首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, we examine the distribution and carbon stable isotope signature of dissolved organic carbon (DOC) and humic substances (HS) along a salinity gradient in the Altamaha and Satilla River estuaries. The maximum DOC concentrations in the Altamaha and Satilla were 10 and 29 mg C l−1, respectively, though concentrations were similar at the mouth of both estuaries. There was a decrease in HS content of DOC from 50 to 80% at the head of the estuaries to 10% at salinities higher than 30‰. The δ13C DOC varied between −25.5 and −19‰ and between −27 and −21‰ in the Altamaha and Satilla estuaries, respectively. The tendency towards more depleted δ13C DOC in the Satilla, especially in the lower salinity portion of this estuary, suggests greater terrestrial inputs in the Satilla than in the Altamaha. Seasonal fluctuations were observed in the form of increased (two to three times) range in DOC concentration, heavier δ13C DOC and increased proportion of estuarine–marine-derived DOC (average enrichment of δ13C DOC from +1 to +2) during low river flow (July–October). The δ13C HS in both rivers showed a similar trend, but was consistently more depleted than DOC, with an average range from −28 to −24.5‰. This suggests that HS have larger proportions of terrestrial components (a maximum of >60% at the mouth of the estuary) than DOC. The less depleted δ13C values of DOC in comparison with HS indicate a different source for the non-humic (non-HS) component of DOC (range in δ13C non-HS, −22 to −16‰). That source could either be the decomposition of detrital material derived from saltmarsh environments or microalgal-derived DOC of estuarine or marine origins.  相似文献   

2.
Distribution and seasonal variability of dissolved organic carbon (DOC) and surface active substances (SAS) were studied along the depth profile (15 m) in a small eutrophicated and periodically anoxic sea lake (Rogoznica Lake, Eastern Adriatic coast) in 1996 and 1997. The range of DOC concentrations was characteristic for productive coastal marine ecosystems (60% of samples in the range of 1–2 mg l−1and 40% between 2 and 3 mg l−1). Distribution of SAS concentrations was uniform and shifted toward higher concentrations in comparison to other coastal areas in the Adriatic Sea. Eutrophication in the lake is generated by nutrient recycling under anaerobic conditions. Systematically higher concentrations of chlorophyll a, DOC and SAS were determined at the chemocline in the bottom layer (10–12 m) than in the upper water layer (0·5–2 m). Seasonal variability of organic matter was discussed regarding distributions of microphytoplankton (cells >20 μm) and photosynthetic pigments as well as oxygen and salinity changes along the depth profile. The dissolved oxygen saturation reaching up to 300% in the water layer between 8 m and 10 m depths in May and June 1996, was correlated with enhanced concentrations of phytoplankton biomass (reflected as chl a and b, fucoxanthin, peridinin, zeaxanthin) and increased concentrations of DOC and SAS.  相似文献   

3.
Measurement of the influence of salinity on floc density and strength   总被引:3,自引:0,他引:3  
The effective density and the strength of flocs formed in the laboratory from mud from the Tamar Estuary reached a maximum value at a salinity of 10–15‰ within the concentration range studied (0.1–1.0 g liter−1). For a constant salinity and concentration, the density decreases with increasing floc size. The strength of the flocs increases with the floc diameter. However, the strength of the individual particle bonds within the floc decreases with size. Large flocs were relatively more brittle than smaller ones. The results suggest that larger flocs may be disrupted by the formation of unequal fragments.  相似文献   

4.
A detailed analysis of dissolved organic carbon (DOC) distribution in the Western Arctic Ocean was performed during the spring and summer of 2002 and the summer of 2003. DOC concentrations were compared between the three cruises and with previously reported Arctic work. Concentrations of DOC were highest in the surface water where they also showed the highest degree of variability spatially, seasonally, and annually. Over the Canada Basin, DOC concentrations in the main water masses were: (1) surface layer (71±4 μM, ranging from 50 to 90 μM); (2) Bering Sea winter water (66±2 μM, ranging from 58 to 75 μM); (3) halocline layer (63±3 μM, ranging from 59 to 68 μM), (4) Atlantic layer (53±2 μM, ranging from 48 to 57 μM), and (5) deep Arctic layer (47±1 μM, ranging from 45 to 50 μM). In the upper 200 m, DOC concentrations were correlated with salinity, with higher DOC concentrations present in less-saline waters. This correlation indicates the strong influence that fluvial input from the Mackenzie and Yukon Rivers had on the DOC system in the upper layer of the Chukchi Sea and Bering Strait. Over the deep basin, there appeared to be a relationship between DOC in the upper 10 m and the degree of sea-ice melt water present. We found that sea-ice melt water dilutes the DOC signal in the surface waters, which is contrary to studies conducted in the central Arctic Ocean.  相似文献   

5.
Dissolved organic carbon (DOC), stable carbon isotopic (δ13C) compositions of DOC and particulate organic carbon (POC), and elemental C/N ratios of POC were measured for samples collected from the lower Mississippi and Atchafalaya rivers and adjacent coastal waters in the northern Gulf of Mexico during the low flow season in June 2000 and high flow season in April 2001. These isotopic and C/N results combined with DOC measurements were used to assess the sources and transport of terrestrial organic matter from the Mississippi and Atchafalaya rivers to the coastal region in the northern Gulf of Mexico. δ13C values of both POC (−23.8‰ to −26.8‰) and DOC (−25.0‰ to −29.0‰) carried by the two rivers were more depleted than the values measured for the samples collected in the offshore waters. Strong seasonal variations in δ13C distributions were observed for both POC and DOC in the surface waters of the region. Fresh water discharge and horizontal mixing played important roles in the distribution and transport of terrestrial POC and DOC offshore. Our results indicate that both POC and DOC exhibited non-conservative behavior during the mixing especially in the mid-salinity range. Based on a simple two end-member mixing model, the comparison of the measured DOC-δ13C with the calculated conservative isotopic mixing curve indicated that there was a significant in situ production of marine-derived DOC in the mid- to high-salinity waters consistent with our in situ chlorophyll-a measurements. Our DOC-δ13C data suggest that a removal of terrestrial DOC mainly occurred in the high-salinity (>25) waters during the mixing. Our study indicates that the mid- to high- (10–30) salinity range was the most dynamic zone for organic carbon transport and cycling in the Mississippi River estuary. Variability in isotopic and elemental compositions along with variability in DOC and POC concentrations suggest that autochthonous production, bacterial utilization, and photo-oxidation could all play important roles in regulating and removing terrestrial DOC in the northern Gulf of Mexico and further study of these individual processes is warranted.  相似文献   

6.
Turbidity and sediment transport in a muddy sub-estuary   总被引:2,自引:0,他引:2  
Sub-estuaries, i.e. tidal creeks and also larger estuaries that branch off the stem of their main estuary, are commonplace in many estuarine systems. Their physical behaviour is affected not only by tributary inflows, winds and tides, but also by the properties and behaviour of their main estuary. Measurements extending over more than an annual cycle are presented for the Tavy Estuary, a sub-estuary of the Tamar Estuary, UK. Generally, waves are small in the Tavy because of the short wind fetch. A several-hour period of up-estuary winds, blowing at speeds of between 7 and 10 m s−1, generates waves with significant wave heights of 0.25 m and a wave periodicity of 1.7 s that are capable of eroding the bed over the shallow, ca. 1.5 m-deep mudflats. Waves also influence sedimentation within and near salt marsh areas. An estuarine turbidity maximum (ETM) occurs in the Tavy's main channel, close to the limit of salt intrusion at HW. Suspended particulate matter (SPM) concentrations typically are less than 40 mg l−1 at HW, although concentrations can exceed 80 mg l−1 when tides and winds are strong. Flood-tide SPM inputs to the Tavy from the Tamar are greater during high runoff events in the River Tamar and also at spring tides, when the Tamar has a high-concentration ETM. Higher SPM concentrations are experienced on the mudflats following initial inundation. Without wave resuspension, this is followed by a rapid decrease in SPM for most of the tide, indicating that the mudflats are depositional at those times. SPM concentrations on the mudflats again increase sharply prior to uncovering. Peak ebb tidal speeds at 0.15 m above the mudflat bed can exceed 0.26 m s−1 at spring tides and 0.4 m s−1 following high runoff events, which are sufficient to cause resuspension. Time-series measurements of sediment bed levels show strong seasonal variability. Higher and lower freshwater flows are associated with estimated, monthly-mean sediment transport that is directed out of, or into, the upper sub-estuary, respectively. Seasonal sediment transfers between the estuary and its sub-estuary are discussed.  相似文献   

7.
Understanding trace metal behaviour in estuarine environments requires sampling strategies and analytical methods adapted to strong physical and geochemical gradients. In this study, we present a specific sampling strategy covering a wide range of hydrological conditions during nine cruises in 2003–2007 to characterise the behaviour of three dissolved metals (uranium, vanadium and molybdenum) in surface and bottom water along the salinity gradient of the highly turbid macrotidal Gironde Estuary using a solid–liquid extraction. Uranium behaved conservatively whatever the water discharges observed. The slight dissolved U depletion compared to the theoretical dilution line between the fluvial and marine end-members occasionally observed in the low salinity range (0–3) was attributed to the mixing of different water bodies of the Gironde tributaries. In contrast, dissolved V behaviour was largely influenced by the hydrological conditions, showing increasingly pronounced addition with decreasing freshwater discharges, (i.e. increasing residence times of water and particles in the estuary). This addition of dissolved V in the low- to mid-salinity range was attributed to desorption processes observed in the Maximum Turbidity Zone (MTZ). The distribution of dissolved Mo concentrations along the salinity gradient was highly variable. Apparent conservative, and non-conservative behaviours were observed and were related to the concomitance of desorption from SPM, inputs from sediments for additive distribution and biological uptake and removal into sediments for subtractive distribution. Based on the whole database (2003–2007), annual net fluxes to the coastal ocean were estimated for dissolved U (15.5–16.6 t yr−1) and V (31.3–36.7 t yr−1).  相似文献   

8.
本文基于2015年7月长江口的现场调查资料,分析讨论了长江河口区溶解态铁(DFe)的含量分布与混合行为及其影响因素。结果表明:长江径流携带大量的DFe入海,且口内区(Ⅰ)浓度高于混合区(Ⅱ)和外海区(Ⅲ),平均浓度分别为166.45±6.26nmol/L,14.04±8.80nmol/L和6.18±1.51nmol/L。受去除作用和海水稀释的影响,在河口区DFe的浓度下降率达到96.92%。DFe浓度与盐度的关系符合指数模型,由模型与理论稀释线估算的长江口海域DFe的理论最大去除率为97.75%,与实际测得的最大浓度下降率相近。长江冲淡水、苏北沿岸流和台湾暖流影响DFe的水平分布。受长江冲淡水影响,长江口外海域DFe浓度高达176.50nmol/L。苏北沿岸流主要影响研究区域北部的表层水,其携带的DFe浓度低于长江冲淡水。台湾暖流是导致研究区域东南部DFe浓度较低的主要原因,使得中层和底层水中浓度分别低至4.04nmol/L和4.79nmol/L。另外,在表层海水中DFe的分布受到叶绿素a、溶解有机碳和溶解氧的共同影响,DFe与叶绿素a、溶解氧呈显著负相关,与溶解有机碳呈显著正相关。  相似文献   

9.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献   

10.
Particle-bound phosphorus along an urbanized coastal plain estuary   总被引:1,自引:0,他引:1  
The distribution of particle-bound phosphorus in the suspended sediment of the Delaware Estuary was examined with a sequential chemical leaching technique. The phosphorus content of particles was highest in the tidal river (140–250 μmol g−1) near major anthropogenic inputs. Despite this enrichment of river particles with phosphorus, suspended particles within the salinity gradient had a phosphorus content more similar to the world's average. Sequential chemical leaches revealed that particulate phosphorus was associated with organic matter, aluminum oxides, iron oxides, and apatite in all areas of the estuary. However, ‘excess’ particle-bound phosphorus in the tidal river was associated mainly with iron oxides (27%), aluminum oxides (23%), and organic matter (50%). Within the salinity gradient, particulate phosphorus associated with iron oxides, aluminum oxides, and apatite all decreased with increasing salinity. Estuarine mixing was simulated to determine whether the observed decreases in particle-bound phosphorus pools in field samples were due to release into solution. During simulated mixing, particulate phosphorus associated with iron and aluminum oxides decreased, but no change was observed in apatite-bound phosphorus. The results of the mixing study combined with the observed particle-bound phosphorus distributions suggest that phosphate concentrations along the Delaware Estuary may be partially ‘buffered’ by aluminum and iron oxide phases.  相似文献   

11.
Total and reactive mercury concentrations have been measured on samples of surface water taken along the shores of the Bay of Biscay and in the Gironde Estuary. In the low turbid areas of the Bay of Biscay the average concentration of total mercury of unfiltered samples is 3.5 ± 0.7 (n = 15) and the reactive mercury 2.1 ± 0.7 (n = 12) pmol l−1; the high levels, up to 27.6 (total mercury) and 4.6 (reactive mercury) pmol l−1 are from the most turbid samples taken from the Marennes-Oléron basin. In the Gironde Estuary, the distribution of total dissolved mercury rises to a peak of concentration (38 pmol l−1) within the high turbidity zone where the salinity is lower than 10‰. The possible origin of this pattern of distribution is discussed.  相似文献   

12.
The potential of eel (Anguilla anguilla) as a monitoring species for the Thames Estuary, UK, was examined. Hepatic cytochrome P4501A [7-ethoxyresorufin O-deethylase (EROD) activity] and blood vitellogenin (Western analysis) were investigated as biomarkers of exposure to, respectively, organic contaminants and to contaminants showing estrogenic activity. Hepatic microsomal EROD activities in A. anguilla from seven sites in the Thames Estuary in May 1998 varied three-fold (111 +/- 24 to 355 +/- 42 pmol min-1 mg protein-1) (mean +/- S.E.M.) and showed correlation with salinity; however, the latter relationship was not maintained at other times of the year. The range of EROD activities was two- to eight-fold higher than the 37 +/- 8 pmol min-1 mg-1 for A. anguilla from the relatively clean Tamar Estuary. beta-Naphthoflavone treatment (5 mg kg-1 wet wt.; 2 days) of Thames A. anguilla produced a two-fold increase in hepatic microsomal EROD activity. Comparing the Thames EROD data with those for A. anguilla from well-characterised contaminated sites in the Netherlands (Van der Oost, R., Goks?yr, A., Celander, M., Heida, H., & Vermeulen, N. P. E. 1996. Aquatic Toxicology, 36, 189-222), the Thames is suggested to be moderately impacted by polycyclic aromatic hydrocarbons and related contaminants. 17-beta-Estradiol treatment produced the appearance of a plasma protein of 211 Kd app. mol. wt. (recognised by antibodies to vitellogenin of Morone saxatilis), but putative vitellogenin could not be detected in A. anguilla from selected sites in the Thames Estuary.  相似文献   

13.
This study addresses sources and diagenetic state of early-season dissolved organic matter (DOM) in the Northeast Water Polynya (NEWP) area northeast of Greenland from distributions of humic substance fluorescence (HSfl), dissolved organic carbon (DOC), and dissolved organic nitrogen (DON) in the water column inside and outside the NEWP area. The water masses of the polynya area had acquired their spring/summer temperature–salinity characteristics at the time of sampling, and also had individual, different DOM signatures. DOC concentrations were variable within and among water masses in the polynya area, indicating patchy local sources and sinks of DOC. PySW and polynya intermediate water (PyIW) had higher average DON concentrations and average lower C:N ratios than polynya bottom water (PyBW), indicating a larger fraction of fresh DOM in PySW and PyIW than in PyBW. Ice-covered, polynya area surface waters (PySW) had higher DOC concentrations (113±14 μM, n=68) than surface water (SW) outside the polynya area (96±18 μM, n=6). The DOM C:N ratios in a low-salinity, ice-melt subgroup of PySW samples indicate labile material, and these low-salinity surface waters appeared to have a local DOC and DON source. In contrast, HSfl was significantly lower inside than outside the NEWP area. Despite the lower HSfl values within the NEWP area, the PySW values were high when compared to open-ocean water. There were no local terrestrial sources for HSfl to the NEWP area and the East Greenland Current is therefore proposed as a likely source of allochtonous HSfl. When HSfl was used as a conservative tracer, up to 70% of the water in PySW and PyIW was found to be derived from SW, which contains a high fraction of water from the East Greenland Current. Similarly, a mixing model based on HSfl indicated that 80% of early-season DOC and 90–100% of early-season DON in PySW and PyIW were derived from SW, indicating a potentially high fraction of terrestrially-derived, relatively refractory DOM in the early-season NEWP area.  相似文献   

14.
During the first year of the Northeast Pacific GLOBEC program we examined the spatial distributions of dissolved and particulate organic carbon and nitrogen in the surface waters off the Oregon and Washington coasts of North America. Eleven east–west transects were sampled from nearshore waters to 190 km offshore. Hydrographic data and the distribution of inorganic nutrients were used to characterize three distinct water sources: oligotrophic offshore water, the Columbia River plume, and the coastal upwelling region inshore of the California Current. Warm, high salinity offshore water had very low levels of inorganic nutrients, particulate organic carbon (POC) and dissolved organic carbon (DOC). Warm, low salinity water in the Columbia River plume was relatively low in nitrate, but showed a strong negative correlation between salinity and silicate. The river plume water had the highest levels of total organic carbon (TOC) (up to 180 μM) and DOC (up to 150 μM) observed anywhere in the sampling area. Cold, high salinity coastal waters had high nutrient levels, moderate to high levels of POC and particulate organic nitrogen (PON), and low to moderate levels of DOC and dissolved organic nitrogen (DON). Each of these regions has characteristic C:N ratios for particulate and dissolved organic material. The results are compared to concentrations and partitioning of particulate and dissolved organic carbon and nitrogen in other regions of the North Pacific and North Atlantic Oceans.  相似文献   

15.
Water samples from the Tamar Estuary oxidized manganese when supplemented with Mn2+ (2 mgl−1). The rates of oxidation were depressed in the presence of various metabolic inhibitors. The effect of Mn2+ and temperature on the rate of manganese oxidation suggested that a biological process was largely responsible for converting Mn2+ to Mn4+. Rates of manganese oxidation were much higher in freshwater (3·32 μgl−1 h−1 in water containing 30 mgl−1 of suspended matter) than in saline water (0·7 μgl−1 h−1 in water of salinity 32‰) containing the same amount of particulate matter. The rate of manganese oxidation was proportional to the particulate load (up to 100 mgl−1 particulates).  相似文献   

16.
Dissolved organic nitrogen (DON), dissolved organic carbon (DOC) and inorganic nutrient concentrations were determined in samples from an area encompassing the Northeast Water Polynya from June to August 1993. In June, still ice-covered polynya area surface waters (PySW) had significantly higher (p<0.05) DOC concentrations (110 μM, n=68) than surface water outside the polynya area (96 μM, n=6). Melting ice and ice algae are suggested as DOC sources. DOC concentrations found in this study are consistent with other studies showing higher DOC concentrations in the Arctic than in other ocean areas. As the productive season progressed, DOC concentrations in Polynya surface water (PySW) decreased (p<0.05) from 110 to 105 μM, while DON concentrations increased (p<0.05) from 5.6 to 6.1 μM, causing a significant decrease (p<0.05) in the C : N ratios of DOM from spring (C : N ratio 20) to summer (C : N ratio 17). We found a significant (p<0.05) decrease in the DOM C : N ratio in all water masses within the polynya area as the productive season progressed. DON was the largest fraction of total dissolved nitrogen (TDN) in PySW and surface waters outside the polynya area. TDN was calculated as the sum of DON, nitrate, nitrite and ammonium concentrations. DON increased (p<0.05) from 62% to 73% of TDN in PySW from spring to summer, a result of increasing DON concentrations and decreasing inorganic nitrogen concentrations over the productive season. The seasonal accumulation of DON and the corresponding decrease in nitrate concentrations in waters with primary production indicate that it is important to take the DON pool into account when estimating export production from nitrate concentration decreases in surface waters. PySW TDN concentrations decreased (p<0.05) from 9.1 (n=61) to 8.6 μM (n=60) from spring (May 25 through June 19) to summer (July 1 through July 27). The seasonal decrease in surface water TDN concentrations corresponded to increases in TDN concentrations in deeper water masses within the Polynya. Most of the TDN increase in deep water was in the form of DON. A possible explanation is that PON was dissolved (partially remineralized) in the water column at mid depths, causing increases in the DON concentration. Transfer of N from PySW (with a short residence time in the polynya area) to Polynya Intermediate Water and deep waters of the Norske and Westwind Trough with multi-year residence times keeps N from leaving the polynya area. In spring, nutrients from degradation of OM in PyIW could support primary production. The role of PyIW as an OM trap could be important in supporting primary production in the polynya area.  相似文献   

17.
During France JGOFS campaign ANTARES 2 (R.V. Marion Dufresne), samples were taken along a section of the 62°E meridian from 49° to 66°S. The high temperature catalytic oxidation (HTCO) method was used to determine the concentration of dissolved organic carbon (DOC). The analyses were conducted both on-board ship and after the cruise in the laboratory. Collecting and storing acidified samples for post-cruise analysis induced no significant differences. The use of two separate but identical channels on the carbon analyzer increased the number of samples analysed per day and allowed independent monitoring of the instrument blank and the calibration of the detector response. The mixed layer concentrations of organic carbon varied from about 52 μM C in the Antarctic Divergence (64°S) to about 63 μM C in the Polar Frontal Zone (49°S). Vertical profiles showed a slight, but significant, decrease in organic carbon below the mixed layer, to about 42 μM C below 2000 m across the transect. The homogeneity and low concentration of organic carbon in deep water is consistent with values recently reported for the equatorial Atlantic and Pacific Ocean and supports the evidence for a constant deep water DOC concentration. In addition, this provides a verification of the instrument performance, thus validating observed DOC data trends and allowing a comparison with the ‘modern' DOC literature. In general, the organic carbon concentration in the mixed layer was lower than previously published data of the main ocean basins, which might -reflect the low chlorophyll a concentration (<0.5 μg/l) encountered in this region. Along the 62°E meridian section, organic carbon showed a trend with corresponding measurements of phytoplankton biomass and bacterial production, underlining the dependence of bacterial growth on a pool of ‘freshly' produced DOC. Organic carbon was found to exhibit a weak inverse trend versus apparent oxygen utilization (AOU). This suggests that only a small part of the oxygen consumption is due to the mineralisation of DOC.  相似文献   

18.
Sources and discharges of dissolved organic carbon (DOC) from the central Sumatran river Siak were studied. DOC concentrations in the Siak ranged between 560 and 2594 μmol l−1 and peak out after its confluence with the river Mandau. The Mandau drains part of the central Sumatran peatlands and can be characterized as a typical blackwater river due to its high DOC concentration, its dark brown-coloured, acidic water (pH 4.4–4.7) and its low concentration of total suspended matter (12–41 mg l−1). The Mandau supplies about half of the DOC that enters the Siak Estuary where it mixes conservatively with ocean water. The DOC input from the Siak into the ocean was estimated to be 0.3 Tg C yr−1. Extrapolated to entire Indonesia the data suggest a total Indonesian DOC export of 21 Tg yr−1 representing 10% of the global riverine DOC input into the ocean.  相似文献   

19.
A broad community intercalibration exercise for accurate measurement of dissolved organic carbon (DOC) in seawater has been carried out over a period of 5 years. A set of 10 natural samples with DOC content from 40 to 200 μM C were accompanied by two glucose standards and a “zero C” blank; all sealed in glass ampoules. Samples were sent to all interested analysts for “blind” analysis; 62 laboratories in 17 countries participated. A total of 59 separate analyses were determined to be acceptable by screening criteria based on standards and blank; another nine sets of analyses did not pass the screening. The majority of the analyses, both those passing and those that did not, were performed with high temperature combustion (HTC) methods, six sets of analyses were done using wet chemical oxidation methods.From the 53 sets of acceptable HTC analyses, the coefficient of variation (%CV) for analytical comparability of the samples was 10% (“community precision”). It is estimated that the individual replicate injection precision for most instruments was approximately 2% and that no additional variability was caused by differences within the ampoules of individual samples. The additional variability over 2% was likely a result of both random and systematic differences in analytical capabilities from instrument to instrument and from day to day for individual instruments. With an arbitrary selection after the fact, smaller subsets of analysts can show comparability better than 10% and duplicate or triplicate runs on different days of the full sets of samples in several laboratories showed comparability in the 2–6.5% range. Experienced oceanic analysts, with internal or shared reference materials, can now show reproducibility and comparability at a level closer to 2%.Preliminary use of DOC reference materials by 14 participants showed day-to-day reproducibilities for their laboratories in the 2–6% range in most cases; several with poorer reproducibility do not normally perform DOC analyses on samples with concentrations as low as the deep ocean reference used here. Use of these reference materials can also give a demonstration of comparability between laboratories. For credibility of DOC analyses, it is necessary for analysts to use community reference materials and report results of their analytical performance with these references.This paper does not identify individual data nor should it be considered an evaluation of individual laboratories or analysts. The purpose is to show the summary picture of the international community of DOC analysts as it existed in the mid- to late 1990s.  相似文献   

20.
A procedure is described for the analysis of the stable carbon isotopic composition of dissolved organic carbon (DOC) in natural waters from marine and higher-salinity environments. Rapid (less than 5 min) and complete oxidation of DOC is achieved using a modification of previous photochemical oxidation techniques. The CO2 evolved from DOC oxidation can be collected in less than 10 min for isotopic analysis. The procedure is at present suitable for oxidation and collection of 1–5 μmol of carbon and has an associated blank of 0.1–0.2 μmol of carbon.Complete photochemical oxidation of DOC standards was demonstrated by quantitative recovery of CO2 as measured manometrically. Isotopic analyses of standards by photochemical and high-temperature sealed-tube combustion methods agreed to within 0.3.. Photochemical oxidation of DOC in a representative sediment pore-water sample was also quantitative, as shown by the excellent agreement between the photochemical and sealed-tube methods. The δ13C values obtained for pore-water DOC using the two methods of oxidation were identical, suggesting that the modified photochemical method is adequate for the isotopically non-fractionated oxidation of pore-water DOC.The procedure was evaluated through an analysis of DOC in pond and pore waters from a hypersaline microbial mat environment. Concentrations of DOC in the water column over the mat displayed a diel pattern, but the isotopic composition of this DOC remained relatively constant (average δ13C = −12.4.). Pore-water DOC exhibited a distinct concentration maximum in the mat surface layer, and δ13C of pore-water DOC was nearly 8. lighter at 1.5–2.0-cm depth than in the mat surface layer (0–0.5-cm depth). These results demonstrate the effectiveness of the method in elucidating differences in DOC concentration and δ13C over biogeochemically relevant spatial and temporal scales. Carbon isotopic analysis of DOC in natural waters, especially pore waters, should be a useful probe of biogeochemical processes in recent environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号