首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The activity of a meteor shower is thought to be proportional to the activities through time of the parent comet. Recent applications of the dust trail theory provide us not only with a new method to forecast the occurrences and intensities of shower activities, but it is also offers a new approach to explore the history of past activities of the parent comet by retro-tracking its associated meteor showers. We introduce the result of an effort for relating meteor shower activities to the parent comet activities for which we chose the October Draconids and comet 21P/Giacobini-Zinner in this paper.  相似文献   

2.
D.K. Yeomans 《Icarus》1981,47(3):492-499
The distribution of dust surrounding periodic comet Tempel-Tuttle has been mapped by analyzing the associated Leonid meteor shower data over the 902–1969 interval. The majority of dust ejected from the parent comet evolves to a position lagging the comet and outside the comet's orbit. The outgassing and dust ejection required to explain the parent comet's deviation from pure gravitational motion would preferentially place dust in a position leading the comet and inside the comet's orbit. Hence it appears that radiation pressure and planetary perturbations, rather than ejection processes, control the dynamic evolution of the Leonid particles. Significant Leonid meteor showers are possible roughly 2500 days before or after the parent comet reaches perihelion but only if the comet passes closer than 0.025 AU inside or 0.010 AU outside the Earth's orbit. Although the conditions in 1998–1999 are optimum for a significant Leonid meteor shower, the event is not certain because the dust particle distribution near the comet is far from uniform. As a by-product of this study, the orbit of comet Tempel-Tuttle has been redetermined for the 1366–1966 observed interval.  相似文献   

3.
The September 2007 encounter of Earth with the 1-revolution dust trail of comet C/1911 N1 (Kiess) is the most highly anticipated dust trail crossing of a known long period comet in the next 50 years. The encounter was modeled to predict the expected peak time, duration, and peak rate of the resulting outburst of Aurigid shower meteors. The Aurigids will radiate with a speed of 67 km/s from a radiant at R.A. = 92°, Decl. = +39° (J2000) in the constellation Auriga. The expected peak time is 11:36 ± 20 min UT, 2007 September 1, and the shower is expected to peak at Zenith Hourly Rate = 200/h during a 10-min interval, being above half this value during 25 min. The meteor outburst will be visible by the naked eye from locations in Mexico, the Western provinces of Canada, and the Western United States, including Hawaii and Alaska. A concerted observing campaign is being organized. Added in proof: first impression of the shower. Prepared as a contribution to the conference proceedings of “Meteoroids 2007”, to be published in the journal “Earth, Moon, and Planets”.  相似文献   

4.
We calculate the position of dust trails from comet 8P/Tuttle, in an effort to explain unusual Ursid meteor shower outbursts that were seen when the comet was near aphelion. Comet 8P/Tuttle is a Halley-type comet in a 13.6-year orbit, passing just outside of Earth's orbit. We find that the meteoroids tend to be trapped in the 12:14 mean motion resonance with Jupiter, while the comet librates in a slightly shorter period orbit around the 13:15 resonance. It takes 6 centuries to decrease the perihelion of the meteoroid orbits enough to intersect Earth's orbit, during which time the meteoroids and comet separate in mean anomaly by 6 years, thus explaining the 6-year lag between the comet's return and Ursid outbursts. The resonances also prevent dispersion along the comet orbit and limit viewing to only one year in each return. We identified past dust trail encounters with dust trails from 1392 (Dec. 1945) and 1378 (Dec. 1986) and predicted another outburst on 2000 December 22 at around 7:29 and 8:35 UT, respectively, from dust trails dating to the 1405 and 1392 returns. This event was observed from California using video and photographic techniques. At the same time, five Global-MS-Net stations in Finland, Japan, and Belgium counted meteors using forward meteor scatter. The outburst peaked at 8:06±07 UT, December 22, at zenith hourly rate ∼90 per hour, and the Ursid rates were above half peak intensity during 4.2 h. We find that most Ursid orbits do scatter around the anticipated positions, confirming the link with comet 8P/Tuttle and the epoch of ejection. The 1405 and 1392 dust trails appear to have contributed similar amounts to the activity profile. Some orbits provide a hint of much older debris being present as well. This work is the strongest evidence yet for the relevance of mean motion resonances in Halley-type comet dust trail evolution.  相似文献   

5.
One minute counts obtained during the meteor outburst of α-Monocerotids on November 22, 1995, are analyzed in order to examine the possibility of filamentary structure in the stream profile. None is found. It is argued that far-comet type outbursts are due to the Earth's passage through the dust trail of a long period comet, thus offering a direct means of studying such comet dust trails. Hence, the meteor stream activity curve is the first accurate cross section of dust densities through a comet dust trail.  相似文献   

6.
We deal with theoretical meteoroid streams the parent bodies of which are two Halley-type comets in orbits situated at a relatively large distance from the orbit of Earth: 126P/1996 P1 and 161P/2004 V2. For two perihelion passages of each comet in the far past, we model the theoretical stream and follow its dynamical evolution until the present. We predict the characteristics of potential meteor showers according to the dynamical properties of theoretical particles currently approaching the orbit of the Earth. Our dynamical study reveals that the comet 161P/2004 V2 could have an associated Earth-observable meteor shower, although no significant number of theoretical particles are identified with real, photographic, video, or radar meteors. However, the mean radiant of the shower is predicted on the southern sky (its declination is about −23°) where a relatively low number of real meteors has been detected and, therefore, recorded in the databases used. The shower of 161P has a compact radiant area and a relatively large geocentric velocity of ∼53 km s−1. A significant fraction of particles assumed to be released from comet 126P also cross the Earth’s orbit and, eventually, could be observed as meteors. However, their radiant area is largely dispersed (declination of radiants spans from about +60° to the south pole) and, therefore, mixed with the sporadic meteor background. An identification with real meteors is practically impossible.  相似文献   

7.
A rare outburst of the Aurigid meteor shower was predicted to occur on 2007 September 1 at 11:36 ± 20 min  ut due to Earth's encounter with the one-revolution dust trail of long-period comet C/1911 N1 (Kiess). The outburst was predicted to last ∼1.5 h with peak zenithal hourly rate of ∼200 h−1, which is ∼20 times higher than the annual Aurigid shower. Three members of Armagh Observatory observed this outburst from the general area of San Francisco, CA, USA, where the shower was anticipated to be best seen. Observed radiant, velocity and activity peak time were consistent with the predictions, whereas the zenithal hourly rate was about half of the predicted value. Five Aurigids were observed by two stations simultaneously, enabling their spatial trajectory to be worked out. The orbits of these double station meteors are in good agreement with that of their parent comet Kiess. The outburst was abundant in bright (−2 to +1 mag) meteors. The first high-altitude Aurigid, with a beginning height of 137.1 km, was recorded.  相似文献   

8.
The asteroid 3200 Phaethon is suggested as a candidate for direct impact research. The object is considered to be an extinct comet and the parent of the Geminid meteor shower. One could say that this provides a possible argument for a space mission. Based on such a mission, this paper proposes to investigate the nature of the extinct comet and the additional interesting possibility of artificially generated meteor showers.
Dust trail theory can calculate the distribution of a bundle of trails and be used to show in which years artificial meteors would be expected. Results indicate that meteor showers will be seen on Earth about 200 yr after the event, on 2022 April 12.  相似文献   

9.
During the 2011 outburst of the Draconid meteor shower, members of the Video Meteor Network of the International Meteor Organization provided, for the first time, fully automated flux density measurements in the optical domain. The data set revealed a primary maximum at 20:09 UT ± 5 min on 8 October 2011 (195.036° solar longitude) with an equivalent meteoroid flux density of (118 ± 10) × 10?3/km2/h at a meteor limiting magnitude of +6.5, which is thought to be caused by the 1900 dust trail. We also find that the outburst had a full width at half maximum of 80 min, a mean radiant position of α = 262.2°, δ = +56.2° (±1.3°) and geocentric velocity of vgeo = 17.4 km/s (±0.5 km/s). Finally, our data set appears to be consistent with a small sub-maximum at 19:34 UT ±7 min (195.036° solar longitude) which has earlier been reported by radio observations and may be attributed to the 1907 dust trail. We plan to implement automated real-time flux density measurements for all known meteor showers on a regular basis soon.  相似文献   

10.
11.
The nucleus of the Comet 73P/Schwassmann–Wachmann had been split into many fragments at least past two returns. Since the related dense dust trail has been detected in the space infrared observation, the strong activity of the meteor shower is highly expected in the future. We applied the so-called dust-trail theory to this interesting object, and obtained several results on the future encounter with the dust trail. In this paper we introduce our results on the forecasts.  相似文献   

12.
The spatial structure of meteor streams, and the activity profiles of their corresponding meteor showers, depend firstly on the distribution of meteoroid orbits soon after ejection from the parent comet nucleus, and secondly on the subsequent dynamical evolution. The latter increases in importance as more time elapses. For younger structures within streams, notably the dust trails that cause sharp meteor outbursts, it is the cometary ejection model (meteoroid production rate as a function of time through the several months of the comet’s perihelion return, and velocity distribution of the meteoroids released) that primarily determines the shape and width of the trail structure. This paper describes how a trail cross section can be calculated once an ejection model has been assumed. Such calculations, if made for a range of ejection model parameters and compared with observed parameters of storms and outbursts, can be used to constrain quantitatively the process of meteoroid ejection from the nucleus, including the mass distribution of ejected meteoroids.  相似文献   

13.
Meteors are streaks of light seen in the upper atmosphere when particles from the inter-planetary dust complex collide with the Earth. Meteor showers originate from the impact of a coherent stream of such dust particles, generally assumed to have been recently ejected from a parent comet. The parent comets of these dust particles, or meteoroids, fortunately, for us tend not to collide with the Earth. Hence there has been orbital changes from one to the other so as to cause a relative movement of the nodes of the meteor orbits and that of the comet, implying changes in the energy and/or angular momentum. In this review, we will discuss these changes and their causes and through this place limits on the ejection process. Other forces also come into play in the longer term, for example perturbations from the planets, and the effects of radiation pressure and Poynting–Robertson drag. The effect of these will also be discussed with a view to understanding both the observed evolution in some meteor streams. Finally we will consider the final fate of meteor streams as contributors to the interplanetary dust complex.  相似文献   

14.
We report the detection of Comet 67P/Churyumov-Gerasimenko's dust trail and nucleus in 24 μm Spitzer Space Telescope images taken February 2004. The dust trail is not found in optical Palomar images taken June 2003. Both the optical and infrared images show a distinct neck-line tail structure, offset from the projected orbit of the comet. We compare our observations to simulated images using a Monte Carlo approach and a dynamical model for comet dust. We estimate the trail to be at least one orbit old (6.6 years) and consist of particles of size ?100 μm. The neck-line is composed of similar sized particles, but younger in age. Together, our observations and simulations suggest grains 100 μm and larger in size dominate the total mass ejected from the comet. The radiometric effective radius of the nucleus is 1.87±0.08 km, derived from the Spitzer observation. The Rosetta spacecraft is expected to arrive at and orbit this comet in 2014. Assuming the trail is comprised solely of 1 mm radius grains, we compute a low probability (∼10−3) of a trail grain impacting with Rosetta during approach and orbit insertion.  相似文献   

15.
Every year the Earth crosses or passes near one of the dust trails left by Comet 55P/Tempel-Tuttle in its pass through the Solar System every 33.2 years. This produces a meteor shower Commonly called the Leonid. The 2001 Leonid meteor shower is one of the strongest in recent years. We present observations made by the 50 MHz all-sky meteor radar located at the Platteville Atmospheric Observatory in Colorado (40° N, 105° W). The spatial and temporal distributions of the meteor activity detected by the radar during the 2001 Leonid shower differs from the observed sporadic activity detected by VHF radars. Estimation of the radiant flux of the meteor shower of the shower by a well-known methodology is presented, and the intensity of the phenomena is discussed.  相似文献   

16.
During the first international joint observation of the Leo strong meteor shower, multidisciplinary and multi-media synthetic observation of Leo and Draco strong meteor showers and their catastrophic space weather events were carried out. The comprehensive analysis of the observed and related data of the Leo, Perseus and Draco strong meteor showers obtained for near half a century (from 1957 to 2003) fully verifies that the non-sporadic periodic strong meteor shower may lead to catastrophic space weather events. Preliminary identification is made of the following: the mechanism of formation of strong meteor showers, the law of occurrence of the fbEs abnormal peak and serious safety hazards for astronavigation. Also discussed in this paper are the evolutionary process of cometary dust, the law of occurrence and loss of cosmic dust storm and the mechanism of maintaining cosmic dust in the mid-latitude Es layer.  相似文献   

17.
We examine the hypothesis about the formation of meteor streams near the Sun. Families of short-perihelion orbit comets, many of which pass just a few radii from the solar surface at perihelion and have high dust production efficiencies, are assumed to be candidates for the parent bodies of these meteor streams. Our statistical analysis of orbital and kinematic parameters for short-perihelion meteoric particles recorded at the Earth and comets from the Kreutz family and the Marsden, Kracht, and Meyer groups led us to certain conclusions regarding the proposed hypothesis. We found a correlation between the ecliptic longitude of perihelion for comet and meteor orbits and the perihelion distance. This correlation may be suggestive of either a genetic connection between the objects of these two classes or the result of an as yet unknown mechanism that equally acts on short-perihelion comet and meteor orbits. A reliable conclusion about this genetic connection can be reached for the meteors that belong to the Arietids stream and the Marsden comet group.  相似文献   

18.
The Third Peak of the 1998 Leonid Meteor Shower   总被引:2,自引:0,他引:2  
1 INTRODUCTIONThe Leonid meteor shower is a well-known periodic meteor shower. Its history is tied upwith the development of the theory of meteor stream astronomy itself. It was the very st.rongshowers of 1799 and 1833 that played a sghficant pat in the recoghtion of the ealstence ofmeteoroid streams. These evellts started the obse~ions of Leoaid meteor shower and broughtabout the birth of meteoritiCS. It is known that the Leould parent comet, 55P/Tempel-TUttle,has an orbital period a…  相似文献   

19.
The distribution of meteor signals reflected from a backscatter radar is considered according to their duration. This duration time (T) is used to classify the meteor echoes and to calculate the mass index (S) of different meteoroids of shower plus sporadic background. Observational data on particle size distribution of the Geminid meteor shower are very scarce, particularly at low latitudes. In this paper the observational data from Gadanki radar (13.46°N, 79.18°E) have been used to determine the particle size distribution and the number density of meteoroids inside the stream of the Geminid meteor shower. The mean variation of meteor number density across the stream has been determined for three echo duration classes, T<0.4, T=0.4–1 and T>1 s. We are more interested in the appearance of echoes of various durations and therefore meteors of various masses in order to understand more on the filamentary structure of the stream. It is observed that the faint particle flux peaks earlier than the larger particles. We found a decreasing trend in the mass index values from the day of peak activity to the next observation days. The mass index profile was found to be U-shaped with a minimum value near the time of peak activity. The observed minimum s values are 1.64±0.05 and 1.65±0.04 in the years 2003 and 2005, respectively. The activity of the shower indicates the mass segregation of meteoroids inside the stream. Our results are best comparable with the “scissors” structure model of the meteoroid stream formation of Ryabova [2007. Mathematical modeling of the Geminid meteoroid stream. Mon. Not. R. Astron. Soc. 375, 1371–1380] by considering the asteroid 3200 Phaethon as an extinct comet.  相似文献   

20.
The June Boötid meteor shower (sometimes referred to as the Draconids) surprised a number of regular and casual observers by an outburst with maximum zenithal hourly rates (ZHRs) near 100 on 1998 June 27 after a quiescent period of several decades. A total of 1217 June Boötid meteors were recorded during regular visual meteor observations throughout this outburst. An average population index of r =2.2±0.10 was derived from 1054 shower magnitude estimates. The broad activity profile with ZHR>40 lasting more than 12 h and the large spread of apparent radiants in 1998 resemble the 1916 and 1927 outbursts. The peak time is found to be at about λ =95°.7 (2000.0); peak ZHRs are of the order of 200, whereas reliable averages reach only 81±7. The period of high ZHRs covered by a single observer implies a full width at half-maximum of 3–4 h. The resulting maximum flux of particles causing meteors brighter than +6.5 mag is between 0.04 and 0.06 km−2 h−1. The average radiant from photographic, radar and visual records is α =224°.12, δ =+47°.77. The observed activity outbursts in 1916, 1927 and 1998 are not related to the orbital period or the perihelion passages of the parent comet 7P/Pons–Winnecke. These are probably a consequence of the effects of the 2:1 resonance with Jupiter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号