首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Luna 20 soil 22003,1 (250–500 μ) is similar to Apollo 16 soil 61501,47 (250–500 μ) in terms of the percentage of different types of particles. However, among the lithic fragments, the Apollo 16 sample contains a greater percentage of fragments with more than 70 wt. % modal plagioclase and a significantly greater proportion of KREEP-rich particles. Modal analyses of non-mare lithic fragments in Luna 20 and Apollo 11, 14, 15 and 16 indicate that the KREEP-poor highland regions (the bulk of the lunar terrae), though relatively feldspathic, are compositionally inhomogeneous, ranging in plagioclase content from approximately 35 to 100 wt. %. The average plagioclase content lies in the range 45–70 wt.%. Luna 20 pyroxene analyses cluster in two groups, one more magnesian than the other. The groups persist when pyroxene analyses from KREEP-poor noritic, troctolitic and anorthositic lithic fragments from Apollo 11, 14, 15 and 16 and Luna 20 are included. Olivine compositions mimic these pyroxene groups.Within each pyroxene group Cr2O3 and TiO2 decrease as Fe(Fe + Mg) increases, suggesting a relationship by fractional crystallization. The two groups suggest that at least two magma compositions were involved. To account for these observations we envisage a Moon-wide magma system in which initial accretionary heterogeneities were imperfectly erased by diffusion and convection. During the cooling of this magma system fractional crystallization was effected by the flotation of plagioclase and sinking of pyroxene, olivine and perhaps ilmenite. The endproduct was an upper layer enriched in plagioclase and a lower layer enriched in mafic silicates. KREEP-rich rocks, which are predominantly noritic in major element composition, may be mechanical mixtures of KREEP-poor norite and material residual after fractional crystallization of the surface magma system.  相似文献   

2.
Fragments of igneous rocks, glasses and minerals comprise 25 per cent of the studied sample of the Luna 20 soil. Basalt fragments in the Luna 20 soil are similar to basalts from the mare regions of the Moon—in that they are characterized by the presence of iron-rich olivines and pyroxenes. On the basis of the FeO contents of plagioclases, it appears possible to distinguish between the plagioclase of the mare and highland regions of the Moon. Other igneous rock fragments are anorthosite, gabbroic anorthosite and anorthositic gabbro. The most abundant rock type (75 per cent of the sample) is microbreceia. One third of the fragments of microbreccia have undergone thermal metamorphism resulting in the homogenization of phases and the development of poikioblastic and hornfelsic textures. Excluding the basalt fragments, the dominant minerals in the Luna 20 soil are anorthite (An93–98), magnesium-rich orthopyroxenes, intermediate clinopyroxenes and olivine (< Fa50). Chemically, the Luna 20 and Apollo 16 soil samples are similar, but the Luna 20 soil is slightly depleted in aluminum and calcium and enriched in iron and magnesium relative to the Apollo 16 soils. The slight difference in bulk chemistry of the two soils may be a result of the presence of a minor amount of mare material in the Luna 20 soil and its apparent absence in the Apollo 16 soils.  相似文献   

3.
Microscopic and electron microprobe studies were made of polished thin sections of part of a 30-mg sample of 250–500 μm lunar soil returned by Luna 20 from a point between Mare Fecunditatis and Mare Crisium. Very fine-grained lithic (crystalline) rock fragments, composing about one fifth of the total sample, have mineralogical compositions equivalent to various types of gabbro, anorthositic gabbro, gabbroic anorthosite and troctolite, with minor basalt. The textures now observed in these fragments are in large part metamorphic. Twentyseven electron microprobe analyses of minerals from these fragments are presented, including olivine, plagioclase, pyroxene, spinel, nickel-iron and a Zr-Ti-REE mineral possibly similar to ‘phase B’ of Lovering and Wark (1971). Analyses of seven melt inclusions and twenty-eight defocused beam analyses of lithic fragments are also given. Some of the fragments contain ‘gas’ inclusions which, along with the fine grain size, are believed to indicate final crystallization under low pressure near surface conditions. The almost complete absence of granophyric material in this sample raises the question of whether or not there are at least two distinct magmas for the plagioclase-rich terrae rocks from which this soil sample was derived in part.  相似文献   

4.
Fines from a Luna 20 soil sample and from three Apollo 16 deep drill core samples have been analyzed for major-minor element abundances by a combined, semi-micro atomic absorption spectrophotometric and colorimetric method. Both the major element and large ion lithophile trace element abundances in these soils, the first from interior highland sites, are greatly influenced by the very high normative plagioclase content, being distinctly richer in Al and Ca, and poorer in K, P, Cr, Mn, Fe, and Ti, than most bulk soil samples from previous lunar missions. The relatively large compositional variations in the Apollo 16 core can be ascribed almost entirely to decreasing plagioclase with increasing depth. The chemical composition of the Luna 20 soil indicates less plagioclase and less KREEP than in the Apollo 16 soils. A lunar differentiation model is presented in which is made the suggestion that KREEP is the result of a second fusion event in a lunar crust consisting of early feldspathic cumulates and primary aluminous ‘liquid’.  相似文献   

5.
Two milligrams of less than 125 μm size particles from the Luna 20 soil sample (22001,17) have been examined. The results of the mineral identification and analysis verify earlier assumptions that the nature of the lunar highlands is predominantly anorthositic in composition. The presence of highly magnesian clinopyroxene, orthopyroxene and olivine suggests crystallization of Highland rocks in an ultrabasic environment. No fragments were observed that could be unequivocally assigned to mare basalt types.  相似文献   

6.
We have examined a Hawaiian palagonitic tephra sample (PN-9) that has spectroscopic similarities to Martian bright regions using a number of analytical techniques, including Mossbauer and reflectance spectroscopy, X-ray diffraction, instrumental neutron activation analysis, electron probe microanalysis, transmission electron microscopy, and dithionite-citrate-bicarbonate extraction. Chemically, PN-9 has a Hawaiitic composition with alkali (and presumably silica) loss resulting from leaching by meteoric water during palagonitization; no Ce anomaly is present in the REE pattern. Mineralogically, our results show that nanophase ferric oxide (np-Ox) particles (either nanophase hematite (np-Hm) or a mixture of ferrihydrite and np-Hm) are responsible for the distinctive ferric doublet and visible-wavelength ferric absorption edge observed in Mossbauer and reflectivity spectra, respectively, for this and other spectrally similar palagonitic samples. The np-Ox particles appear to be imbedded in a hydrated aluminosilicate matrix material; no evidence was found for phyllosilicates. Other iron-bearing phases observed are titanomagnetite, which accounts for the magnetic nature of the sample; olivine; pyroxene; and glass. By analogy, np-Ox is likely the primary pigmenting agent of the bright soils and dust of Mars.  相似文献   

7.
Abundances of 22 elements, including 9 rare earth elements (REE), have been determined by ‘monostandard’ instrumental neutron activation analysis of samples from the Luna 20 soil and in 6 rock fragments, including a crystalline rock of highland origin, a breccia of similar composition, a glass and a feldspar grain. The soil appears to have been contaminated with W and Mo. The REE content of the soil is very low, being close to 2.3 times below the level in the Luna 16 soil. Sampling errors, for most elements, are negligible in the case of analyses performed on one or several tens of mg of soil, but they become significant on crystalline rock fragments in the 1–2 mg range.  相似文献   

8.
The abundances of 24 major, minor and trace elements have been measured by INAA in Luna 20 metaigneous rocks 22006,1 and 22007,1, breccia 22004 and soil 22001,9 and in Apollo 16 soils 62281, 66041 and 66081. An additional 12 trace meteoritic and non-meteoritic elements have also been determined in 22001 and 62281 soils by RNAA. The bulk compositions of L 20 and Ap 16 rocks and soils show close similarity between the two highland sites. There are appreciable differences in bulk compositions between the L 20 highland and the L 16 mare site (120 km apart), suggesting little intermixing of rocks and soils from either site. Luna 20 rocks 22006 and 22007 are nearly identical in chemical composition to Ap 16 metaigneous rocks 61156 and 66095. Luna 20 rocks are feldspathic and are similar to low K-type Fra Mauro basalts. Such rocks and anorthositic gabbros appear to be the major components in highland soils. Luna 20 soil can be distinguished from Ap 16 soils by lower abundances of Al2O3, CaO and large ion lithophilic elements. Luna 20 breccia 22004 probably is compacted soil. All L 20 samples show negative Eu anomalies with SmEu ratios of 5.8, 7.2, 3.9 and 3.3 for rocks 22006, 22007, breccia 22004 and soil 22001, respectively. Norite-KREEP is insignificant, ≤1 per cent, at the L 20 highland site. The derivation of the L 20 soil may be explained by ≈33 per cent of L 20 metaigneous rocks and ≈ 65 per cent anorthositic gabbroic breccia rocks like 15418 (with a positive Eu anomaly) and ≈ 2 per cent meteoritic contributions. Interelement correlations observed previously for maria are also found in highland samples. Luna 20 and Ap 16 soils are low in alkalis. Both soils show an apparent Cd-Zn rich component similar to that observed at the mare sites and high 11 abundances relative to mare sites. The Ap 16 (62281) soil contains a fractionated meteoritic component (probably ancient) of ≈ 1.5 per cent in addition to ≈ 1.9 per cent Cl like material. Luna 20 soil may simply contain 1.9 per cent Cl equivalent.  相似文献   

9.
Accurate estimates of global concentrations of Th, K, and FeO have an important bearing on understanding the bulk chemistry and geologic evolution of the Moon. We present empirical ground-truth calibrations (transformations) for Lunar Prospector gamma-ray spectrometer data (K and Th) and a modified algorithm for deriving FeO concentrations from Clementine spectral reflectance data that incorporates an adjustment for TiO2 content. The average composition of soil samples for individual landing sites is used as ground-truth for remotely sensed data. Among the Apollo and Luna sites, Apollo 12 and 14 provide controls for the incompatible-element-rich compositions, Apollo 16 and Luna 20 provide controls for the feldspathic and incompatible-element-poor compositions, and Apollo 11, 15, and 17, and Luna 16 and 24 provide controls for Fe-rich compositions. In addition to these Apollo and Luna sample data we include the composition of the feldspathic lunar meteorites as a proxy for the northern farside highlands to extend the range of the calibration points, thus providing an additional anorthositic end-member composition. These empirical ground-truth calibrations for Lunar Prospector Th and K provide self consistency between the existing derived data and lunar-sample data. Clementine spectral-reflectance data are used to construct a TiO2-sensitive FeO calibration that yields higher FeO concentrations in areas of high-Fe, low-Ti, mare-basalt-rich surfaces than previous FeO algorithms. The data set so derived is consistent with known sample compositions and regolith mixing relationships.  相似文献   

10.
The results of the analysis by neutron activation of six samples from the Luna 20 mission and one sample of < 1 mm fines from Apollo 16 are reported. The concentrations of the rare-earth elements (REE) in the samples of fines from Luna 20 and Apollo 16 are less than those found for corresponding materials from the mare areas but a negative Eu anomaly is still present. The concentrations of the REE in fines from Luna 20 are only about two-thirds as great as in the sample of Apollo 16 fines, but the concentrations of Co, Sc and Cr are greater by factors ranging from 1.5 to 2.3.  相似文献   

11.
The Luna 20 soil (< 125 μm fraction) has a relatively low δO18 (5.7%.), compared to other lunar soils (5.8 to 6.3%.). This implies either a low-O18 source material or an unusually small O18 enrichment in the processes of soil formation and maturation.  相似文献   

12.
Only fine-grained rocks are present in the Luna 20 samples, and coarser grained rocks are represented by fragments of single crystals. A petrologic study has been made of 47 fine-grained crystalline rocks, microbreccias, and glassy aggregates. In addition, a total of 33 single crystals of pyroxene, plagioclase, olivine and spinel, in the size range 125 to 500 μ, have been examined using electron microprobe and single crystal X-ray diffraction techniques.The most abundant fine-grained crystalline rocks in the samples we have examined are recrystallized anorthositic norite and anorthositic troctolite. Gabbroic rocks, anorthosite, and KREEP basalt are present but not common. Most of the single crystals of pyroxene and plagioclase could have been derived from coarser grained noritic, troctolitic and anorthositic rocks. However, three of the 14 pyroxene crystals, and 2 of the 5 olivine crystals have Fe(Fe + Mg) contents greater than 0.45 and are believed to have been derived from mare basalts or related rocks. Two relatively sodic crystals of plagioclase were found. One is a crystal zoned at least over the range An85 to An63, and the second is a homogeneous crystal of albite (~An3).  相似文献   

13.
Hyperspectral reflectance is widely used for determining important properties of soil erosion. However, there have been few studies which focus on the influence of soil erosion intensity on the characteristics of hyperspectral reflectance, and such information would provide a new tool to improve quantitative understanding of soil erosion. In this study, 35 soil samples were collected from three regions with different erosion intensities in Changting County, a typical severely eroded county in the ferralic cambisol region of southern China, and classified into three groups according to different erosion controlling status. All the samples were scanned at wavelengths from 400 to 2,498 nm by an ASD Field Spec Portable Spectrometer, and the erosion intensity of each sample was calculated using the Revised Universal Soil Loss Equation. Multivariate stepwise linear regression was then employed to model the soil erosion intensity based on reflectance. The results suggested that the absorption peaks of each sample were in a similar wavelength range, while the absorption depth varied with different erosion status, and the reflectance of extremely eroded soil samples were the highest. During modelling of erosion intensity, the result was poor when all the samples were combined, but improved greatly at certain wavelength ranges when samples were classified into three groups based on different erosion controlling status. The extreme erosion group markedly outperformed the other two groups, in which the R 2 values between the actual and predicted erosion intensity were 0.67, 0.85 and 0.80 for each spectral type. The results indicated that hyperspectral reflectance is a promising method for accurately monitoring erosion intensity.  相似文献   

14.
There has been growing interest in the use of reflectance spectroscopy as a rapid and inexpensive tool for soil characterization. In this study, 53 soil samples were collected from the oasis in the Weigan and Kuqa River delta along the middle reaches of Tarim River to investigate the level of soil chemical components in relation to soil spectral. An approach combining spectral technology and multi-variant statistical analysis was used to determine the reflectance spectral features of saline soil. The spectral data was first pretreated to remove noises and absorption bands from water, which eliminated influence from instrument errors and other external background factors. Several spectral absorption features were calculated for several saline soil samples to confirm that soil at the same salinity level had similar absorption spectral properties. Secondly, a correlation relationship between reflectance spectra and salinity factors was estimated by bivariate correlation method. Fourteen salinity factors including eight major ions and soil electrical conductivity (EC), soil salt content (SSC), pH, and total dissolved solid (TDS) in the saline soil were evaluated. Datasets of the salinity factors that correlated significantly with field data measurements of reflectance rate and the corresponding spectrum data were used to construct quantitative regression models. According to the multiple linear regression analysis, SSC, SO4 2?, TDS, and EC had a correlation coefficient at 0.746, 0.908, 0.798, and 0.933 with the raw spectral data, respectively, which confirmed strong correlation between salinity factors and soil reflectance spectrum. Findings from this study will have significant impact on characterization of spectral features of saline soil in oasis in arid land.  相似文献   

15.
The concentrations of uranium, thorium and lead and the lead isotopic composition of Luna 20 soil were determined. The data indicate that the Luna 20 soil is mainly a mixture of highland anorthosites and low-K basalt, but little KREEP basalt. The U-Th-Pb systematics are discussed in comparison with other lunar soils, especially with Apollo 16 soils which were collected from a ‘typical’ highland region. The data fit well in the Apollo 16 soil array on a U-Pb evolution diagram, and they exhibit excess lead relative to uranium. This relationship appears to be a characteristic of highland localities. Considering the previous observations of lunar samples, we infer that lead enrichment in the soil relative to uranium occurred between 3.2 and 3.9 b.y. ago and that the soil was disturbed by ‘third events’ about 2.0 b.y. ago. A lunar evolution model is discussed.  相似文献   

16.
Abundances of O, Si, Al and Mn have been determined in Luna 20 fines sample 22001,9 by instrumental neutron activation analysis. The abundances of O, Si and Al are among the highest we have observed in lunar samples and reflect a highlands origin for much of this regolith sample. The Luna 20 abundances reported here most closely resemble those we have determined in four samples of two Apollo 16 fines, rock 14310, and a clast from breccia 15459. The Luna 20 OSi ratio of 1.96 ± 0.05 is similar to that in most other lunar samples, but the AlSi ratio of 0.532 ± 0.024 is exceeded only by our data on the Apollo 16 fines. This AlSi ratio is in agreement with the value of 0.55 ± 0.06 determined by the remote X-ray fluorescence experiment for the highlands between Mare Crisium and Mare Smythii which lie near the Luna 20 site (Adleret al., 1972).  相似文献   

17.
Relatively coarse-grained rims occur around all types of chondrules in type 3 carbonaceous and ordinary chondrites. Those in H-L-LL3 chondrites are composed primarily of olivine and low-Ca pyroxene; those in CV3 chondrites contain much less low-Ca pyroxene. Average grain sizes range from ~4 μm in H-L-LL3 chondrites to ~10 μm in CV3 chondrites. Such rims surround ~50%, ~10% and ≤ 1% of chondrules in CV3, H-L-LL3 and CO3 chondrites, respectively, but are rare (≤1%) around CV3 Ca,Al-rich inclusions. Rim thicknesses average ~150 μm in H-L-LL3 chondrites and ~400 μm in CV3 chondrites.The rims in H-L-LL3 chondrites are composed of material very similar to that which comprises darkzoned chondrules and recrysiallized matrix. Dark-zoned chondrules and coarse-grained rims probably formed in the solar nebula from clumps of opaque matrix material heated to sub-solidus to sub-liquidus temperatures during chondrule formation. Mechanisms capable of completely melting some material while only sintering other material require steep thermal gradients; suitable processes are lightning, reconnecting magnetic field lines and, possibly, aerodynamic drag heating.CV chondrites may have formed in a region where the chondrule formation mechanism was less efficient, probably at greater solar distances than the ordinary chondrites. The lesser efficiency of heating could be responsible for the greater abundance of coarse-grained rims around CV chondrules. Alternatively, CV chondrules may have suffered fewer particle collisions prior to agglomeration.  相似文献   

18.
Six siliceous glass spheres, five siliceous glass-bonded agglutinates and one breccia fragment from Luna 20 LRL sample number 22003 were analyzed by optical microscope, scanning electron microscope, scanning electron microprobe and energy-dispersive techniques. The data suggest that most of the glass spheres were probably derived locally by meteoritic impact processes and that most craters on their surfaces may have occurred from impacts of relatively high velocity particles in the impact-produced debris cloud while the glass sphere was at elevated temperatures. This is suggested by the nature of the craters, the partially buried fragments of plagioclase surrounded by radiating fractures and by the apparent absence of craters on the glass surfaces of the glass-bonded agglutinates. One glass sphere has a surface suggestive of a complex multiple impact origin involving liquid siliceous material and numerous siliceous spherules from 0.1 μm to 1 μm in diameter that may have formed from vaporization and condensation processes possibly in a relatively large scale meteoritic impact event.The surfaces of the siliceous glass spheres have several different types of materials. Concentration of metallic iron spherules on the surfaces of the glass spheres is generally lower than for similar Apollo 11 and 12 glass spheres. This is consistent with reduction processes being of primary importance in the formation of this metallic iron. Surface material composed only of Ca, C and O2, possibly CaCO3, is probably derived from carbonaceous chondrites. Splashes of material rich in Ca, Al, Fe, K and Cl occur. The origin of the relatively low temperature chlorine-bearing melt is unknown but it may be related to vaporization and condensation processes, possibly volcanic in nature, or possibly to partial fusion of components of carbonaceous chondrites. Siliceous surface material rich in potassium may represent either fused splash material of granitic composition or material enriched by vaporization and condensation processes.  相似文献   

19.
Luna 20 soil is remarkably similar to Apollo 16 soil, in its content of 17 mainly volatile or siderophile elements: Ag, Au, Bi, Br, Cd, Cs, Ge, In, Ir, Rb, Re, Sb, Se, Te, Tl, U, and Zn. Like other highland soils, it seems to contain an ancient meteoritic component of fractionated, volatile-poor composition. The bulk soil has a high TlCs ratio (9.4 × 10?2), similar to that in Apollo 16 soils (5.4 × 10?2), but higher than that in samples from other sites (1.1 × 10?2). It is severely contaminated with Ag, Cd, Re, and Sb, judging from a comparison with a 1.7 mg soil breccia sample from the coarse fraction of the soil.  相似文献   

20.
Luna 16 and Luna 20 samples were analyzed for volatilizable species using vacuum pyrolysis to 1400°C. The major gaseous products evolved (ranging from 10–650 μg/g) were H2O, CO, CO2, N2 and CH4. Minor components (all < 10 μg/g) included NH3, HCN, NO, SO2, H2S, C2H2, C2H4, C2H6, C3H6 and higher hydrocarbons, benzene, toluene, and the polymeric contaminants Teflon® and silicone oil. The total carbon and nitrogen contents (μg/g) for these sieved samples (< 125 μm) were: Luna 16—C 418, N 134 and Luna 20—C 380, N 80.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号