首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Petroleum liquids, referred to as light non‐aqueous phase liquids (LNAPLs), are commonly found beneath petroleum facilities. Concerns with LNAPLs include migration into clean soils, migration beyond property boundaries, and discharges to surface water. Single‐well tracer dilution techniques were used to measure LNAPL fluxes through 50 wells at 7 field sites. A hydrophobic tracer was mixed into LNAPL in a well. Intensities of fluorescence associated with the tracer were measured over time using a spectrometer and a fiber optic cable. LNAPL fluxes were estimated using observed changes in the tracer concentrations over time. Measured LNAPL fluxes range from 0.006 to 2.6 m/year with a mean and median of 0.15 and 0.064 m/year, respectively. Measured LNAPL fluxes are two to four orders of magnitude smaller than a common groundwater flux of 30 m/year. Relationships between LNAPL fluxes and possible governing parameters were evaluated. Observed LNAPL fluxes are largely independent of LNAPL thickness in wells. Natural losses of LNAPL through dissolution, evaporation, and subsequent biodegradation, were estimated using a simple mass balance, measured LNAPL fluxes in wells, and an assumed stable LNAPL extent. The mean and median of the calculated loss rates were found to be 24.0 and 5.0 m3/ha/year, respectively. Mean and median losses are similar to values reported by others. Coupling observed LNAPL fluxes to observed rates of natural LNAPL depletion suggests that natural losses of LNAPL may be an important parameter controlling the overall extent of LNAPL bodies.  相似文献   

2.
Measurement of LNAPL flow using single-well tracer dilution techniques   总被引:1,自引:0,他引:1  
Sale T  Taylor GR  Iltis G  Lyverse M 《Ground water》2007,45(5):569-578
This paper describes the use of single-well tracer dilution techniques to resolve the rate of light nonaqueous phase liquid (LNAPL) flow through wells and the adjacent geologic formation. Laboratory studies are presented in which a fluorescing tracer is added to LNAPL in wells. An in-well mixer keeps the tracer well mixed in the LNAPL. Tracer concentrations in LNAPL are measured through time using a fiber optic cable and a spectrometer. Results indicate that the rate of tracer depletion is proportional to the rate of LNAPL flow through the well and the adjacent formation. Tracer dilution methods are demonstrated for vertically averaged LNAPL Darcy velocities of 0.00048 to 0.11 m/d and LNAPL thicknesses of 9 to 24 cm. Over the range of conditions studied, results agree closely with steady-state LNAPL flow rates imposed by pumping. A key parameter for estimating LNAPL flow rates in the formation is the flow convergence factor alpha. Measured convergence factors for 0.030-inch wire wrap, 0.030-inch-slotted polyvinyl chloride (PVC), and 0.010-inch-slotted PVC are 1.7, 0.91, and 0.79, respectively. In addition, methods for using tracer dilution data to determine formation transmissivity to LNAPL are presented. Results suggest that single-well tracer dilution techniques are a viable approach for measuring in situ LNAPL flow and formation transmissivity to LNAPL.  相似文献   

3.
Light nonaqueous phase liquid (LNAPL) tracer testing is a technique used to directly measure LNAPL flow in situ and evaluate LNAPL mobility and recoverability. The test method consists of adding a fluorescent oil‐soluble tracer to LNAPL within a well, isolating small volumes of LNAPL with known tracer concentrations for use as in‐well calibration standards, and measuring the rate of tracer concentration decline in the well over time. The test measures LNAPL flux through the well, which is directly related to LNAPL mobility and recoverability in the surrounding formation. Test results for a total of 29 wells at five sites are presented. Results from LNAPL tracer testing were comparable to results obtained through other methods, and the method offers a time‐averaged result measured over a relatively long period, in ambient conditions, and reflects the influences of heterogeneity and hydraulic changes. In some cases, tracer concentration decline followed unexpected patterns, and these data have led to a better understanding of test assumptions, mechanisms influencing tracer distribution, and options to improve test execution and data interpretation. Method improvements developed over the course of the field studies included refinement of pre‐test screening of LNAPL fluorescence and improvements to measurement equipment. Overall, the field studies confirmed the technical validity and usefulness of the LNAPL tracing technique to support LNAPL mobility and recoverability assessments.  相似文献   

4.
This article explores the hypothesis that natural losses of light nonaqueous phase liquids (LNAPLs) through dissolution and evaporation can control the overall extent of LNAPL bodies and LNAPL fluxes observed within LNAPL bodies. First, a proof‐of‐concept sand tank experiment is presented. An LNAPL (methyl tert‐butyl ether) was injected into a sand tank at five constant injection rates that were increased stepwise. Initially, for each injection rate the LNAPL bodies expanded quickly. With time the rate of expansion of the LNAPL bodies slowed and at extended times the extent of the LNAPL became constant. Attainment of a stable LNAPL extent is attributed to rates of LNAPL addition being equal to rates of LNAPL losses through dissolution and evaporation. Secondly, analytical solutions are developed to extrapolate the processes observed in the proof‐of‐concept experiment to dimensions and time frames that are consistent with field‐scale LNAPL bodies. Three LNAPL body geometries that are representative of common field conditions are considered including one‐dimensional, circular, and oblong shapes. Using idealized conditions, the solutions describe volumetric LNAPL fluxes as a function of position in LNAPL bodies and the overall extent of LNAPL bodies as a function of time. Results from both the proof‐of‐concept experiment and the mathematical developments illustrate that natural losses of LNAPL can play an important role in governing LNAPL fluxes within LNAPL bodies and the overall extent of LNAPL bodies.  相似文献   

5.
Electro-osmosis (EO), the movement of water through porous media in response to an electric field, offers a means for extracting contaminated ground water from fine-grained sediments, such as clays, that are not easily amenable to conventional pump-and-treat approaches. The EO-induced water flux is proportional to the voltage gradient in a manner analogous to the flux dependence on the hydraulic gradient under Darcy's law. The proportionality constant, the soil electro-osmotic conductivity or keo, is most easily measured in soil cores using bench-top tests, where flow is one-dimensional and interfering effects attributable to Darcy's law can be directly accounted for. In contrast, quantification of EO fluxes and keo in the field under deployment conditions can be difficult because electrodes are placed in ground water wells that may be screened across a heterogeneous mixture of lithologies. As a result, EO-induced water fluxes constitute an approximate radial flow system that is superimposed upon a Darcy flow regime through permeable pathways that may or may not be coupled with hydraulic head differences created by the EO-induced water fluxes. A single well comparative tracer test, which indirectly measures EO fluxes by comparing wellbore tracer dilution rates between background and EO-induced water fluxes, may provide a means for routinely quantifying the efficacy of EO systems in such settings. EO fluxes measured in field tests through this technique at a ground water contamination site were used to estimate a mean keo value through a semianalytic line source model of the electric field. The resulting estimate agrees well with values reported in the literature and with values obtained with bench-top tests conducted on a soil core collected in the test area.  相似文献   

6.
To better understand the groundwater resources of southern Nye County, Nevada, a multipart distributed thermal perturbation sensing (DTPS) test was performed on a complex of three wells. These wells penetrate an alluvial aquifer that drains the Nevada National Security Site, and characterizing the hydraulic properties and flow paths of the regional groundwater flow system has proven very difficult. The well complex comprised one pumping well and two observation wells, both located 18 m from the pumping well. Using fiber‐optic cables and line heaters, DTPS tests were performed under both stressed and unstressed conditions. Each test injects heat into the water column over a period of one to two days, and observes the rising temperature during heat injection and falling temperatures after heating ceases. Aquifer thermal properties are inferred from temperature patterns in the cased section of the wells, and fluxes through the 30‐m screened section are estimated based on a model that incorporates conductive and advective heat fluxes. Vertical variations in flux are examined on a scale of tens of cm. The actively flowing zones of the aquifer change between the stressed and unstressed test, and anisotropy in the aquifer permeability is apparent from the changing fluxes between tests. The fluxes inferred from the DTPS tests are compared to solute tracer tests previously performed on the same site. The DTPS‐based fluxes are consistent with the fastest solute transport observed in the tracer test, but appear to overestimate the mean flux through the system.  相似文献   

7.
The objective of this study was to investigate whether 222Rn in groundwater can be used as a tracer for light non‐aqueous phase liquid (LNAPL) quantification at a field site treated by dual‐phase LNAPL removal. After the break of a pipeline, 5 ha of soil in the nature reserve Coussouls de Crau in southern France was contaminated by 5100 m3 of crude oil. Part of this oil seeped into the underlying gravel aquifer and formed a floating oil body of about 3.9 ha. The remediation consists of plume management by hydraulic groundwater barriers and LNAPL extraction in the source zone. 222Rn measurements were performed in 21 wells in and outside the source zone during 15 months. In uncontaminated groundwater, the radon activity was relatively constant and remained always >11 Bq/L. The variability of radon activity measurements in wells affected by the pump‐and‐skim system was consistent with the measurements in wells that were not impacted by the system. The mean activities in wells in the source zone were, in general, significantly lower than in wells upgradient of the source zone, owing to partitioning of 222Rn into the oil phase. The lowest activities were found in zones with high non‐aqueous phase liquid (NAPL) recovery. LNAPL saturations around each recovery well were furthermore calculated during a period of high groundwater level, using a laboratory‐determined crude oil–water partitioning coefficient of 38.5 ± 2.9. This yielded an estimated volume of residual crude oil of 309 ± 93 m3 below the capillary fringe. We find that 222Rn is a useful and cheap groundwater tracer for finding zones of good LNAPL recovery in an aquifer treated by dual‐phase LNAPL removal, but that quantification of NAPL saturation using Rn is highly uncertain.  相似文献   

8.
Exposure from groundwater contamination to aquatic receptors residing in receiving surface water is dependent upon the rate of contaminated groundwater discharge. Characterization of groundwater fluxes is challenging, especially in coastal environments where tidal fluctuations result in transient groundwater flows towards these receptors. This can also be further complicated by the high spatial heterogeneity of subsurface deposits enhanced by anthropogenic influences such as the mixing of natural sediments and backfill materials, the presence of subsurface built structures such as sheet pile walls or even occurrence of other sources of contaminant discharge. In this study, the finite volume point dilution method (FVPDM) was successfully used to characterize highly transient groundwater flows and contaminant mass fluxes within a coastal groundwater flow system influenced by marked tides. FVPDM tests were undertaken continuously for more than 48 h at six groundwater monitoring wells, in order to evaluate groundwater flow dynamics during several tide cycles. Contaminant concentrations were measured simultaneously which allowed calculating contaminant mass fluxes. The study highlighted the importance of the aquifer heterogeneity, with groundwater fluxes ranging from 10−7 to 10−3 m/s. Groundwater flux monitoring enabled a significant refinement of the conceptual site model, including the fact that inversion of groundwater fluxes was not observed at high tide. Results indicated that contaminant mass fluxes were particularly higher at a specific monitoring well, by more than three orders of magnitude, than at other wells of the investigated aquifer. This study provided crucial information for optimizing further field investigations and risk mitigation measures.  相似文献   

9.
Forced-gradient tracer tests in fractured aquifers often report low mass recoveries. In fractured aquifers, fractures intersected by one borehole may not be intersected by another. As a result (1) injected tracer can follow pathways away from the withdrawal well causing low mass recovery and (2) recovered water can follow pathways not connected to the injection well causing significant tracer dilution. These two effects occur along with other forms of apparent mass loss. If the strength of the connection between wells and the amount of dilution can be predicted ahead of time, tracer tests can be designed to optimize mass recovery and dilution. A technique is developed to use hydraulic tests in fractured aquifers to calculate the conductance (strength of connection) between well pairs and to predict mass recovery and amount of dilution during forced gradient tracer tests. Flow is considered to take place through conduits, which connect the wells to each other and to distant sources or sinks. Mass recovery is related to the proportion of flow leaving the injection well and arriving at the withdrawal well, and dilution is related to the proportion of the flow from the withdrawal well that is derived from the injection well. The technique can be used to choose well pairs for tracer tests, what injection and withdrawal rates to use, and which direction to establish the hydraulic gradient to maximize mass recovery and/or minimize dilution. The method is applied to several tracer tests in fractured aquifers in the Clare Valley, South Australia.  相似文献   

10.
Based on a dye tracer experiment in a sand tank we addressed the problem of local dispersion of conservative tracers in the unsaturated zone. The sand bedding was designed to have a defined spatial heterogeneity with a strong anisotropy. We estimated the parameters that characterize the local dispersion and dilution from concentration maps of a high spatial and temporal resolution obtained by image analysis. The plume spreading and mixing behavior was quantified on the basis of the coefficient of variation of the concentration and of the dilution index. The heterogeneous structure modified the flow pattern depending on water saturation. The shape of the tracer plumes revealed the structural signature of the sand bedding at low saturation only. In this case pronounced preferential flow was observed. At higher flow rates the structure remained hidden by a spatially almost homogeneous behavior of the plumes. In this context, we mainly discuss the mechanism of re-distributing a finite mass of inert solutes over a large volume, due to macro- and micro-heterogeneities of the structure.  相似文献   

11.
In this work, numerical modeling is used to evaluate and interpret a series of detailed and well‐controlled two‐dimensional bench‐scale conservative tracer tank experiments performed to investigate transverse mixing in porous media. The porous medium used consists of a fine matrix and a more permeable lens vertically aligned with the tracer source and the flow direction. A sensitivity analysis shows that the tracer distribution after passing the lens is only slightly sensitive to variations in transverse dispersivity, but strongly sensitive to the contrast of hydraulic conductivities. A unique parameter set could be calibrated to closely fit the experimental observations. On the basis of calibrated and validated model, synthetic experiments with different contrasts in hydraulic conductivity and more complex setups were performed and the efficiency of mixing evaluated. Flux‐related dilution indices derived from these simulations show that the contrasts in hydraulic conductivity between matrix and high‐permeable lenses as well as the spatial configuration of tracer plumes and lenses dominate mixing, rather than the actual pore scale dispersivities. These results indicate that local material distributions, the magnitude of permeability contrasts, and their spatial and scale relation to solute plumes are more important for macro‐scale transverse dispersion than the micro‐scale dispersivities of individual materials. Local material characterization by thorough site investigation hence is of utmost importance for the evaluation of mixing‐influenced or ‐governed problems in groundwater, such as tracer test evaluation or an assessment of contaminant natural attenuation.  相似文献   

12.
A new in‐situ remediation concept termed a Horizontal Reactive Media Treatment Well (HRX Well®) is presented that utilizes horizontal wells filled with reactive media to passively treat contaminated groundwater in‐situ. The approach involves the use of large‐diameter directionally drilled horizontal wells filled with granular reactive media generally installed parallel to the direction of groundwater flow. The design leverages natural “flow‐focusing” behavior induced by the high in‐well hydraulic conductivity of the reactive media relative to the aquifer hydraulic conductivity to passively capture and treat proportionally large volumes of groundwater within the well. Clean groundwater then exits the horizontal well along its downgradient sections. Many different types of solid granular reactive media are already available (e.g., zero valent iron, activated carbon, ion exchange resins, zeolite, apatite, chitin); therefore, this concept could be used to address a wide range of contaminants. Three‐dimensional flow and transport simulations were completed to assess the general hydraulic performance, capture zones, residence times, effects of aquifer heterogeneity, and treatment effectiveness of the concept. The results demonstrate that capture and treatment widths of up to tens of feet can be achieved for many aquifer settings, and that reductions in downgradient concentrations and contaminant mass flux are nearly immediate. For a representative example, the predicted treatment zone width for the HRX Well is approximately 27 to 44 feet, and contaminant concentrations immediately downgradient of the HRX Well decreased an order of magnitude within 10 days. A series of laboratory‐scale physical tests (i.e., tank tests) were completed that further demonstrate the concept and confirm model prediction performance. For example, the breakthrough time, peak concentration and total mass recovery of methylene blue (reactive tracer) was about 2, 35, and 20 times (respectively) less than chloride (conservative tracer) at the outlet of the tank‐scale HRX Well.  相似文献   

13.
Study of the mobility of contaminants in an aquifer is an important issue for the proper remediation of contaminated groundwater. Determination of associated solute transport parameters therefore is essential for investigation of the extent to which groundwater can be contaminated. This study aimed at determining solute transport parameters for an unconfined sandy aquifer at a laboratory scale through various tracer tests using a conservative solute as a tracer. Tracer tests consisted of both well‐tracer tests (single and double wells) and an aquifer tracer test using a plume‐capturing device such as time domain reflectometry (TDR). The results showed that longitudinal dispersivities estimated from the single and double well‐tracer tests were 2·2 cm and 13·5 cm for a travel distance of 9·3 cm and 13·5 cm from the injection point respectively. These results agreed reasonably well with the results of the aquifer tracer test. The solute transport parameters obtained at multiple points in the aquifer through the aquifer tracer test revealed that the dispersivity length was proportional to the travel distance by a factor of 0·3, which was moderately higher than the value of 0·1 given in the literature. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

14.
A field tracer test was carried out in a light nonaqueous phase liquid (LNAPL) source zone using a well pattern consisting of one injection well surrounded by four extraction wells (5‐spot well pattern). Multilevel sampling was carried out in two observation wells located inside the test cell characterized by heterogeneous lithology. Tracer breakthrough curves showed relatively uniform flow within soil layers. A numerical flow and solute transport model was calibrated on hydraulic heads and tracer breakthrough curves. The model was used to estimate an average accessible porosity of 0.115 for the swept zone and an average longitudinal dispersivity of 0.55 m. The model was further used to optimize the relative effects of viscous forces versus capillary forces under realistic imposed hydraulic gradients and to establish optimal surfactant solution properties. Maximum capillary number (NCa) values between injection and extraction wells were obtained for an injection flow rate of 16 L/min, a total extraction flow rate of 20 L/min, and a surfactant solution with a viscosity of 0.005 Pa?s. The unconfined nature of the aquifer limited further flow rate or viscosity increases that would have led to unrealistic hydraulic gradients. An NCa range of 3.8 × 10?4 to 7.6 × 10?3 was obtained depending on the magnitude of the simulated LNAPL‐water interfacial tension reduction. Finally, surfactant and chase water slug sizing was optimized with a radial form of the simplified Ogata‐Banks analytical solution (Ogata and Banks 1961) so that injected concentrations could be maintained in the entire 5‐spot cell.  相似文献   

15.
Groundwater monitoring wells are present at most hydrocarbon release sites that are being assessed for cleanup. If screened across the vadose zone, these wells provide an opportunity to collect vapor samples that can be used in the evaluation of vapor movement and biodegradation processes occurring at such sites. This paper presents a low purge volume method (modified after that developed by the U.S. EPA) for sampling vapor from monitoring wells that is easy to implement and can provide an assessment of the soil gas total petroleum hydrocarbon (TPH) and O2 concentrations at the base of the vadose zone. As a result, the small purge method allows for sampling of vapor from monitoring wells to support petroleum vapor intrusion (PVI) risk assessment. The small purge volume method was field tested at the Hal's service station site in Green River, Utah. This site is well‐known for numerous soil gas measurements containing high O2 and high TPH vapor concentrations in the same samples which is inconsistent with well‐accepted biodegradation models for the vapor pathway. Using the low purge volume method, monitoring wells were sampled over, upgradient, and downgradient of the light nonaqueous phase liquid (LNAPL) footprint. Results from our testing at Hal's show that vapor from monitoring wells over LNAPL contained very low O2 and high TPH concentrations. In contrast, vapor from monitoring wells not over LNAPL contained high O2 and low TPH concentrations. The results of this study show that a low purge volume method is consistent with biodegradation models especially for sampling at sites where low permeability soils exist in and around a LNAPL source zone.  相似文献   

16.
The present study proposes a methodology for predicting the vertical light nonaqueous-phase liquids (LNAPLs) distribution within an aquifer by considering the influence of water table fluctuations. The LNAPL distribution is predicted by combining (1) information on air/LNAPL and LNAPL/water interface elevations with (2) the initial elevation of the water table without LNAPL effect. Data used in the present study were collected during groundwater monitoring undertaken over a period of 4 months at a LNAPL-impacted observation well. In this study, the water table fluctuations raised the free LNAPL in the subsurface to an elevation of 206.63 m, while the lowest elevation was 205.70 m, forming a thickness of 0.93 m of LNAPL-impacted soil. Results show that the apparent LNAPL thickness in the observation well is found to be three times greater than the actual free LNAPL thickness in soil; a finding that agrees with previous studies reporting that apparent LNAPL thickness in observation wells typically exceeds the free LNAPL thickness within soil by a factor estimated to range between 2 and 10. The present study provides insights concerning the transient variation of LNAPL distribution within the subsurface and highlights the capability of the proposed methodology to mathematically predict the actual LNAPL thickness in the subsurface, without the need to conduct laborious field tests. Practitioners can use the proposed methodology to determine by how much the water table should be lowered, through pumping, to isolate the LNAPL-impacted soil within the unsaturated zone, which can then be subjected to in situ vadose zone remedial treatment.  相似文献   

17.
A recent analytical model predicts free, entrapped, and residual LNAPL saturations and the LNAPL transmissivity in the subsurface from current and historic fluid levels in groundwater wells. As such, the model accounts for effects of fluid level fluctuations in a well. The model was developed to predict LNAPL specific volumes and transmissivities from current fluid level measurements in wells and either recorded historic fluid level fluctuations in wells or estimates. An assumption is made in the model that the predictions are not dependent on whether the historic highest or lowest fluid level elevations in a well occur first. To test the assumption, we conduct two simulations with a modified multiphase flow numerical code TMVOC that incorporates relative permeability‐saturation‐capillary head relations employed in the model. In one simulation, the initial condition is for fluid levels in a well at the historic highest elevations. In the other simulation, the initial condition is for fluid levels in a well at the historic lowest elevations. We change the boundary conditions so both historical conditions occur followed by generating the current condition. Results from the numerical simulations are compared to model predictions and show the assumption in the analytical model is reasonable. The analytical model can be used to develop/refine conceptual site models and for assessing potential LNAPL recovery endpoints, especially on sites with fluctuating fluid levels in wells.  相似文献   

18.
Characterization of a multilayer aquifer using open well dilution tests   总被引:1,自引:0,他引:1  
West LJ  Odling NE 《Ground water》2007,45(1):74-84
An approach to characterization of multilayer aquifer systems using open well borehole dilution is described. The approach involves measuring observation well flow velocities while a nearby extraction well is pumped by introducing a saline tracer into observation wells and collecting dilution vs. depth profiles. Inspection of tracer profile evolution allows discrete permeable layers within the aquifer to be identified. Dilution profiles for well sections between permeable layers are then converted into vertical borehole flow velocities and their evolution, using an analytic solution to the advection-dispersion equation applied to borehole flow. The dilution approach is potentially able to measure much smaller flow velocities that would be detectable using flowmeters. Vertical flow velocity data from the observation wells are then matched to those generated using a hydraulic model of the aquifer system, "shorted" by the observation wells, to yield the hydraulic properties of the constituent layers. Observation well flow monitoring of pumping tests represents a cost-effective alternative or preliminary approach to pump testing each layer of a multilayer aquifer system separately using straddle packers or screened wells and requires no prior knowledge of permeable layer depths and thicknesses. The modification described here, of using tracer dilution rather than flowmeter logging to obtain well flow velocities, allows the approach to be extended to greater well separations, thus characterizing a larger volume of the aquifer. An example of the application of this approach to a multilayer Chalk Aquifer in Yorkshire, Northeast England, is presented.  相似文献   

19.
Small‐scale point velocity probe (PVP)‐derived velocities were compared to conventional large‐scale velocity estimates from Darcy calculations and tracer tests, and the possibility of upscaling PVP data to match the other velocity estimates was evaluated. Hydraulic conductivity was estimated from grain‐size data derived from cores, and single‐well response testing or slug tests of onsite wells. Horizontal hydraulic gradients were calculated using 3‐point estimators from all of the wells within an extensive monitoring network, as well as by representing the water table as a single best fit plane through the entire network. Velocities determined from PVP testing were generally consistent in magnitude with those from depth specific data collected from multilevel monitoring locations in the tracer test, and similar in horizontal flow direction to the average hydraulic gradient. However, scaling up velocity estimates based on PVP measurements for comparison with site‐wide Darcy‐based velocities revealed issues that challenge the use of Darcy calculations as a generally applicable standard for comparison. The Darcy calculations were shown to underestimate the groundwater velocities determined both by the PVPs and large‐scale tracer testing, in a depth‐specific sense and as a site‐wide average. Some of this discrepancy is attributable to the selective placement of the PVPs in the aquifer. Nevertheless, this result has important implications for the design of in situ treatment systems. It is concluded that Darcy estimations of velocity should be supplemented with independent assessments for these kinds of applications.  相似文献   

20.
We study erosion depth and sediment fluxes for wave-induced sheet-flow, and their dependency on grain size and streaming. Hereto, we adopt a continuous two-phase model, applied before to simulate sheet-flow of medium and coarse sized sand. To make the model applicable to a wider range of sizes including fine sand, it appears necessary to adapt the turbulence closure of the model. With an adapted formulation for grain–carrier flow turbulence interaction, good reproductions of measured erosion depth of fine, medium and coarse sized sand beds are obtained. Also concentration and velocity profiles at various phases of the wave are reproduced well by the model. Comparison of sediment flux profiles from simulations for horizontally uniform oscillatory flow as in flow tunnels and for horizontally non-uniform flow as under free surface waves, shows that especially for fine sand onshore fluxes inside the sheet-flow layer increase under influence of progressive wave effects. This includes both the current-related and the wave-related contribution to the period-averaged sheet-flow sediment flux. The simulation results are consistent with trends for fine and medium sized sediment flux profiles observed from tunnel and flume experiments. This study shows that the present two-phase model is a valuable instrument for further study and parameterization of sheet-flow layer processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号