首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Coastal Engineering》2006,53(10):825-843
A newly developed two-phase flow model was applied to simulate the sediment movement under 2nd-order Stokes wave sheetflow conditions with different sediment sizes and wave periods. As for the distribution of eddy viscosity and sediment diffusion coefficient, the difference between onshore and offshore phases was considered by using an equivalent sinusoidal velocity amplitude for the asymmetric velocity profile. Sophisticated comparisons between laboratory measurements [O'Donoghue, T., Wright, S., 2004b. Flow tunnel measurements of velocities and sand flux in oscillatory sheetflow for well-sorted and graded sands. Coast. Eng., 51 (11–12), 1163–1184.] and the present numerical simulation were performed for sediment concentration, sediment velocity, sand flux and net transport rate. Four existing engineering models, together with the present two-phase flow model, were introduced for net transport rate prediction. Taking both the net sand transport rate magnitude and direction into account, the present process-based two-phase flow model provided the best estimations, which can simulate both the onshore net transport for medium/coarse sand cases and offshore net transport for fine sand cases with the agreement by a factor of 2 for almost all the considered cases.  相似文献   

2.
Based on a large database of laboratory experiments, the predictability of the conventional one-dimensional vertical Reynolds-averaged Navier–Stokes (RANS) diffusion model is systematically investigated with respect to wave-induced net sediment transport. The predicted net sediment transport rates are compared with the measured data of 176 physical experiments in wave flumes and oscillating water tunnels, covering a wide range of wave conditions (surface, skewed, and asymmetric waves with and without currents), sediment conditions (fine, medium, and coarse sands with median grain diameters ranging from 0.13 to 0.97 mm) and bed forms (flat beds and rippled beds), corresponding to various sediment dynamic regions in the near-shore area. Comparisons show that the majority (73 %) of predictions on a flat bed are within a factor 2 of the measurements. The model behaves much better for medium/coarse sand than for fine sand. The model generally underpredicts the transport rates beneath asymmetric waves and overpredicts the fine sand transport beneath skewed waves. Nevertheless, the model behaves well in reproducing the transport rates under surface waves. A detailed discussion and a quantitative measure of the overall model performance are made. The poor model predictability for fine sand cases is mainly due to the underestimation of unsteady phase-lag effect. It is revealed that the model predictability can be significantly improved by implementing alternative bedload formulas and incorporating more physical processes (mobile-bed roughness, hindered settling, and turbulence damping).  相似文献   

3.
《Coastal Engineering》2005,52(9):745-770
New experiments were carried out in the Large Oscillating Water Tunnel of WL|Delft Hydraulics (scale 1:1) using asymmetric 2nd-order Stokes waves. The main aim was to gain a better understanding of size-selective sediment transport processes under oscillatory plane-bed/sheet-flow conditions. The new data show that for uniform sand sizes between 0.2 < D < 1.0 mm, measured net transport rates are hardly affected by the grain size and are proportional to the third-order velocity moment. However for finer grains (D = 0.13 mm) net sand transport rates change from the ‘onshore’ direction into the ‘offshore’ direction in the high velocity range. A new measuring technique for sediment concentrations, based on the measurement of electro-resistance (see [McLean, S.R., Ribberink, J.S., Dohmen-Janssen, C.M. and Hassan, W.N.M., 2001. Sediment transport measurements within the sheet flow layer under waves and currents. J. Waterw., Port, Coast., Ocean Eng., ISSN 0733-950X]), was developed further for the improved measurement of sediment dynamics inside the sheet-flow layer. This technique enabled the measurements of particle velocities during the complete wave cycle. It is observed that for long period waves (T = 12.0 s), time-dependent concentrations inside the sheet-flow layer are nearly in phase with the time-dependent flow velocities. As the wave period decreases, the sediment entrainment from the bed as well as the deposition process back to the bed lags behind the wave motion more and more. The new data show that size-gradation has almost no effect on the net total transport rates, provided the grain sizes of the sand mixture are in the range of 0.2 < D < 1.0 mm. However, if very fine grains (D = 0.13 mm) are present in the mixture, net total transport rates of graded sand are generally reduced in comparison with uniform sand with the same D50. The transport rates of individual size fractions of a mixture are strongly influenced by the presence of other fractions in a mixture. Fine particles in sand mixtures are relatively less transported than in that uniform sand case, while the opposite occurs for coarse fractions in a mixture. The relative contribution of the coarse grains to the net total transport is therefore larger than would be expected based on their volume proportion in the original sand mixture. This partial transport behaviour is opposite to what is generally observed in uni-directional (e.g. river) flows. This is caused by vertical sorting of grain sizes in the upper bed layer and in the sheet flow and suspension layers. Kinematic sorting is believed to be responsible for the development of a coarse surface layer on top of a relatively fine sub-layer, providing in this way a relatively large flow exposure for the coarser sizes. Furthermore fine grains are suspended more easily than coarse grains to higher elevations in the flow where they are subject to increasing phase-lag effects (settling lags). The latter also leads to reduced net transport rates of these finer sizes.  相似文献   

4.
Sheet flow and suspension of sand in oscillatory boundary layers   总被引:1,自引:0,他引:1  
after revisionTime-dependent measurements of flow velocities and sediment concentrations were conducted in a large oscillating water tunnel. The measurements were aimed at the flow and sediment dynamics in and above an oscillatory boundary layer in plane bed and sheet-flow conditions. Two asymmetric waves and one sinusoidal wave were imposed using quartz sand with D50 = 0.21 mm. A new electro-resistance probe with a large resolving power was developed for the measurement of the large sediment concentrations in the sheet-flow layer. The measurements revealed a three layer transport system consisting of a pick-up/deposition layer, an upper sheet flow layer and a suspension layer.In the asymmetric wave cases the total net transport was directed “onshore” and was mainly concentrated in the thin sheet flow layer (< 0.5 cm) at the bed. A small net sediment flux was directed “offhore” in the upper suspension layer. The measured flow velocities, sediment concentrations and sedimenl fluxes showed a good qualitative agreement with the results of a (numerical) 1DV boundary-layer flow and transport model. Although the model did not describe all the observed processes in the sheet-flow and suspension layer, the computational results showed a reasonable agreement with measured net transport rates in a wide range of asymmetric wave conditions.  相似文献   

5.
6.
《Coastal Engineering》2006,53(11):897-913
For the general purposes of morphodynamic computations in coastal zones, simple formula-based models are usually employed to evaluate sediment transport. Sediment transport rates are computed as a function of the bottom shear stress or the near bed flow velocity and it is generally assumed that the sediment particles react immediately to changes in flow conditions. It has been recognized, through recent laboratory experiments in both rippled and plane bed sheet flow conditions that sediment reacts to the flow in a complex manner, involving non-steady processes resulting from memory and settling/entrainment delay effects. These processes may be important in the cross-shore direction, where sediment transport is mainly caused by the oscillatory motions induced by surface short gravity waves.The aim of the present work is to develop a semi-unsteady, practical model, to predict the total (bed load and suspended load) sediment transport rates in wave or combined wave-current flow conditions that are characteristic of the coastal zone. The unsteady effects are reproduced indirectly by taking into account the delayed settling of sediment particles. The net sediment transport rates are computed from the total bottom shear stress and the model takes into account the velocity and acceleration asymmetries of the waves as they propagate towards the shore.A comparison has been carried out between the computed net sediment transport rates with a large data set of experimental results for different flow conditions (wave-current flows, purely oscillatory flow, skewed waves and steady currents) in different regimes (plane bed and rippled bed) with fine, medium and coarse uniform sand. The numerical results obtained are reasonably accurate within a factor of 2. Based on this analysis, the limits and validity of the present formulation are discussed.  相似文献   

7.
长江南京段末次盛冰期以来的古河谷沉积   总被引:3,自引:0,他引:3  
末次冰期盛冰期海平面大幅度下降,长江发育古深槽。根据沉积物的颗粒状况,南京段古河谷的充填可以分为3期明显的由粗到细的沉积韵律:末次盛冰期深切古河谷,河床窄陡,沉积物颗粒粗,为卵砾石到中砂、粗砂;冰后期河床较宽,沉积物为砾石、粗砂到中砂、细砂;全新世,河流进一步展宽,沉积物为粗砂、中砂到细砂、粉砂,细砂沉积厚度很大。全新世中期河床有数次左右摆动,两侧形成了细砂—砂质黏土互层的沉积。根据不同时期沉积物的颗粒级配情况,推算出各时期河流的起动流速和平均流速,验证不同时期的沉积环境,认为剖面的深切河槽是局部深切的结果。各期河床形态和沉积物的特征,反映了末次盛冰期、冰后期、全新世的气候变化和环境演变。  相似文献   

8.
本文用了一个可考虑相位差作用和波浪边界层非对称性的瞬态理论模型和一个两相紊流模型共同研究非对称歪斜波引起的片流输沙现象。为了解速度偏度和加速度偏度对输沙通量和输沙率的贡献,两相流模型为理论模型提供了必要的相位超前、瞬时侵蚀深度和边界层的发展过程。理论模型研究显示了由速度偏度和加速度偏度引起的向岸阶段和离岸阶段的泥沙运动非对称性,解释了净输沙的产生原因。在以往的非对称歪斜波片流输沙研究中,净输沙的产生主要被归结于相位差作用。本文的研究则表明了非对称的边界层发展所产生的净流量和动床面效应在净输沙产生过程中的比相位差作用更为重要。  相似文献   

9.
To predict sediment transport under oscillatory sheet flow condition, especially for fine sand, is still a challenging research subject in coastal engineering. This paper describes a newly-developed numerical model based on two-phase theory with the use of a one-equation turbulence closure, and its applications in predicting fine sediment suspension in near-prototype oscillatory sheet flow conditions. Model results were compared with comprehensive laboratory measurements of flow velocity and sediment concentration under both symmetrical and asymmetrical oscillatory sheet flows from a large-scale water tunnel. Good agreements between the model results and measurements were achieved and the results demonstrated that the model is capable of reproducing detailed characteristics of sediment entrainment process in the sheet flow regime. The comparisons also revealed the fact that the concentration peaks at flow reversal is associated with the strong vertical sediment transport flux in the pickup layer, which has been widely observed in many laboratory experiments. The effects of flow reversal events on total sediment transport were also discussed.  相似文献   

10.
Prototype scale physical model tests were conducted to investigate the sheetflow sediment transport of uniform sand under different skewed-asymmetric oscillatory flows with and without the presence of relatively strong currents in the opposite direction against wave propagation. Experiments show that in most cases with fine sands, the “cancelling effect” which balances the on-/off-shore net transport under pure asymmetric/skewed oscillatory flows and results a moderate net transport was developed for combined skewed-asymmetric shaped oscillations. However, under certain conditions (T > 5 s) with coarse sands, the onshore sediment transport was enhanced for combined skewed-asymmetric flows. Additionally, the new experimental data under collinear oscillatory flows and strong currents show that offshore net transport rates increase with decreasing velocity skewness and acceleration skewness. Sediment movement behaviors were investigated through analysis of experimental data obtained from the image analysis technique and attempts were made to estimate and formulate the sheetflow layer thickness. Accordingly, sediment transport under oscillatory sheetflow conditions was studied and successfully explained by comparing the bed shear stress and the phase lag parameter at each half cycle. Consequently, these parameters were incorporated in an improved Dibajinia and Watanabe's type sediment transport model. The formula is calibrated against a comprehensive experimental data (331 in total). Good agreement obtained between predictions and measurements shows that the new formula is fulfilled for practical purposes.  相似文献   

11.
Many existing practical sand transport formulae for the coastal marine environment are restricted to a limited range of hydrodynamic and sand conditions. This paper presents a new practical formula for net sand transport induced by non-breaking waves and currents. The formula is especially developed for cross-shore sand transport under wave-dominated conditions and is based on the semi-unsteady, half wave-cycle concept, with bed shear stress as the main forcing parameter. Unsteady phase-lag effects between velocities and concentrations, which are especially important for rippled bed and fine sand sheet-flow conditions, are accounted for through parameterisations. Recently-recognised effects on the net transport rate related to flow acceleration skewness and progressive surface waves are also included. To account for the latter, the formula includes the effects of boundary layer streaming and advection effects which occur under real waves, but not in oscillatory tunnel flows. The formula is developed using a database of 226 net transport rate measurements from large-scale oscillatory flow tunnels and a large wave flume, covering a wide range of full-scale flow conditions and uniform and graded sands with median diameter ranging from 0.13 mm to 0.54 mm. Good overall agreement is obtained between observed and predicted net transport rates with 78% of the predictions falling within a factor 2 of the measurements. For several distinctly different conditions, the behaviour of the net transport with increasing flow strength agrees well with observations, indicating that the most important transport processes in both the rippled bed and sheet flow regime are well captured by the formula. However, for some flow conditions good quantitative agreement could only be obtained by introducing separate calibration parameters. The new formula has been validated against independent net transport rate data for oscillatory flow conditions and steady flow conditions.  相似文献   

12.
A 1DV-RANS diffusion model is used to study sand transport processes in oscillatory flat-bed/sheet flow conditions. The central aim is the verification of the model with laboratory data and to identify processes controlling the magnitude and direction (‘onshore’/‘offshore’) of the net time-averaged sand transport. The model is verified with a large series of measured net sand transport rates, as collected in different wave tunnels for a range of wave-current conditions and grain sizes. Although not all sheet flow details are represented in the 1DV-model, it is shown that the model is able to give a correct representation of the observed trends in the data with respect to the influence of the velocity, wave period and grain diameter. Also detailed mean sediment flux profiles in the sheet flow layer are well reproduced by the model, including the direction change from ‘onshore’ to ‘offshore’ due to a difference in grain size from 0.34 mm (medium sand) to 0.13 mm (fine sand). A model sensitivity study with a selected series of net transport data shows that the stirring height of the suspended sediment εs/ws strongly controls the magnitude and direction of the net sediment transport. Inclusion of both hindered settling and density stratification appears to be necessary to correctly represent the sand fluxes for waves alone and for waves + a superimposed current. The best agreement with a large dataset of net transport measurements is obtained with the 1DV-RANS model in its original settings using a Prandtl–Schmidt number σρ = 0.5.  相似文献   

13.
Sponges are one of the principal agents of bioerosion and sediment production in coral reefs. They generate small carbonate chips that can be found in the sediments, and we investigated whether these could provide a means for assessment of bioerosion applicable to reef monitoring. We tested this hypothesis on samples from 12 Mexican coral reefs distributed along the Pacific coast, where boring sponges were particularly abundant, and quantified the amount of chips in samples of superficial sediment in three grain‐size fractions: fine (<44 μm), medium (44–210 μm) and coarse (>210 μm). The grain‐size distribution varied among reefs, with the majority of the sediment of most reefs being composed of coarse sands, and the medium and fine fractions dominating only at La Entrega and Playa Blanca. All the reefs presented clear evidence of bioerosion by sponges, with the characteristic chips present in the sediment, although at most sites the percentage of chips was very low (from 1% to 3% of the total sediment). Only at La Entrega and Playa Blanca did they constitute a significant fraction of the total sediment (18% and 16%, respectively). While not statistically significant, there was an interesting trend between sponge chips versus sponge abundance that suggests that quantification of the chips in the sediment could be used as a proxy for sponge erosion of the entire community, which cannot be estimated in by laboratory experiments. However, while this methodology could provide an integrated approach to monitor sponge bioerosion, more studies are necessary due to the influence of environmental factors on the transport and deposition of these chips.  相似文献   

14.
Benthic photosynthesis in submerged Wadden Sea intertidal flats   总被引:3,自引:1,他引:3  
In this study we compare benthic photosynthesis during inundation in coarse sand, fine sand, and mixed sediment (sand/mud) intertidal flats in the German Wadden Sea. In situ determinations of oxygen-, DIC- and nutrient fluxes in stirred benthic chamber incubations were combined with measurements of sedimentary chlorophyll, incident light intensity at the sediment surface and scalar irradiance within the sediment. During submergence, microphytobenthos was light limited at all study sites as indicated by rapid response of gross photosynthesis to increasing incident light at the sea floor. However, depth integrated scalar irradiance was 2 to 3 times higher in the sands than in the mud. Consequently, gross photosynthesis in the net autotrophic fine sand and coarse sand flats during inundation was on average 4 and 11 times higher than in the net heterotrophic mud flat, despite higher total chlorophyll concentration in mud. Benthic photosynthesis may be enhanced in intertidal sands during inundation due to: (1) higher light availability to the microphytobenthos in the sands compared to muds, (2) more efficient transport of photosynthesis-limiting solutes to the microalgae with pore water flows in the permeable sands, and (3) more active metabolic state and different life strategies of microphytobenthos inhabiting sands.  相似文献   

15.
青岛海岸带及邻近海域地形和沉积物类型研究   总被引:2,自引:0,他引:2  
研究了青岛海岸带及邻近海域的地形特征、沉积物类型及分布特征。总体看来,沿海岸粒度较粗,为砂、粉砂质砂等,向海深处粒度有逐渐变细的趋势,海深处的沉积物主要为砂—粉砂—黏土,局部为粉砂质黏土、黏土质粉砂和黏土质砂。灵山岛周围,沉积物粒度较粗。胶州湾口内外为一海底深槽,水深流急,冲刷强烈,沉积物粒度非常粗,主要为粗砂、中砂,局部有基岩出露。深槽南北两侧各有一条突出海底的砂脊,平行于深槽延伸方向砂脊由中砂组成,混有少量黏土,北侧砂脊表面呈不规则起伏,南侧砂脊表面则较为平整。胶州湾内沉积物粒度总体较细,主要为粉砂质黏土、黏土质粉砂及砂—粉砂—黏土等。根据沉积物类型及分布特征,可把青岛海岸带及邻近海域的沉积划分为4个沉积区:胶州湾口及滨岸现代沉积区、北部浅海沉积区、南部浅海沉积区和残留—残余沉积区。  相似文献   

16.
A large number of studies have been done dealing with sinusoidal wave boundary layers in the past. However, ocean waves often have a strong asymmetric shape especially in shallow water, and net of sediment movement occurs. It is envisaged that bottom shear stress and sediment transport behaviors influenced by the effect of asymmetry are different from those in sinusoidal waves. Characteristics of the turbulent boundary layer under breaking waves (saw-tooth) are investigated and described through both laboratory and numerical experiments. A new calculation method for bottom shear stress based on velocity and acceleration terms, theoretical phase difference, φ and the acceleration coefficient, ac expressing the wave skew-ness effect for saw-tooth waves is proposed. The acceleration coefficient was determined empirically from both experimental and baseline kω model results. The new calculation has shown better agreement with the experimental data along a wave cycle for all saw-tooth wave cases compared by other existing methods. It was further applied into sediment transport rate calculation induced by skew waves. Sediment transport rate was formulated by using the existing sheet flow sediment transport rate data under skew waves by Watanabe and Sato [Watanabe, A. and Sato, S., 2004. A sheet-flow transport rate formula for asymmetric, forward-leaning waves and currents. Proc. of 29th ICCE, ASCE, pp. 1703–1714.]. Moreover, the characteristics of the net sediment transport were also examined and a good agreement between the proposed method and experimental data has been found.  相似文献   

17.
江苏岸外东沙沙脊群的沉积特征   总被引:1,自引:0,他引:1  
江苏岸外辐射沙洲共由10多条形态完整的大型海底沙脊群构成,地形地貌复杂独特。东沙沙脊群是其中的第二大沙脊群,研究其沉积特征可以为揭示东沙乃至整个辐射沙洲海域的沉积环境提供依据。根据在江苏岸外东沙沙洲和条子泥沙洲(高泥和二分水)分别选取的8个和2个剖面的表层沉积物样粒度分析资料,分析其表层沉积物特征,结果表明:(1)东沙沙脊群的沉积物主要有砂、砂质粉砂和粉砂质砂三种类型;(2)搬运形式以跃移组分为主,悬移组分次之;(3)沉积物的平面分布特征主要表现为,东沙沙脊群的外缘沙洲和沙洲外缘沉积物较粗、越向沙洲中部沉积物越细;在东西方向上,西部细、东部粗;在南北方向上,具有对称分布、分级分布的特点;(4)东沙沙脊群沉积物的分布特征受风浪和潮流影响较大。  相似文献   

18.
Tide-driven bed load transport is an important portion of the net annual sediment transport rate in many shoreface and shelf environments. However, bed load transport under waves cannot be measured in the field and bed load transport by currents without waves is barely measurable, even in spring tidal conditions. There is, consequently, a strong lack of field data and validated models. The present field site was on the shoreface and inner shelf at 2 to 8.5 km offshore the central Dutch coast (far outside the surfzone), where tidal currents flow parallel to the coast. Bed load transports were carefully measured with a calibrated sampler in spring tidal conditions without waves at a water depth of 13–18 m with fine and medium sands. The near-bed flow was measured over nearly a year and used for integration to annual transport rates. An empirical bed load model was derived, which predicts bed load transports that are a factor of > 5 smaller than predicted by existing models. However, they agree with laboratory data of sand and gravel transport in currents near incipient motion. The damped transport rates may have been caused by cohesion of sediment or turbulence damping due to mud or biological activity. The annual bed load transport rate was calculated using a probability density function (pdf) derived from the near-bed current and orbital velocity data which represented the current and wave climate well when compared to 30 years of data from a nearby wave station. The effect of wave stirring was included in the transport calculations. The net bed load transport rate is a few m2/year. This is much less than predicted in an earlier model study, which is partly due to different bed load models but also due to the difference in velocity pdf. The annual transport rate is very sensitive to the probability of the largest current velocities.  相似文献   

19.
粤西水东湾现代沉积环境特征与泥沙搬运路径   总被引:1,自引:0,他引:1  
对粤西水东湾沉积地貌单元的现代沉积物分布特征分析与泥沙净搬运矢量计算表明,滨面斜坡沉积物主要由砂粒级物质组成,粒级参数Md,QD和SK具有从海向岸、自东向西变化的总趋势,泥沙净搬运趋势以向岸和西北为主。落潮三角洲沉积物较其邻近滨面斜坡有所粗化,分选从中部向两侧变好,泥沙在落潮流与波浪驱动下沿落潮三角洲边缘向西运动。口门内潮汐通道深槽泥沙净搬运趋势指向湖。湖区的沉积物以泥质为主,分选中等至差,并形成绕涨潮三角洲的泥沙环流元。  相似文献   

20.
黄河三角洲飞雁滩因入海河口改道而缺乏泥沙来源,导致海滩蚀退10余km。近30a来,蚀退后的浅滩在不同潮流和风浪的作用下,浅海滩沉积物颗粒在空间分布上出现明显的差异,表现为浅水区沉积物粗于深水区,来沙少的沉积区粗于来沙多的沉积区。根据2004年实测沉积物颗粒度参数和实测水流及风浪资料分析,该海滩可以分为三个沉积区:I号沉积区,水深较浅,泥沙补给较少,主要受不同风浪的影响,沉积物颗粒组成较粗,以细砂和粉砂为主,分选良好,目前抗冲能力较强;II号沉积区,水深较浅,水流较弱,常受来自高中低潮滩下泄水流携带的细颗粒泥沙影响,沉积物组成粗细混合,以粉砂质粘土为主,分选较差;III号沉积区,水深大,在潮流和风浪作用下,常有来自沿岸尤其I号沉积区的细颗粒泥沙影响,沉积物组成粗细混合,以粘土质粉砂为主,分选较差。黄河三角洲飞雁滩桩106海滩沉积物空间分布较好地反映了泥沙来源和沉积动力条件,该成果可为海岸海滩防护工程规划设计提供科学依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号