首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fluvial flood events have substantial impacts on humans, both socially and economically, as well as on ecosystems (e.g., hydroecology and pollutant transport). Concurrent with climate change, the seasonality of flooding in cold environments is expected to shift from a snowmelt‐dominated to a rainfall‐dominated flow regime. This would have profound impacts on water management strategies, that is, flood risk mitigation, drinking water supply, and hydro power. In addition, cold climate hydrological systems exhibit complex interactions with catchment properties and large‐scale climate fluctuations making the manifestation of changes difficult to detect and predict. Understanding a possible change in flood seasonality and defining related key drivers therefore is essential to mitigate risk and to keep management strategies viable under a changing climate. This study explores changes in flood seasonality across near‐natural catchments in Scandinavia using circular statistics and trend tests. Results indicate strong seasonality in flooding for snowmelt‐dominated catchments with a single peak occurring in spring and early summer (March through June), whereas flood peaks are more equally distributed throughout the year for catchments located close to the Atlantic coast and in the south of the study area. Flood seasonality has changed over the past century seen as decreasing trends in summer maximum daily flows and increasing winter and spring maximum daily flows with 5–35% of the catchments showing significant changes at the 5% significance level. Seasonal mean daily flows corroborate those findings with higher percentages (5–60%) of the catchments showing statistically significant changes. Alterations in annual flood occurrence also point towards a shift in flow regime from snowmelt‐dominated to rainfall‐dominated with consistent changes towards earlier timing of the flood peak (significant for 25% of the catchments). Regionally consistent patterns suggest a first‐order climate control as well as a local second‐order catchment control, which causes inter‐seasonal variability in the streamflow response.  相似文献   

2.
Yi-Ru Chen  Bofu Yu 《水文科学杂志》2013,58(10):1759-1769
Abstract

Over the past century, land-use has changed in southeast Queensland, and when coupled with climatic change, the risk of flooding has increased. This research aims to examine impacts of climate and land-use changes on flood runoff in southeast Queensland, Australia. A rainfall–runoff model, RORB, was calibrated and validated using observed flood hydrographs for one rural and one urbanized catchment, for 1961–1990. The validated model was then used to generate flood hydrographs using projected rainfall based on two climate models: the Geophysical Fluid Dynamics Laboratory Climate Model 2.1 (GFDL CM2.1) and the Conformal-Cubic Atmospheric Model (CCAM), for 2016–2045. Projected daily rainfall for the two contrasting periods was used to derive adjustment factors for a given frequency of occurrence. Two land-use change scenarios were used to evaluate likely impacts. Based on the projected rainfall, the results showed that, in both catchments, future flood magnitudes are unlikely to increase for large flood events. Extreme land-use change would significantly impact flooding in the rural catchment, but not the urbanized catchment.
Editor Z.W. Kundzewicz; Associate editor Y. Gyasi-Agyei  相似文献   

3.
At present, Bangladesh has a flood forecasting lead time of only 3 days or so. There is demand for a forecasting lead time of a month to a season. The primary objectives of this paper are to study the variability and predictability of seasonal flooding in Bangladesh, as revealed by large‐scale predictors of the climate across the watersheds. To explore the source of predictability, accessible Bangladesh hydrological indicators are related to large‐scale oceanic variability and to large‐scale atmospheric circulation patterns predicted by general circulation models (GCMs). Correlation analyses between the flood‐affected area (FAA) for July–September and tropical sea‐surface temperature (SST) indicate connections to tropical Pacific and Indian Ocean SSTs, at a short lead time of a month or so. These are related to El Niño–southern oscillation (ENSO). Correlations between the SSTs of the preceding October–December and the July–September FAA are weaker but notable. Forecasts of the FAA using the leading principal components (PCs) of SST were made, which provided good skill with a lead time of a month or so. The streamflows and rainfall observed in Bangladesh have been added to these prediction models. Finally, the SST PCs were replaced with PCs of GCM prediction fields (precipitation). The prediction models at short lead time that were constructed for FAA were of generally similar levels of skill to that for SST. This is encouraging, as it suggests that linkages with SST can be successfully recovered in a physical model of the climate system in Bangladesh. This study concludes that seasonal flood prediction in Bangladesh is possible from the unusually warm or cold SST in parts of the tropics. This predictability can be enhanced with the information achievable from monitoring the downstream streamflows (which are generated mainly from upstream rainfall conditions) in advance of the flooding season. Finally, this study recommends formalizing a regional cooperation among the countries in the principal co‐basin areas of the Ganges–Brahmaputra–Meghna to achieve this goal. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

4.
ABSTRACT

The southern coast of the Caspian Sea in northern Iran is bordered by a mountain range with forested catchments which are susceptible to droughts and floods. This paper examines possible changes to runoff patterns from one of these catchments in response to climate change scenarios. The HEC-HMS rainfall–runoff model was used with downscaled future rainfall and temperature data from 13 global circulation models, and meteorological and hydrometrical data from the Casilian (or “Kassilian”) Catchment. Annual and seasonal predictions of runoff change for three future emissions scenarios were obtained, which suggest significantly higher spring rainfall with increased risk of flooding and significantly lower summer rainfall leading to a higher probability of drought. Flash floods arising from extreme rainfall may become more frequent, occurring at any time of year. These findings indicate a need for strategic planning of water resource management and mitigation measures for increasing flood hazards.
EDITOR M.C. Acreman ASSOCIATE EDITOR not assigned  相似文献   

5.
Abstract

The flooding and drying mechanisms of the seasonal flood plains of the Sudd swamps in southern Sudan are, while dependent on the river levels, influenced by a complex interaction between soil, vegetation, topography and seasonal trends in rainfall and evapotranspiration. Based on field measurements, these components have been assessed in detail and evaluated regarding their function in the seasonal cycle of flooding and drying. A detailed analysis of soil and evapotranspiration conditions, as well as the interaction with vegetation and meteorological conditions, has been conducted using field and laboratory experiments. Sources, processes, flow directions and the fate of the floodwaters on both the river-fed seasonal flood plains and the rain-fed grasslands have been established. The results show that river spill is responsible for flooding these areas while no return flow occurs, and drying is caused by evapotranspiration. Rainfall can only cause temporary flooding in extreme events.

Citation Petersen, G. & Fohrer, N. (2010) Flooding and drying mechanisms of the seasonal Sudd flood plains along the Bahr el Jebel in southern Sudan. Hydrol. Sci. J. 55(1), 4–16.  相似文献   

6.
Tao Gao  Huailiang Wang 《水文研究》2017,31(13):2412-2428
The Mann–Kendall test, composite analysis, and 68 high‐quality meteorological stations were used to explore the spatiotemporal variations and causes of precipitation extremes over the Yellow River basin (YRB) during the period of 1960–2011. Results showed that (a) the YRB is characterized by decreases of most precipitation indices, excluding the simple daily intensity index, which has increasing trends in most locations, suggesting that the intensity of rainfall and the probability of occurrence of droughts have increased during the last decades. (b) Trends of extreme precipitation show mixed patterns in the lower reach of the YRB, where drought–flood disasters have increased. The increases in heavy rainfall and decreases in consecutive wet days in recent years over the northwestern portions of the YRB indicate that the intensity and frequency of above‐normal precipitation have been trending upward in domains. In the central‐south YRB, the maximum 1‐day precipitation (RX1day) and precipitation on extremely wet days (R99p) have significantly increased, whereas the number of consecutive dry days has declined; these trends suggest that the intensity of precipitation extremes has increased in those regions, although the frequency of extreme and total rainfall has decreased. (c) The spatial distributions of seasonal trends in RX1day and maximum 5‐day precipitation (RX5day) exhibited less spatial coherence, and winter is becoming the wettest season regionwide, particularly over the central‐south YRB. (d) There were multiple and overlapping cycles of variability for most precipitation indices, indicating variations of time and frequency. (e) Elevation is intimately correlated with precipitation indices, and a weakening East Asian summer monsoon during 1986–2011 compared to that in 1960–1985 may have played an important role in the declines in most indices over the YRB. Therefore, the combined effects from local and teleconnection forcing factors have collectively influenced the variations in precipitation extremes across the YRB. This study may provide valuable evidence for the effective management of water resources and the conduct of agricultural activities at the basin scale.  相似文献   

7.
Extreme floods are the most widespread and often the most fatal type of natural hazard experienced in Europe, particularly in upland and mountainous areas. These ‘flash flood’ type events are particularly dangerous because extreme rainfall totals in a short space of time can lead to very high flow velocities and little or no time for flood warning. Given the danger posed by extreme floods, there are concerns that catastrophic hydrometeorological events could become more frequent in a warming world. However, analysis of longer term flood frequency is often limited by the use of short instrumental flow records (last 30–40 years) that do not adequately cover alternating flood‐rich and flood‐poor periods over the last 2 to 3 centuries. In contrast, this research extends the upland flood series of South West England (Dartmoor) back to ca AD 1800 using lichenometry. Results show that the period 1820 to mid‐1940s was characterized by widespread flooding, with particularly large and frequent events in the mid‐to‐late 19th and early 20th centuries. Since ca 1850 to 1900, there has been a general decline in flood magnitude that was particularly marked after the 1930s/mid‐1940s. Local meteorological records show that: (1) historical flood‐rich periods on Dartmoor were associated with high annual, seasonal and daily rainfall totals in the last quarter of the 19th century and between 1910 and 1946, related to sub‐decadal variability of the North Atlantic Oscillation and receipt of cyclonic and southerly weather types over the southwest peninsula; and (2) the incidence of heavy daily rainfall declined notably after 1946, similar to sedimentary archives of flooding. The peak period of flooding on Dartmoor predates the beginning of gauged flow records, which has practical implications for understanding and managing flood risk on rivers that drain Dartmoor. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
Urban floods pose a societal and economical risk. This study evaluated the risk and hydro-meteorological conditions that cause pluvial flooding in coastal cities in a cold climate. Twenty years of insurance claims data and up to 97 years of meteorological data were analysed for Reykjavík, Iceland (64.15°N; <100 m above sea level). One third of the city's wastewater collection system is combined, and pipe grades vary from 0.5% to 10%. Results highlight semi-intensive rain (<7 mm/h; ≤3 year return period) in conjunction with snow and frozen ground as the main cause for urban flood risk in a climate which undergoes frequent snow and frost cycles (avg. 13 and 19 per season, respectively). Floods in winter were more common, more severe and affected a greater number of neighbourhoods than during summer. High runoff volumes together with debris remobilized with high winds challenged the capacity of wastewater systems regardless of their age or type (combined vs. separate). The two key determinants for the number of insurance claims were antecedent frost depth and total precipitation volume per event. Two pluvial regimes were particularly problematic: long duration (13–25 h), late peaking rain on snow (RoS), where snowmelt enhanced the runoff intensity, elongated and connected independent rainfall into a singular, more voluminous (20–76 mm) event; shorter duration (7–9 h), more intensive precipitation that evolved from snow to rain. Closely timed RoS and cooling were believed to trigger frost formation. A positive trend was detected in the average seasonal snow depth and volume of rain and snowmelt during RoS events. More emphasis, therefore, needs to be placed on designing and operating urban drainage infrastructure with regard to RoS co-acting with frozen ground. Furthermore, more detailed, routine monitoring of snow and soil conditions is important to predict RoS flood events.  相似文献   

9.
Trends in the timing and magnitude of floods in Canada   总被引:2,自引:0,他引:2  
This study investigates trends in the timing and magnitude of seasonal maximum flood events across Canada. A new methodology for analyzing trends in the timing of flood events is developed that takes into account the directional character and multi-modality of flood occurrences. The methodology transforms the directional series of flood occurrences into new series by defining a new location of the origin. A test of flood seasonality (multi-modality) is then applied to identify dominant flood seasons. Floods from the dominant seasons are analyzed separately by a seasonal trend analysis. The Mann–Kendall test in conjunction with the method of pre-whitening is used in the trend analysis. Over 160 streamflow records from one common observation period are analyzed in watersheds with relatively pristine and stable land-use conditions. The results show weak signals of climate variability and/or change present in the timing of floods in Canada during the last three decades. Most of the significant trends in the timing of spring snowmelt floods are negative trends (earlier flood occurrence) found in the southern part of Canada. There are no significant trends identified in the timing of fall rainfall floods. However, the significance of the fall, rainfall-dominated flood season has been increasing in several analyzed watersheds. This may indicate increasing intensity of rainfall events during the recent years. Trends in the magnitude of floods are more pronounced than the trends in the timing of floods. Almost one fifth of all the analyzed stations show significant trends in the magnitude of snowmelt floods. Most of the significant trends are negative trends, suggesting decreasing magnitudes of snowmelt floods in Canada over the last three decades. Significant negative trends are found particularly in southern Ontario, northern Saskatchewan, Alberta and British Columbia. There are no significant trends in the magnitude of rainfall floods found in the analyzed streamflow records. The results support the outcomes of previous streamflow trend studies conducted in Canada.  相似文献   

10.
This study examines the seasonality of flooding across the continental United States using circular statistics. Analyses are based on 7506 USGS stream gage stations with a record of least 30 years of annual maximum instantaneous peak discharge. Overall, there is a very strong seasonality in flooding across the United States, reflecting differences in flood generating mechanisms. Most of the flood events along the western and eastern United States tend to occur during the October–March period and are associated with extratropical cyclones. The average seasonality of flood events shifts to April–May in regions where snowmelt is the dominant flood agent, and later in the spring–summer across the central United States. The strength of the seasonal cycle also varies considerably, with the weakest seasonality in the Appalachian Mountains and the strongest in the northern Great Plains. The seasonal distribution of flooding is described in terms of circular uniform, reflective symmetric and asymmetric distributions. There are marked differences in the shape of the distribution across the continental United States, with the majority of the stations exhibiting a reflective symmetric distribution.Finally, nonstationarities in the seasonality of flooding are examined. Analyses are performed to detect changes over time, and to examine changes that are due to urbanization and regulation. Overall, there is not a strong signal of temporal changes. The strongest impact of urbanization and regulation is on the strength of the seasonal cycle, with indications that the signal weakens (i.e., the seasonal distribution becomes wider) under the effects of regulation.  相似文献   

11.
The occurrence of devastating floods in the British uplands during the first two decades of the twenty‐first century poses two key questions: (1) are recent events unprecedented in terms of their frequency and magnitude; and (2) is climate and/or land‐use change driving the apparent upturn in flooding? Conventional methods of analysing instrumental flow records cannot answer these questions because upland catchments are usually ungauged, and where records do exist they rarely provide more than 30–40 years of data. In this paper we analyse all lichen‐dated upland flood records in the United Kingdom (UK) to establish the longer‐term context and causes of recent severe flooding. Our new analysis of torrential sedimentary deposits shows that twenty‐first century floods are not unprecedented in terms of both their frequency (they were more frequent before 1960) and magnitude (the biggest events occurred during the seventeenth–nineteenth centuries). However, in some areas recent floods have either equalled or exceeded the largest historical events. The majority of recent floods have been triggered by torrential summer downpours related to a marked negative phase of the summer North Atlantic Oscillation (NAO) between 2007 and 2012. It is of concern that historical data suggests there is far more capacity in the North Atlantic climate system to produce wetter and more prolonged flood‐rich periods than hitherto experienced in the twenty‐first century. Looking forwards, an increased likelihood of weather extremes due to climate change means that geomorphological based flood series extensions must be placed at the centre of flood risk assessment in the UK uplands and in similar areas worldwide. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Local dry/wet conditions and extreme rainfall events are of great concern in regional water resource and disaster risk management. Extensive studies have been carried out to investigate the change of dry/wet conditions and the adaptive responses to extreme rainfall events within the context of climate change. However, applicable tools and their usefulness are still not sufficiently studied, and in Hunan Province, a major grain-producing area in China that has been frequently hit by flood and drought, relevant research is even more limited. This paper investigates the spatiotemporal variation of dry/wet conditions and their annual/seasonal trends in Hunan with the standardized precipitation index (SPI) at various time scales. Furthermore, to verify the potential usefulness of SPI for drought/flood monitoring, the correlation between river discharge and SPI at multiple time scales was examined, and the relation between extreme SPI and the occurrence of historical drought/flood events is explored. The results indicate that the upper reaches of the major rivers in Hunan Province have experienced more dry years than the middle and lower reaches over the past 57 years, and the region shows a trend of becoming drier in the spring and autumn seasons and wetter in the summer and winter seasons. We also found a strong correlation between river discharge and SPI series, with the maximum correlation coefficient occurred at the time scale of 2 months. SPI at different time scales may vary in its usefulness in drought/flood monitoring, and this highlights the need for a comprehensive consideration of various time scales when SPI is employed to monitor droughts and floods.  相似文献   

13.
The frequency of flooding is often presumed to increase with climate change because of projected increases in rainfall intensities. In this paper, using 50‐plus years of historical discharge and meteorological data from three watersheds in different physiographic regions of New York State, USA, we find that annual maximum stream discharges are associated with 20% or less of the annual maximum rainfall events. Instead of rainfall events, approximately 20% of annual maximum stream discharges are associated with annual maximum snowmelt events while 60% of annual maximum discharges are associated with moderate rainfall amounts and very wet soil conditions. To explore the potential for changes in future flood risk, we employed a compound frequency distribution that assumes annual maximum discharges can be modelled by combining the cumulative distribution functions of discharges resulting from annual maximum rainfall, annual maximum snowmelt, and occurrences of moderate rain on wet soils. Basing on a compound frequency distribution comprised of univariate general extreme value (GEV) and gamma distributions, we found that a hypothetical 20% increase in the magnitude of rainfall‐related stream discharge results in little change in 96th percentile annual maximum discharge. For the 99th percentile discharge, two waterbodies in our study had a 10% or less increase in annual maximum discharge when annual maximum rainfall‐related discharges increased 20% while the third waterbody had a 16% increase in annual maximum discharges. Additionally, in some cases, annual maximum discharges could be offset by a reduction in the discharge resulting from annual maximum snowmelt events. While only intended as a heuristic tool to explore the interaction among different flood‐causing mechanisms, use of a compound flood frequency distribution suggests a case can be made that not all waterbodies in humid, cold regions will see extensive changes in flooding due to increased rainfall intensities. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Interannual variability is an important modulator of synoptic and intraseasonal variability in South America. This paper seeks to characterize the main modes of interannual variability of seasonal precipitation and some associated mechanisms. The impact of this variability on the frequency of extreme rainfall events and the possible effect of anthropogenic climate change on this variability are reviewed. The interannual oscillations of the annual total precipitation are mainly due to the variability in austral autumn and summer. While autumn is the dominant rainy season in the northern part of the continent, where the variability is highest (especially in the northeastern part), summer is the rainy season over most of the continent, thanks to a summer monsoon regime. In the monsoon season, the strongest variability occurs near the South Atlantic Convergence Zone (SACZ), which is one of the most important features of the South American monsoon system. In all seasons but summer, the most important source of variability is ENSO (El Ni?o Southern Oscillation), although ENSO shows a great contribution also in summer. The ENSO impact on the frequency of extreme precipitation events is also important in all seasons, being generally even more significant than the influence on seasonal rainfall totals. Climate change associated with increasing emission of greenhouse gases shows potential to impact seasonal amounts of precipitation in South America, but there is still great uncertainty associated with the projected changes, since there is not much agreement among the models’ outputs for most regions in the continent, with the exception of southeastern South America and southern Andes. Climate change can also impact the natural variability modes of seasonal precipitation associated with ENSO.  相似文献   

15.
Raise Beck is a mountain torrent located in the central Lake District fells, northern England (drainage area of 1·27 km2). The torrent shows evidence of several major flood events, the most recent of which was in January 1995. This event caused a major channel avulsion at the fan apex diverting the main flood flow to the south, blocking the A591 trunk road and causing local flooding. The meteorological conditions associated with this event are described using local rainfall records and climatic data. Records show 164 mm of rainfall in the 24 hours preceding the flood. The peak flood discharge is reconstructed using palaeohydrological and rainfall–runoff methods, which provide discharge values of 27–74 m3 s?1, and 4–6 m3 s?1, respectively. The flood transported boulders with b‐axes up to 1400 mm. These results raise some important general questions about flood estimation in steep mountain catchments. The geomorphological impact of the event is evaluated by comparing aerial photographs from before and after the flood, along with direct field observations. Over the historical timescale the impact and occurrence of flooding is investigated using lichenometry, long‐term rainfall data, and documentary records. Two major historical floods events are identified in the middle of the nineteenth century. The deposits of the recent and historical flood events dominate the sedimentological evidence of flooding at Raise Beck, therefore the catchment is sensitive to high magnitude, low frequency events. Following the 1995 flood much of the lower catchment was channelized using rip‐rap bank protection, re‐establishing flow north towards Thirlmere. The likely success of this management strategy in containing future floods is considered, based on an analysis of channel capacities. It is concluded that the channelization scheme is only a short‐term solution, which would fail to contain the discharge of an event equivalent to the January 1995 flood. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

16.
Widespread major flood events in both the UK and Europe over the last decade have focussed attention on perceived increases in rainfall intensities. The changing magnitude of such events may have significant impacts upon many sectors, particularly those associated with flooding, water resources and the insurance industry. Here, two methods are used to assess the performance of the HadRM3H model in the simulation of UK extreme rainfall: regional frequency analysis and individual grid box analysis. Both methods use L-moments to derive extreme value distributions of rainfall for 1-, 2-, 5- and 10-day events for both observed data from 204 sites across the UK (1961–1990) and gridded 50 km by 50 km data from the control climate integration of HadRM3H. Despite differences in spatial resolution between the observed and modelled data, HadRM3H provides a good representation of extreme rainfall at return periods of up to 50 years in most parts of the UK. Although the east–west rainfall gradient tends to be exaggerated, leading to some overestimation of extremes in high elevation western areas and an underestimation in eastern ‘rain shadowed’ regions, this suggests that the regional climate model will also have skill in predicting how rainfall extremes might change under enhanced greenhouse conditions.  相似文献   

17.
The pristine Okavango Delta wetland of northern Botswana is potentially under threat due to water abstraction from its tributaries. We have developed a statistical model which makes it possible to predict the extent of wetland loss which will arise from water abstraction. The model also permits prediction of the maximum area of flooding, and its spatial distribution, three months in advance of the flood maximum. The model was calibrated using maximum areas of seasonal inundation extracted from satellite imagery covering the period 1985–2000, which were correlated with rainfall and total flood discharge. A technique was developed to translate the modelled flood area into a flood map. The methodology can predict maximum area of flooding and its distribution with better than 90% accuracy. An important, although relatively minor, source of error in the spatial distribution of the flood arises from a secular change in flood distribution in the distal Delta which has taken place over the last 15 years. Reconstruction of flooding history back to 1934 suggests that the Delta may be subject to a quasi 80 year climatic oscillation. If this oscillation continues, the extent of flooding will increase in the coming decades.  相似文献   

18.
变网格大气模式对1998年东亚夏季风异常的模拟研究   总被引:1,自引:0,他引:1       下载免费PDF全文
本文利用法国国家科研中心(CNRS)动力气象实验室(LMD)发展的可变网格的格点大气环流模式LMDZ4,对1998年东亚夏季降水进行了模拟,考查了变网格模式对东亚夏季降水的模拟性能.结果表明,模式在一定程度上能模拟出东亚夏季降水的极大值中心、夏季风雨带以及降水由东南向西北递减的空间分布特征.模式基本再现了1998年夏季两次雨带的进退特征,包括降水强度、雨带范围等,从而合理再现了1998年夏季江淮地区的"二度梅"现象.与观测相比,模拟的不足在于:在陡峭地形区附近存在虚假降水;江淮和华北地区以及四川盆地存在水汽输送的气旋式辐合偏差,同时高层环流辐散偏强,使得下层暖湿空气辐合上升、降水偏多;在东南地区存在反气旋式的水汽输送偏差,30°N以南地区降水偏少.对于1998年的"二度梅"现象,模拟偏差主要表现为长江中下游地区两次(特别是第二次)较强降水持续时间偏短,强降水范围偏小,而黄淮和华南地区却降水偏多.分析表明,模式对两次梅雨期降水的模拟偏差直接受环流形势模拟偏差的影响.LMDZ4区域模式版本的特点一是区域加密,二是加密区内预报场每10天向再分析资料恢复一次.敏感试验结果表明,LMDZ4加密区向强迫场的10天尺度恢复总体上有利于提高模式对华北降水的模拟能力,而对长江流域和华南降水的模拟具有不利影响.较之均匀网格模拟试验,加密试验由于在东亚的分辨率大大提高,对东亚夏季降水模拟效果更好.  相似文献   

19.
Time–frequency characterization is useful in understanding the nonlinear and non-stationary signals of the hydro-climatic time series. The traditional Fourier transform, and wavelet transform approaches have certain limitations in analyzing non-linear and non-stationary hydro-climatic series. This paper presents an effective approach based on the Hilbert–Huang transform to investigate time–frequency characteristics, and the changing patterns of sub-divisional rainfall series in India, and explored the possible association of monsoon seasonal rainfall with different global climate oscillations. The proposed approach integrates the complete ensemble empirical mode decomposition with adaptive noise algorithm and normalized Hilbert transform method for analyzing the spectral characteristics of two principal seasonal rainfall series over four meteorological subdivisions namely Assam-Meghalaya, Kerala, Orissa and Telangana subdivisions in India. The Hilbert spectral analysis revealed the dynamic nature of dominant time scales for two principal seasonal rainfall time series. From the trend analysis of instantaneous amplitudes of multiscale components called intrinsic mode functions (IMFs), it is found that both intra and inter decadal modes are responsible for the changes in seasonal rainfall series of different subdivisions and significant changes are noticed in the amplitudes of inter decadal modes of two seasonal rainfalls in the four subdivisions since 1970s. Further, the study investigated the links between monsoon rainfall with the global climate oscillations such as Quasi Bienniel Oscillation (QBO), El Nino Southern Oscillation (ENSO), Sunspot Number (SN), Atlantic Multidecadal Oscillation (AMO) etc. The study noticed that the multiscale components of rainfall series IMF1, IMF2, IMF3, IMF4 and IMF5 have similar periodic structure of QBO, ENSO, SN, tidal forcing and AMO respectively. As per the seasonal rainfall patterns is concerned, the results of the study indicated that for Assam-Meghalaya subdivision, there is a likelihood of extreme rare events at ~0.2 cycles per year, and both monsoon and pre-monsoon rainfall series have decreasing trends; for Kerala subdivision, extreme events can be expected during monsoon season with shorter periodicity (~2.5 years), and monsoon rainfall has statistically significant decreasing trend and post-monsoon rainfall has a statistically significant increasing trend; and for Orissa subdivision, there are chances of extremes rainfall events in monsoon season and a relatively stable rainfall pattern during post-monsoon period, but both monsoon and post-monsoon rainfall series showed an overall decreasing trend; for Telangana subdivision, there is a likelihood of extreme events during monsoon season with a periodicity of ~4 years, but both monsoon and post-monsoon rainfall series showed increasing trends. The results of correlation analysis of IMF components of monsoon rainfall and five climate indices indicated that the association is expressed well only for low frequency modes with similar evolution of trend components.  相似文献   

20.
Regional climate models (RCMs) have emerged as the preferred tool in hydrological impact assessment at the catchment scale. The direct application of RCM precipitation output is still not recommended; instead, a number of alternative methods have been proposed. One method that has been used is the change factor methodology, which typically uses changes to monthly mean or seasonal precipitation totals to develop change scenarios. However, such simplistic approaches are subject to significant caveats. In this paper, 18 RCMs covering the UK from the ENSEMBLES and UKCP09 projects are analysed across different catchments. The ensembles' ability in capturing monthly total and extreme precipitation is outlined to explore how the ability to make confident statements about future flood risk varies between different catchments. The suitability of applying simplistic change factor approaches in flood impact studies is also explored. We found that RCM ensembles do have some skill in simulating observed monthly precipitation; however, seasonal patterns of bias were evident across each of the catchments. Moreover, even apparently good simulations of extreme rainfall can mis‐estimate the magnitude of flood‐generating rainfall events in ways that would significantly affect flood risk management. For future changes in monthly mean precipitation, we observe the clear ‘drier summers/wetter winters’ signal used to develop current UK policy, but when we look instead at flood‐generating rainfall, this seasonal signal is less clear and greater increases are projected. Furthermore, the confidence associated with future projections varies from catchment to catchment and season to season as a result of the varying ability of the RCM ensembles, and in some cases, future flood risk projections using RCM outputs may be highly problematic. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号