首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Air gun seismic and 3.5 kHz profiling data from the Gulf of Patras, western Greece, show that it is occupied by a small asymmetric graben with several geometric similarities to the larger-scale graben in the Gulf of Corinth to the east. Major listric faulting characterizes the southern flank of the graben whilst the northern flank represents an associated rollover structure affected by antithetic and synthetic faulting. The present phase of subsidence is of Holocene age, but buried growth faults suggest earlier subsidence in the Gulf. The average rate of subsidence through the Holocene is estimated to be 10 mm/year.The Gulf of Patras graben, together with the Gulf of Corinth graben and the Megara basin, represent a continuous system of WNW-ESE trending grabens in a broad zone of intense seismicity within the Aegean domain. Individual grabens are offset and are interconnected by NE-SW trending fault systems.  相似文献   

2.
The easternmost sector of the Gulf of Corinth, the Beotia area in Central Greece, is an area with active normal faults located between the two major rift structures of Central Greece, the Gulf of Corinth and the North Gulf of Evia. These active normal faults include WNW to E–W and NE to ENE-trending faults affect the landscape and generate basin and range topography within the Beotia. We study four normal fault zones and drainage basin geometry in the easternmost sector of the Gulf of Corinth to document the impact of active tectonics on the landscape evolution. Fault and drainage geometry are investigated based on detailed field mapping and high-resolution digital elevation models. Tectonic geomorphic analysis using several parameters of active tectonics provides information concerning the relative tectonic activity and fault growth. In order to detect areas of lateral stream migration that could indicate recent tectonic activity, the Transverse Topographic Symmetry Factor and the Asymmetry Factor are used to analyse drainage basin geometry in six large drainage basins and a drainage domain covering the study area. Our results show that vertical motions and tilting associated with normal faulting influence the drainage geometry and its development. Values of stream-gradient indices (SL) are relatively high close to the fault traces of the studied fault zones suggesting high activity. Mountain-front sinuosity (Smf) mean values along the fault zones ranges from 1.08 to 1.26. Valley floor width to valley height ratios (Vf) mean values along the studied fault zones range between 0.5 and 1.6. Drainage basin shape (BS) mean values along the fault zones range from 1.08 to 3.54. All these geomorphic parameters and geomorphological data suggest that the analyzed normal faults are highly active. Lateral fault growth was likely produced by primarily eastward propagation, with the WNW to E–W trending faults being the relatively more active structures.  相似文献   

3.
The Gulf of Corinth, Greece, is a 110-km-long by 30-km-wide active graben displaying strong seismicity hosted both on north and south dipping normal faults. This complex fault pattern consists of two fault populations, offshore and onshore. The offshore fault population is investigated by densely arranged seismic reflection profiles during the last 20 years, whereas the onshore fault population displays spectacular and well exposed faults, delineated by high accuracy mapping. We analyzed fault length and throw, in order to study the scaling properties of 136 well-determined offshore and onshore faults and the comparison between the two datasets. We examined the statistical properties on both fault populations, in order to describe the role of segmentation in the growth of faults and the different stages of the evolution of the fault networks.Our results on power law relationships associated with the scaling properties of the fault zones in the Gulf of Corinth, suggest that both fault populations are bi-fractal, providing the initiation of a sature state in deformation. In addition, the vertical throw of faults shows that both fault populations have similar properties but different distributions below and above 5 km, respectively. Displacement–length ratios, show that faults larger than 9 km appear to accumulate throw without any dramatic change to their length. These observations combined with other geophysical studies within the Gulf, suggest that the characteristic fault lengths of 5 km and 9 km can be correlated to the crustal mechanical structure and the seismicity of the Gulf.  相似文献   

4.
We describe and compare the two transform zones that connect the Icelandic rift segments and the mid-Atlantic Ridge close to the Icelandic hot spot, in terms of geometry of faulting and stress fields. The E–W trending South Iceland Seismic Zone is a diffuse shear zone with a Riedel fault pattern including N0°–N20°E trending right-lateral and N60°–N70°E trending left-lateral faults. The dominant stress field in this zone is characterised by NW–SE extension, in general agreement with left-lateral transform motion. The Tjörnes Fracture Zone includes three major lineaments at different stages of development. The most developed, the Húsavík–Flatey Fault, presents a relatively simple geometry with a major fault that trends ESE–WNW. The stress pattern is however complex, with two dominant directions of extension, E–W and NE–SW on average. Both these extensions are compatible with the right-lateral transform motion and reveal different behaviours in terms of coupling. Transform motion has unambiguous fault expression along a mature zone, a situation close to that of the Tjörnes Fracture Zone. In contrast, transform motion along the immature South Iceland Seismic Zone is expressed through a more complicate structural pattern. At the early stage of the transform process, relatively simple stress patterns prevail, with a single dominant stress field, whereas, when the transform zone is mature, moderate and low coupling situations may alternate, as a function of volcanic–tectonic crises and induce changes in stress orientation.  相似文献   

5.
Freddy Corredor 《Tectonophysics》2003,372(3-4):147-166
Remote sensing and field studies of several extensional basins along the northern margin of the Gulf of Aden in Yemen show that Oligocene–Miocene syn-rift extension trends N20°E on average, in agreement with the E–W to N120°E strike of main rift-related normal faults, but oblique to the main trend of the Gulf (N70°E). These faults show a systematic reactivation under a 160°E extensional stress that we interpret also as syn-rift. The occurrence of these two successive phases of extension over more than 1000 km along the continental margin suggests a common origin linked to the rifting process. After discussing other possible mechanisms such as a change in plate motion, far-field effects of Arabia–Eurasia collision, and stress rotations in transfer zones, we present a working hypothesis that relates the 160°E extension to the westward propagation since about 20 Ma of the N70°E-trending, obliquely spreading, Gulf of Aden oceanic rift. The late 160°E extension, perpendicular to the direction of rift propagation, could result from crack-induced extension associated with the strain localization that characterises the rift-to-drift transition.  相似文献   

6.
A statistical analysis was carried out to investigate spatial associations between natural seismicity and faults in southeastern Ontario and north-central New York State (between 73°18′ and 77°00′W and 43°30′ and 45°18′N). The study area is situated to the west of the seismically active St. Lawrence fault zone, and to the east of the Lake Ontario basin where recently documented geological and geophysical evidence points to possible neotectonic faulting. The weights of evidence method was used to judge the spatial associations between seismic events and populations of faults in eight arbitrarily defined orientation groups. Spatial analysis of data sets for seismic events in the periods 1930–1970 and post-1970 suggest stronger spatial associations between earthquake epicentres and faults with strikes that lie in the NW–SE quadrants, and weaker spatial associations of epicentres with faults that have strikes in the NE–SW quadrants. The strongest spatial associations were determined for groups of faults with strikes between 101° and 146°. The results suggest that faults striking broadly NW–SE, at high angles to the regional maximum horizontal compressive stress, are statistically more likely to be spatially associated with seismic events than faults striking broadly NE–SW. If the positive spatial associations can be interpreted as indicating genetic relationships between earthquakes and mapped faults, then the results may suggest that, as a population, NW–SE trending faults are more likely to be seismically active than NE–SW striking faults. Detailed geological studies of faults in the study area would be required to determine possible neotectonic displacements and the kinematics of the displacements.  相似文献   

7.
F. Suter  M. Sartori  R. Neuwerth  G. Gorin   《Tectonophysics》2008,460(1-4):134-157
The northern Andes are a complex area where tectonics is dominated by the interaction between three major plates and accessory blocks, in particular, the Chocó-Panamá and Northern Andes Blocks. The studied Cauca Valley Basin is located at the front of the Chocó-Panamá Indenter, where the major Romeral Fault System, active since the Cretaceous, changes its kinematics from right-lateral in the south to left-lateral in the north. Structural studies were performed at various scales: DEM observations in the Central Cordillera between 4 and 5.7°N, aerial photograph analyses, and field work in the folded Oligo-Miocene rocks of the Serranía de Santa Barbara and in the flat-lying, Pleistocene Quindío-Risaralda volcaniclastic sediments interfingering with the lacustrine to fluviatile sediments of the Zarzal Formation.The data acquired allowed the detection of structures with a similar orientation at every scale and in all lithologies. These families of structures are arranged similarly to Riedel shears in a right-lateral shear zone and are superimposed on the Cretaceous Romeral suture.They appear in the Central Cordillera north of 4.5°N, and define a broad zone where 060-oriented right-lateral distributed shear strain affects the continental crust. The Romeral Fault System stays active and strain partitioning occurs among both systems. The southern limit of the distributed shear strain affecting the Central Cordillera corresponds to the E–W trending Garrapatas–Ibagué shear zone, constituted by several right-stepping, en-échelon, right-lateral, active faults and some lineaments. North of this shear zone, the Romeral Fault System strike changes from NNE to N.Paleostress calculations gave a WNW–ESE trending, maximum horizontal stress, and 69% of compressive tensors. The orientation of σ1 is consistent with the orientation of the right-lateral distributed shear strain and the compressive state characterizing the Romeral Fault System in the area: it bisects the synthetic and antithetic Riedels and is (sub)-perpendicular to the active Romeral Fault System.It is proposed that the continued movement of the Chocó–Panamá Indenter may be responsible for the 060-oriented right-lateral distributed shear strain, and may have closed the northern part of the Cauca Valley, thereby forming the Cauca Valley Basin.Conjugate extensional faults observed at surface in the flat-lying sediments of the Zarzal Formation and Quindío-Risaralda volcaniclastic Fan are associatedwith soft-sediment deformations. These faults are attributed to lateral spreading of the superficial layers during earthquakes and testify to the continuous tectonic activity from Pleistocene to Present.Finally, results presented here bring newinformation about the understanding of the seismic hazard in this area: whereas the Romeral Fault Systemwas so far thought to be themost likely source of earthquakes, themore recent cross-cutting fault systems described herein are another potential hazard to be considered.  相似文献   

8.
The Gulf of Corinth is a graben, which has undergone extension during the Late Quaternary. The subsidence rate is rapid in the currently marine part whereas uplift now affects a large part of the initially subsiding area in the North Peloponnese. In this paper, we document the rates of subsidence/uplift and extension based on new subsurface data, including seismic data and long piston coring in the deepest part of the Gulf. Continuous seismic profiling data (air gun) have shown that four (at least) major oblique prograding sequences can be traced below the northern margin of the central Gulf of Corinth. These sequences have been developed successively during low sea level stands, suggesting continuous and gradual subsidence of the northern margin by 300 m during the Late Quaternary (last 250 ka). Subsidence rates of 0.7–1.0 m kyr− 1 were calculated from the relative depth of successive topset to foreset transitions. The differential total vertical displacement between the northern and the southern margins of the Corinth graben is estimated at about 2.0–2.3 m kyr− 1.

Sequence stratigraphic interpretation of seismic profiles from the basin suggests that the upper sediments (0.6 s twtt thick) in the depocenter were accumulated during the last 250 ka at a mean rate of 2.2–2.4 m kyr− 1. Long piston coring in the central Gulf of Corinth basin enabled the recovery of lacustrine sediments, buried beneath 12–13.5 m of Holocene marine sediments. The lacustrine sequence consists of varve-like muddy layers interbedded with silty and fine sand turbidites. AMS dating determined the age of the marine–lacustrine interface (reflector Z) at about 13 ka BP. Maximum sedimentation rates of 2.4–2.9 m kyr− 1 were calculated for the Holocene marine and the last glacial, lacustrine sequences, thus verifying the respective rates obtained by the sequence stratigraphic interpretation. Recent accumulation rates obtained by the 210Pb-radiometric method on short sediment box cores coincide with the above sedimentation rates. Vertical fault slip rates were measured by using fault offsets of correlated reflector Z. The maximum subsidence rate of the depocenter (3.6 m kyr− 1) exceeds the maximum sedimentation rate by 1.8 m kyr− 1, which, consequently, corresponds to the rate of deepening of the basin's floor. The above rates indicate that the 2.2 km maximum sediment thickness as well as the 870 m maximum depth of the basin may have formed during the last 1 Ma, assuming uniform mean sedimentation rate throughout the evolution of the basin.  相似文献   


9.
We investigate the properties of the April 2007 earthquake swarm (Mw 5.2) which occurred at the vicinity of Lake Trichonis (western Greece). First we relocated the earthquakes, using P- and S-wave arrivals to the stations of the Hellenic Unified Seismic Network (HUSN), and then we applied moment tensor inversion to regional broad-band waveforms to obtain the focal mechanisms of the strongest events of the 2007 swarm. The relocated epicentres, cluster along the eastern banks of the lake, and follow a distinct NNW–ESE trend. The previous strong sequence close to Lake Trichonis occurred in June–December 1975. We applied teleseismic body waveform inversion, to obtain the focal mechanism solution of the strongest earthquake of this sequence, i.e. the 31 December 1975 (Mw 6.0) event. Our results indicate that: a) the 31 December 1975 Mw 6.0 event was produced by a NW–SE normal fault, dipping to the NE, with considerable sinistral strike-slip component; we relocated its epicentre: i) using phase data reported to ISC and its coordinates are 38.486°N, 21.661°E; ii) using the available macroseismic data, and the coordinates of the macroseismic epicentre are 38.49°N, 21.63°E, close to the strongly affected village of Kato Makrinou; b) the earthquakes of the 2007 swarm indicate a NNW–SSE strike for the activated main structure, parallel to the eastern banks of Lake Trichonis, dipping to the NE and characterized by mainly normal faulting, occasionally combined with sinistral strike-slip component. The 2007 earthquake swarm did not rupture the well documented E–W striking Trichonis normal fault that bounds the southern flank of the lake, but on the contrary it is due to rupture of a NW–SE normal fault that strikes at a  45° angle to the Trichonis fault. The left-lateral component of faulting is mapped for the first time to the north of the Gulf of Patras which was previously regarded as the boundary for strike-slip motions in western Greece. This result signifies the importance of further investigations to unravel in detail the tectonics of this region.  相似文献   

10.
Photogrammetric analysis of aerial photographs is used to investigate morphological changes in two large landslides located adjacent to the active Marathias normal fault along the Gulf of Corinth, Greece. This E–W trending fault intersects at almost right angles a series of west-verging and east-dipping thrust faults, and has a clear geomorphic expression. The fault's structural signature, such as the trace length, displacement, segmentation, and scarp freshness resembles other normal faults within the Gulf of Corinth. Along this fault we mapped a series of landslides that are mainly concentrated at the near tip areas. Two of them are hosted in the damage zone formed by the intersecting normal and reverse faults. The Marathias and Sergoula landslides show a significant geomorphic evolution on aerial photographs from 1945 to 1991.

Evolution of landslides in the study area appears to be correlated with two earthquake clusters that drive mass wasting in the order of 106 m3, significant drainage adjustment, and triggering of post-landslide river incision. We infer the following process sequence for these presumably earthquake-triggered landslides in the region: eroded material in Marathias landslide and reactivation of movement within the main body of the Sergoula landslide were observed in 1969 aerial photographs. Both landslides are deep-seated rotational rockslides. Obstruction or abandonment of channels due to the landslides establishes river incision and a dramatic increase of the rate of fan-delta progradation in the order of 1 m/yr. These large landslides are related to strong (M > 6.5) earthquakes concentrated along faults, and their reactivation period is almost a century, based on seismological or paleoseismological analyses.  相似文献   


11.
The Magadi area, located in the southern part of the Kenya Rift, is a seismically active region where rifting is still in progress. The recent tectonic activity has been investigated through a seismological survey and the study of neotectonic joints found in Lake Magadi sediments, which were deposited some 5000 years ago. The structural analysis of these open fractures was combined with a quantitative analysis of the orientation and size characteristics of imagery faults. The gathered data demonstrate (1) that the majority of the systematic joints have straight and parallel trajectories with a common en echelon mode of propagation displayed through a rich variety of patterns, and (2) that there is a self-similarity in fault and joint principal directions recognised at the different telescopic scales. SPOT image (1:125,000), aerial photos (1:76,000), and outcrop fieldwork reveal two important structural orientations which are N015°E and N015°W. The N015°E regional direction is consistent with the orientation of the southern segment of the Kenya Rift. Structural analysis is supported by results of a joint microseismic investigation in the Lake Magadi area. Obtained focal mechanism solutions indicate an E–W to ESE–WNW normal faulting extension direction.  相似文献   

12.
13.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   

14.
Two major faults, over 32 km long and 6.4 km apart, truncate or overprint most previous folds and faults as they trend more northerly than the previous N25°E to N40°E fold trends. The faults were imposed as the last event in a region undergoing sequential counter-clockwise generation of tectonic structures. The western Big Cove anticline has an early NW verging thrust fault that emplaces resistant rocks on its NW limb. A 16 km overprint by the Cove Fault is manifested as 30 small northeast striking right-lateral strike-slip faults. This suggests major left-lateral strike-slip separation on the Cove Fault, but steep, dip-slip separation also occurs. From south to north the Cove Fault passes from SE dipping beds within the Big Cove anticline, to the vertical beds of the NW limb. Then it crosses four extended, separated, Tuscarora blocks along the ridge, brings Cambro-Ordovician carbonates against Devonian beds, and initiates the zone of overprinted right-lateral faults. Finally, it deflects the Lat 40°N fault zone as it crosses to the next major anticline to the northwest. To the east, the major Path Valley Fault rotates and overprints the earlier Carrick Valley thrust. The Path Valley Fault and Cove Fault may be Mesozoic in age, based upon fault fabrics and overprinting on the east–west Lat 40°N faults.  相似文献   

15.
In this paper, we investigate normal fault patterns produced by the sliding motion along a gently dipping normal fault by using analogue model tests and numerical modeling. The motivation for this study was offered by microseismic test data that indicate the existence of an active low-angle shear zone at a depth of 9–11 km in the extensional region of high seismic activity of the Gulf of Corinth (Greece). Both modeling techniques seem to support the hypothesis that the system of high-angle normal faults that are responsible for the final asymmetrical graben formation initiate at the tip of the active basal detachment nearest to the free surface. The normal faults propagate upwards with progressive sliding of the inclined basal plane, resulting in a first phase of symmetrical graben configuration that is delimited by a main synthetic fault and an antithetic fault forming a Rankine zone. Subsequent sliding on the inclined base induces a family of secondary antithetic normal faults, which are responsible for the asymmetry of the failure pattern and the diffusive character of deformation in that area. Shear deformation is more intense and localized along the synthetic normal fault than along the antithetic faults. Elaboration on the analogue test results has led to the phenomenological relations among four main parameters that describe the geometry of grabens, namely, (i) the width and (ii) the maximum subsidence of the graben, (iii) the dip angles of the conjugate normal faults, and (iv) the amount of sliding along the low-angle normal fault. However, analogue models do not produce the system of synthetic faults that is observed in the Gulf of Corinth. The effects of both friction angle variation along the detachment base and of the constitutive behavior of the model material on the configuration of the final structural pattern were also studied with a series of numerical continuum models. It was found that (a) the fault pattern of the Gulf of Corinth may be reproduced with either a strain-softening material with low elastic modulus or a constant strength material, and (b) two consecutive grabens, such as those of Gulfs of Corinth and Evia, may also be reproduced by an appropriate combination of variation of dip and frictional properties along the hypothesized detachment zone.  相似文献   

16.
Active faulting and seismic properties are re-investigated in the eastern precinct of the city of Thessaloniki (Northern Greece), which was seriously affected by two large earthquakes during the 20th century and severe damage was done by the 1759 event. It is suggested that the earthquake fault associated with the occurrence of the latest destructive 1978 Thessaloniki earthquake continues westwards to the 20-km-long Thessaloniki–Gerakarou Fault Zone (TGFZ), which extends from the Gerakarou village to the city of Thessaloniki. This fault zone exhibits a constant dip to the N and is characterised by a complicated geometry comprised of inherited 100°-trending faults that form multi-level branching (tree-like fault geometry) along with NNE- to NE-trending faults. The TGFZ is compatible with the contemporary regional N–S extensional stress field that tends to modify the pre-existing NW–SE tectonic fabric prevailing in the mountainous region of Thessaloniki. Both the 1978 earthquake fault and TGFZ belong to a ca. 65-km-long E–W-trending rupture fault system that runs through the southern part of the Mygdonia graben from the Strymonikos gulf to Thessaloniki. This fault system, here called Thessaloniki–Rentina Fault System (TRFS), consists of two 17–20-km-long left-stepping 100°-trending main fault strands that form underlapping steps bridged by 8–10-km-long ENE–WSW faults. The occurrence of large (M6.0) historical earthquakes (in 620, 677 and 700 A.D.) demonstrates repeated activation, and therefore the possible reactivation of the westernmost segment, the TGFZ, could be a major threat to the city of Thessaloniki. Changes in the Coulomb failure function (ΔCFF) due to the occurrence of the 1978 earthquake calculated out in this paper indicate that the TGFZ has been brought closer to failure, a convincing argument for future seismic hazard along the TGFZ.  相似文献   

17.
The conspicuous curved structures located at the eastern front of the Eastern Cordillera between 25° and 26° south latitude is coincident with the salient recognized as the El Crestón arc. Major oblique strike-slip faults associated with these strongly curved structures were interpreted as lateral ramps of an eastward displaced thrust sheet. The displacement along these oblique lateral ramps generated the local N–S stress components responsible for the complex hanging wall deformation. Accompanying each lateral ramp, there are two belts of strong oblique fault and folding: the upper Juramento River valley area and El Brete area.On both margins of the Juramento River upper valley, there is extensive map-scale evidence of complex deformation above an oblique ramp. The N–S striking folds originated during Pliocene Andean orogeny were subsequently or simultaneously folded by E–W oriented folds. The lateral ramps delimiting the thrust sheet coincident with the El Crestón arc salient are strike-slip faults emplaced in the abrupt transitions between thick strata forming the salient and thin strata outside of it. El Crestón arc is a salient related to the pre-deformational Cretaceous rift geometry, which developed over a portion of this basin (Metán depocenter) that was initially thicker. The displacement along the northern lateral ramp is sinistral, whereas it is dextral in the southern ramp. The southern end of the Eastern Cordillera of Argentina shows a particular structure reflecting a pronounced along strike variations related to the pre-deformational sedimentary thickness of the Cretaceous basin.  相似文献   

18.
Seismotectonics of Taiwan   总被引:3,自引:0,他引:3  
High-quality seismicity data and focal mechanism solutions obtained during 1973–1983 by the permanent Taiwan Telemetered Seismographic Network and several temporary local seismographic networks are used for a detailed study of the seismotectonics of the Taiwan area. Seismicity distribution in southern Taiwan clearly reveals an east-dipping Benioff zone which has a thickness of about 30 km and begins to deepen along 121°E at a dip angle of 55°–60°. The leading edge of this Benioff zone reaches a depth of about 180 km between 21°N and 22°N, but tapers off to a shallower depth of about 100 km from 22°N to 23°N. The presence of this seismic zone implies that subduction of the South China Sea plate under the Philippine Sea plate extends from Luzon northward to about 23°N. The position of the northern boundary of the South China Sea plate, as tentatively defined according to the seismicity distribution, passes through southern Taiwan from the offshore area in the Taiwan Strait west of Kaohsiung in an east-northeast direction to the Taitung area where a triple junction probably lies. Seismicity is found to disappear abruptly below a certain depth in many parts of Taiwan. This phenomenon may be attributed to the frictional to quasiplastic transition in the crust or upper mantle. Comparison of shallow seismicity with surface faults and fractures shows that all areas of active shallow seismicity are marked by densely-developed faults and fractures. However, the converse is not necessarily true. This may be partly due to the relatively short duration of seismicity data and partly due to excessive weakening of some of the severely faulted and fractured areas. Finally, focal mechanism solutions for west central Taiwan and the Kuangfu-Fuli area in eastern Taiwan predominantly show a maximum horizontal compression in the SE-NW direction which can be related to collision between the Eurasian and Philippine Sea plates. However, focal mechanism solutions for both the Hualien area in eastern Taiwan and the Tainan area in southwestern Taiwan show remarkable irregularities which may result from local tectonic complexities.  相似文献   

19.
Franck A. Audemard   《Tectonophysics》2006,424(1-2):19-39
This paper discusses the surface rupture of the Cariaco July 09, 1997 Ms 6.8 earthquake in northeastern Venezuela – located at 10.545°N and 63.515°W and about 10 km deep. The field reconnaissance of the ground breaks confirms that this event took place on the ENE–WSW trending onshore portion of the dextral El Pilar fault (between the Gulfs of Cariaco and Paria), which is part of the major wrenching system within the Caribbean–South America plate boundary zone. Dextral slip along this fault was further supported by the structural style of this rupture (en echelon right-lateral R shears connected by mole tracks at restraining stepovers) and by larger geometric complexities (pop-ups at Las Manoas and Guarapiche), as well as by the focal mechanism solutions determined for the event by several authors. This 1997 surface ruptre comprised two distinct sections, from west to east: (a) a main very conspicuous, continuous, 30-km-long, rather straight, 075°N-trending alignment of en echelon surface breaks, with a rather constant, purely dextral coseismic slip of about 25  cm, but reaching a maximum value of 40 cm slightly northwest of Pantoño; and (b) a secondary discontinuous, 10-km-long, boomerang-shaped rupture, with a maximum coseismic slip of 20 cm at Guarapiche. The onshore extent of the surface rupture totalled 36 km, but may continue westward underwater, as suggested by the very shallow aftershock seismicity. This aftershock activity also clearly defined the steep north dip of the fault plane along the western rupture, suggesting tectonic inheritance on this major fault.From many locals' accounts, the rupture seems to have propagated from Pantoño to the west (highly asymmetric bidirectionality). This suggests that earthquake nucleation happened at or near the Casanay–Guarapiche restraining bend and rupture quickly propagated westward, allowing only a small fraction to progress eastwards beyond the bend. Additionally, the large fraction of after-slip (or creep) released is to be related to such restraining bend, which seems to have partly locked slip during rupture.  相似文献   

20.
In southern Turkey ongoing differential impingement of Arabia into the weak Anatolian collisional collage resulting from subduction of the Neotethyan Ocean has produced one of the most complex crustal interactions along the Alpine–Himalayan Orogen. Several major transforms with disputed motions, including the northward extension of the Dead Sea Fault Zone (DSFZ), meet in this region. To evaluate neotectonic motion on the Amanos and East Hatay fault zones considered to be northward extensions of the DSFZ, the palaeomagnetism of volcanic fields in the Karasu Rift between these faults has been studied. Remanence carriers are low-Ti magnetites and all except 5 of 51 basalt lavas have normal polarity. Morphological, polarity and K–Ar evidence show that rift formation occurred largely during the Brunhes chron with volcanism concentrated at 0.66–0.35 Ma and a subsidiary episode at 0.25–0.05. Forty-four units of normal polarity yield a mean of D/I=8.8°/54.7° with inclination identical to the present-day field and declination rotated clockwise by 8.8±4.0°. Within the 15-km-wide Hassa sector of the Karasu Rift, the volcanic activity is concentrated between the Amanos and East Hatay faults, both with left lateral motions, which have rotated blocks bounded by NW–SE cross faults in a clockwise sense as the Arabian Block has moved northwestwards. An average lava age of 0.5 Ma yields a minimum cumulative slip rate on the system bounding faults of 0.46 cm/year according with the rate deduced from the Africa–Arabia Euler vector and reduced rates of slip on the southern extension of the DSFZ during Plio-Quaternary times. Estimates deduced from offsets of dated lavas flows and morphological features on the Amanos Fault Zone [Tectonophysics 344 (2002) 207] are lower (0.09–0.18 cm/year) probably because they are limited to surface fault breaks and do not embrace the seismogenic crust.Results of this study suggest that most strike slip on the DSFZ is taken up by the Amanos–East Hatay–Afrin fault array in southern Turkey. Comparable estimates of Quaternary slip rate are identified on other faults meeting at an unstable FFF junction (DSFZ, East Anatolian Fault Zone, Karatas Fault Zone). A deceleration in slip rate across the DSFZ and its northward continuation during Plio-Quaternary times correlates with reorganization of the tectonic regime during the last 1–3 Ma including tectonic escape within Anatolia, establishment of the North and East Anatolian Fault Zones bounding the Anatolian collage in mid–late Pliocene times, a contemporaneous transition from transpression to transtension and concentration of all basaltic magmatism in this region within the last 1 Ma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号