996, its east–west component has been recording systematically much larger amplitudes compared to the north–south component. From the comparison between M w and M L reported by Thessaloniki, we also show that the performance of the sensors has changed several times through time, affecting the calculated M L’s. We propose scaling relations to convert the M L values reported from the two centers to M w. The procedures followed here can be applied to other regions as well to examine the stability of magnitude calculations through time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号