首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We model the macroseismic damage distribution of four important intermediate-depth earthquakes of the southern Aegean Sea subduction zone, namely the destructive 1926 M?=?7.7 Rhodes and 1935 M?=?6.9 Crete earthquakes, the unique 1956 M?=?6.9 Amorgos aftershock (recently proposed to be triggered by a shallow event), and the more recent 2002 M?=?5.9 Milos earthquake, which all exhibit spatially anomalous macroseismic patterns. Macroseismic data for these events are collected from published macroseismic databases and compared with the spatial distribution of seismic motions obtained from stochastic simulation, converted to macroseismic intensity (Modified Mercalli scale, IMM). For this conversion, we present an updated correlation between macroseismic intensities and peak measures of seismic motions (PGA and PGV) for the intermediate-depth earthquakes of the southern Aegean Sea. Input model parameters for the simulations, such as fault dimensions, stress parameters, and attenuation parameters (e.g. back-arc/along anelastic attenuation) are adopted from previous work performed in the area. Site-effects on the observed seismic motions are approximated using generic transfer functions proposed for the broader Aegean Sea area on the basis of VS30 values from topographic slope proxies. The results are in very good agreement with the observed anomalous damage patterns, for which the largest intensities are often observed at distances >?100 km from the earthquake epicenters. We also consider two additional “prediction” but realistic intermediate-depth earthquake scenarios, and model their macroseismic distributions, to assess their expected damage impact in the broader southern Aegean area. The results suggest that intermediate-depth events, especially north of central Crete, have a prominent effect on a wide area of the outer Hellenic arc, with a very important impact on modern urban centers along northern Crete coasts (e.g. city of Heraklion), in excellent agreement with the available historical information.  相似文献   

2.
In this paper, we analyzed the strong ground motion from the November 12, 2017, Kermanshah earthquake in western Iran with moment magnitude (M) of 7.3. Nonlinear and linear amplification of ground motion amplitudes were observed at stations with soft soil condition at hypocentral distances below and above 100 km, respectively. Observation of large ground motion amplitudes dominated with long-period pulses on the strike-normal component of the velocity time series suggests a right-lateral component of movement and propagation of rupture towards southeast. Comparison of the horizontal peak ground acceleration (PGA) from the M 7.3 earthquake with global PGA values showed a similar decay in ground motion amplitudes, although it seems that PGA from the M 7.3 Kermanshah earthquake is higher than global values for NEHRP site class B. We also found that the bracketed duration (Db) was higher in the velocity domain than in the acceleration domain for the same modified Mercalli intensity (MMI) threshold. For example, Db reached ~?30 s at the maximum PGA while it was ~?50 s at the maximum peak ground velocity above the threshold of MMI?=?5. Although the standard design spectrum from Iranian Code of Practice for Seismic Resistant Design of Buildings (standard No. 2800) seems to include appropriate values for the design of structures with fundamental period of 1 s and higher, it is underestimated for near-field ground motions at lower periods.  相似文献   

3.
The variations in the density of the ionospheric F2 layer maximum (NmF2) under the action of the zonal plasma drift perpendicularly to the magnetic (B) and electric (E) fields in the direction geomagnetic west-geomagnetic east have been studied using the three-dimensional nonstationary theoretical model of electron and ion densities (N e and N i ) and temperatures (T e and T i ) in the low-latitude and midlatitude ionospheric F region and plasmasphere. The method of numerical calculations of N e , N i , T e , and T i , including the advantages of the Lagrangian and Eulerian methods, is used in the model. A dipole approximation of the geomagnetic field (B), taking into account the non-coincidence of the geographic and geomagnetic poles and differences between the positions of the Earth’s and geomagnetic dipole centers, is accepted in the calculations. The calculated NmF2 and altitudes of the F2 layer maximum (hmF2) have been compared with these quantities measured at 16 low-latitude ionospheric sounding stations during the geomagnetically quiet period October 11–12, 1958. This comparison made it possible to correct the input model parameters: the NRLMSISE-00 model [O], the meridional component of the neutral wind velocity according to the HWW90 model, and the meridional component of the equatorial plasma drift due to the electric field specified by the empirical model. It has been indicated that the effect of the zonal E × B plasma drift on NmF2 can be neglected under daytime conditions and changes in NmF2 and hmF2 under the action of this drift are insignificant under nighttime conditions north of 25° and south of ?26° geomagnetic latitude. The effect of the zonal E × B plasma drift on NmF2 and hmF2 is most substantial in the nightside ionosphere approximately from ?20° to 20° geomagnetic latitude, and the neglect of this drift results in an up to 2.4-fold underestimation of NmF2. The found dependence of the effect of the zonal E × B plasma drift on NmF2 and hmF2 on geomagnetic latitude is related to the longitudinal asymmetry of B, asymmetry of the neutral wind about the geomagnetic equator, and changes in the meridional E × B plasma drift at a change in geomagnetic longitude.  相似文献   

4.
Using model simulations, the morphological picture (revealed earlier) of the disturbances in the F 2 region of the equatorial ionosphere under quiet geomagnetic conditions (Q-disturbances) is interpreted. It is shown that the observed variations in the velocity of the vertical E × B plasma drift, related to the zonal E y component of the electric field, are responsible for the formation of Q-disturbances. The plasma recombination at altitudes of the lower part of the F 2 region and the dependence of the rate of this process on heliogeophysical conditions compose the mechanism of Q-disturbance formation at night. The daytime positive Q-disturbances are caused exclusively by a decrease in the upward E × B drift, and this type of disturbances could be related to the known phenomenon of counter electrojet. Possible causes of formation of the daytime negative Q-disturbances are discussed.  相似文献   

5.
Based on data from ground-based vertical sounding stations, the behaviors of the ionosphere F region before a strong M 6.8 earthquake off the coast of Hokkaido, Japan, and during the moderate magnetic storm before this earthquake are compared. It was found that the critical frequency of the ionosphere F region (foF2) above the Wakkanai ground-based ionosphere vertical sounding station, which was located in the preparation zone of this earthquake, suffered a long-term disturbance of slightly more than an hour nearly half a day before the earthquake. The magnitude of earthquake-induced disturbance is comparable to that caused by a magnetic storm.  相似文献   

6.
The North Anatolian Fault (NAF) extends for about 1500 km from Karliova to the east, to the Egean Sea in the west. The Marmara region, located near the western end of the NAF, is a tectonically active zone characterized by the transition between a strike slip stress regime and an extensional one in the Aegean Sea. Microseismic studies performed around the Marmara Sea in 1995 [Tectonophysics 316, 2000, 1], and just before the 1999 Izmit Earthquake Bull. Seism. Soc. Am. 92, 2002a, 361;J. Seismol. 6, 2002b, 287) permitted the analysis of the evolution of seismicity connected to this destructive earthquake and its sequels. Several observations indicate that the aftershock distribution fits well the EW orientation of the NAF, but the ruptures are not simple and linear as a first glance would suggest. Instead they are segmented in at least five pieces as shown by the slip variation and aftershock clusters, showing complexity at different scales (Bull. Seism. Soc. Am. 92, 2002a, 361). There is still a gap, across the northern border of the Marmara Sea that has not ruptured, and this is the only sector that did not break on the NAF since the 1939 great Erzincan earthquake. Will it rupture as a whole with a large magnitude earthquake, or by segments with smaller magnitude events? The Hurst analysis of the overall behaviour of the seismicity in the Marmara region since historical times shows that if a large earthquake occurs in the near future, it might break the complete gap. The Hurst character of the time variation of seismicity is persistent with H= 0.82. The aftershocks of the 1999 Izmit earthquake can be analyzed by using the Hurst method, showing an exceptionally high persistent memory.  相似文献   

7.
Tectonic activities, electrical structures, and electromagnetic environments are major factors that affect the stability of spontaneous fields. The method of correlating regional synchronization contrasts(CRSC) can determine the reliability of multi-site data trends or shortimpending anomalies. From 2008 to 2013, there were three strong earthquake cluster periods in the North–South seismic belt that lasted for 8–12 months. By applying the CRSC method to analyze the spontaneous field E_(SP) at 25 sites of the region in the past 6 years, it was discovered that for each strong earthquake cluster period, the E_(SP) strength of credible anomalous trends was present at minimum 30%of the stations. In the southern section of the Tan-Lu fault zone, the E_(SP) at four main geoelectric field stations showed significant anomalous trends after June 2015, which could be associated with the major earthquakes of the East China Sea waters(MS7.2) in November 2015 and Japan's Kyushu island(MS7.3) in April 2016.  相似文献   

8.
This paper describes an effective implementation of the inverse data-space multiple elimination method via the three-dimensional (3D) curvelet domain. The method can separate the surface-related operator (A) and primaries (P 0) through seismic data matrix inversion. A 3D curvelet transform is introduced to sparsely represent the seismic data in the inverse data space. Hence, this approach is suitable for obtaining an accurate solution because of its multiscale and multidirectional analysis properties. The L1 norm is used to promote sparseness in the transform domain. Then, a high-fidelity separation of the operator (A) and the primaries (P 0) is realized. The proposed method is applied to synthetic data from a model containing a salt structure. We compare the results with that of the traditional inverse data-space multiple elimination method and also with that of two-dimensional surface-related multiple elimination. The findings fully demonstrate the superiority of the proposed method over the traditional inverse method; moreover, the proposed method protects the primary energy more effectively than the SRME method.  相似文献   

9.
It has been two decades since the last comprehensive standard model of ambient earth noise was published Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The PETERSON model was updated by analyzing the absolute quietest conditions for stations within the GSN (Berger et al. in J Geophys Res 109, 2005; Mcnamara and Buland in Bull Seism Soc Am 94:1517–1527, 2004; Ringler et al. in Seismol Res Lett 81(4) doi:10.1785/gssrl.81.4.605, 2010). Unfortunately, both the original model and the updated models did not include any deployed station in North Africa and Middle East, which reflects the noise levels within the desert environment of those regions. In this study, a survey was conducted to create a new seismic noise model from very broadband stations which recently deployed in North Africa. For this purpose, 1 year of continuous recording of seismic noise data of the Egyptian National Seismic Network (ENSN) was analyzed in order to create a new noise model. Seasonal and diurnal variations in noise spectra were recorded at each station. Moreover, we constructed a new noise model for each individual station. Finally, we obtained a new cumulative noise model for all the stations. We compared the new high-noise model (EHNM) and new low-noise model (ELNM) with both the high-noise model (NHNM) and low-noise model (NLNM) of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The obtained noise levels are considerably lower than low-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993) at ultra long period band (ULP band), but they are still below the high-noise model of Peterson (Observations and modelling of seismic background noise, US Geological Survey, open-file report 93–322, 1993). The results of this study could be considered as a first step to create permanent seismic noise models for North Africa and Middle East regions.  相似文献   

10.
It is a common opinion that only crustal earthquakes can occur in the Crimea–Black Sea region. Since the existence of deep earthquakes in the Crimea–Black Sea region is extremely important for the construction of a geodynamic model for this region, an attempt is made to verify the validity of this widespread view. To do this, the coordinates of all earthquakes recorded by the stations of the Crimean seismological network are reinterpreted with an algorithm developed by one of the authors. The data published in the seismological catalogs and bulletins of the Crimea–Black Sea region for 1970–2012 are used for the analysis. To refine the coordinates of hypocenters of earthquakes in the Crimea–Black Sea region, in addition to the data from stations of the Crimean seismological network, information from seismic stations located around the Black Sea coast are used. In total, the data from 61 seismic stations were used to determine the hypocenter coordinates. The used earthquake catalogs for 1970–2012 contain information on ~2140 events with magnitudes from–1.5 to 5.5. The bulletins provide information on the arrival times of P- and S-waves at seismic stations for 1988 events recorded by three or more stations. The principal innovation of this study is the use of the original author’s hypocenter determination algorithm, which minimizes the functional of distances between the points (X, Y, H) and (x, y, h) corresponding to the theoretical and observed seismic wave travel times from the earthquake source to the recording stations. The determination of the coordinates of earthquake hypocenters is much more stable in this case than the usual minimization of the residual functional for the arrival time of an earthquake wave at a station (the difference between the theoretical and observed values). Since determination of the hypocenter coordinates can be influenced by the chosen velocity column beneath each station, special attention is focused on collecting information on velocity profiles. To evaluate the influence of the upper mantle on the results of calculating the velocity model, two different low-velocity and high-velocity models are used; the results are compared with each other. Both velocity models are set to a depth of 640 km, which is fundamentally important in determining hypocenters for deep earthquakes. Studies of the Crimea–Black Sea region have revealed more than 70 earthquakes with a source depth of more than 60 km. The adequacy of the obtained depth values is confirmed by the results of comparing the initial experimental data from the bulletins with the theoretical travel-time curves for earthquake sources with depths of 50 and 200 km. The sources of deep earthquakes found in the Crimea–Black Sea region significantly change our understanding of the structure and geotectonics of this region.  相似文献   

11.
We applied the maximum likelihood method produced by Kijko and Sellevoll (Bull Seismol Soc Am 79:645–654, 1989; Bull Seismol Soc Am 82:120–134, 1992) to study the spatial distributions of seismicity and earthquake hazard parameters for the different regions in western Anatolia (WA). Since the historical earthquake data are very important for examining regional earthquake hazard parameters, a procedure that allows the use of either historical or instrumental data, or even a combination of the two has been applied in this study. By using this method, we estimated the earthquake hazard parameters, which include the maximum regional magnitude $ \hat{M}_{\max } , $ the activity rate of seismic events and the well-known $ \hat{b} $ value, which is the slope of the frequency-magnitude Gutenberg-Richter relationship. The whole examined area is divided into 15 different seismic regions based on their tectonic and seismotectonic regimes. The probabilities, return periods of earthquakes with a magnitude M?≥?m and the relative earthquake hazard level (defined as the index K) are also evaluated for each seismic region. Each of the computed earthquake hazard parameters is mapped on the different seismic regions to represent regional variation of these parameters. Furthermore, the investigated regions are classified into different seismic hazard level groups considering the K index. According to these maps and the classification of seismic hazard, the most seismically active regions in WA are 1, 8, 10 and 12 related to the Alia?a Fault and the Büyük Menderes Graben, Aegean Arc and Aegean Islands.  相似文献   

12.
On July 4, 2006, a MS5.1 earthquake occurred in Wen’an county of Hebei Province of which the epicenter is near the Beijing city. The six geoelectric field monitoring stations have been in operation for several years around the Beijing area to examine the relationship between electric field changes and earthquake. This paper firstly explains the principle of the eliminating noise method by using multi-dipole observation system of the geoelectric field. Then the data observed at the stations are studied and a lot of abnormal signals preceding the Wen’an earthquake are selected, of which five abnormal signals of the geoelectric field are finally recognized as the precursory signals. The result shows that ? there probably exists the precursory signals of the geoelectric field preceding the Wen’an earthquake; ? there are sensitive sites in the spatial distribution of the abnormal variation of the geoelectric field before the quack; ? the anomalous signals do not appear synchronously, and their durations are not same at different stations; ? the amplitudes of the abnormal signals recorded at Baodi station are small, but large at Changli station, while the latter is farther from the epicentral area than the former.  相似文献   

13.
The relation of the Kp index of geomagnetic activity to the solar wind electric field (E SW) and the projection of this field onto the geomagnetic dipole has been estimated. An analysis indicated that the southward component of the IMF vector (B z < 0) is the main geoeffective parameter, as was repeatedly indicated by many researchers. The presence of this component in any combinations of the interplanetary medium parameters is responsible for a high correlation between such combinations and geomagnetic activity referred to by the authors of different studies. Precisely this field component also plays the main role in the relation between the Kp index and the relative orientation of E SW and the Earth’ magnetic moment.  相似文献   

14.
The IMF statistical characteristics, depending on duration of the averaging intervals, are studied based on the ACE spacecraft measurements. The distributions of the induction (B) vector directions and the estimates of the variance and excess coefficient of the vector components are presented. The polymodal model of the density distribution function of the vector (B) component variations is proposed. The parameters of this model, which make it possible to approximate empirical distributions accurate within several hundredths of percent, are presented.  相似文献   

15.
—?We attempt to detect temporal variations of seismic wave velocity before and after 1998 M6.1 Shizukuishi, northeastern Japan, earthquake by using waveform data from explosions and earthquake doublets spanning the period immediately before and after the earthquake. Direct P waves of the second explosion are delayed by ~20 ms at observation stations with epicentral distances less than 15 km. This tendency does not change if the analysis frequency band is changed. Our result suggests that the P-wave velocity decreased by at least 1% in the extremely shallow region of the hanging wall of the M6.1 thrust event after its occurrence. On the other hand, there was the frequency dependence of the coda wave delays for both artificial sources and for natural events. At 5–10 Hz, immediate sharp increases by more than 20 ms in time delays and lower coherency were observed at several stations. We estimated the region in which P-wave velocity might have decreased after the M6.1 earthquake. Maximum depth of the region is 13 km. The region includes the aftershock area of the M6.1 earthquake, but is eccentric to the earthquake in the west. Considering the frequency band analyzed (5–10 Hz), the scale of the spatial inhomogeneity which led to the coda wave delay is several hundreds meters. We investigated candidates for the cause of the direct P-wave and coda wave delay. Observed direct P-wave delay can be partly explained by the stress changes caused by coseismic fault slip. However, the coda wave delay cannot be explained by the stress changes that are limited to the superficial area. Crustal heterogeneity should have changed at coseismic time in the deeper area where aftershocks of the M6.1 earthquake occurred.  相似文献   

16.
The paper presents the method and results of calculating the increment of macroseismic intensity at seismic stations of Kamchatka. Calculation is based on measurement of the relative level of maximum accelerations of intense earth vibrations in the phase of S-waves of comparatively strong regional earthquakes and the root-mean-square deviation of acceleration in the phase of P-waves of a strong distant earthquake. In the latter case, records of an earthquake with a magnitude of 9.1, which occurred in Japan on March 11, 2011, were used. The Petropavlovsk seismic station was used as the reference station. At the foundation of this station rests on rocky soil composed of siliceous shales. An estimate of the increment for the majority of digital stations is presented. Anomalously high intensity values were noted at a number of stations. The data obtained are used to assess the properties of soils in the investigated area. At several stations, the intensity of the horizontal component of soil vibrations above the intensity of the vertical component is much greater than the corresponding design value, which is probably due to the presence of resonant soil layers under these stations. The discrepancy in the incremental intensity estimates from records of intense oscillations from regional earthquakes and from records of a very strong remote earthquake obtained from sensors located in basements of heavy-frame concrete structures is revealed. To avoid distortion in recording ground vibrations, it is desirable to place seismic instruments far from such structures. The results obtained in the study can be used for seismic microzoning of construction sites in the investigated territory.  相似文献   

17.
The available geological, gravimetric, and seismological data suggest that island arcs, deep-sea trenches, and seismofocal zones of Indonesia (as a part of the Alpine-Indonesian mobile belt) differ significantly from structures of the same names of the Pacific ring proper. Thus, seismofocal zones of the ring are characterized by the stress-strain conditions of subhorizontal across-strike compression at depths of 0–400 km. In seismofocal zones of the mobile belt, such conditions exist only in the depth interval ~(0–40) km. At depths of about 40 to 400 km, lengthening (the T axis) is oriented along the dip-updip direction of a zone, whereas shortening (the P axis) is oriented along the strike of a seismofocal zone or, if individual P axes are not well ordered in this depth interval, they are scattered near the plane normal to the lengthening axis. We relate these distinctions to the fact that the mobile belt inherits a geosynclinal, rather than oceanic, basin that cannot be regarded as a huge bay of the paleo-Pacific. The aforementioned data imply that SW Melanesia (the New Guinea Islands, Bismarck Archipelago, and Solomon Islands) includes the recent Bismarck geosynclinal zone located on the strike of the Indonesian segment of the Alpine-Indonesian mobile belt.  相似文献   

18.
On the basis of the model of the three-dimensional (3D) generalized Kadomtsev-Petviashvili equation for magnetic field h = B ~/B the formation, stability, and dynamics of 3D soliton-like structures, such as the beams of fast magnetosonic (FMS) waves generated in ionospheric and magnetospheric plasma at a low-frequency branch of oscillations when β = 4πnT/B 2 ? 1 and β > 1, are studied. The study takes into account the highest dispersion correction determined by values of the plasma parameters and the angle θ = (B, k), which plays a key role in the FMS beam propagation at those angles to the magnetic field that are close to π/2. The stability of multidimensional solutions is studied by an investigation of the Hamiltonian boundness under its deformations on the basis of solving of the corresponding variational problem. The evolution and dynamics of the 3D FMS wave beam are studied by the numerical integration of equations with the use of specially developed methods. The results can be interpreted in terms of the self-focusing phenomenon, as the formation of a stationary beam and the scattering and self-focusing of the solitary beam of FMS waves. These cases were studied with a detailed investigation of all evolutionary stages of the 3D FMS wave beams in the ionospheric and magnetospheric plasma.  相似文献   

19.
The 25th April 2015 M7.6 Gorkha earthquake caused significant damage to buildings and infrastructure in both Kathmandu and surrounding areas as well as triggering numerous, large landslides. This resulted in the loss of approximately 8600 lives. In order to learn how the impact of such events can be reduced on communities both in Nepal and elsewhere, the Earthquake Engineering Field Investigation Team (EEFIT) reconnaissance mission was undertaken, aiming to look at damage patterns within the country. Passive, microtremor recordings in severely damaged areas of the Kathmandu Valley, as well as at the main seismic recording station in Kathmandu (USGS station KATNP) are used to determined preliminary shear wave velocity (Vs) profiles for each site. These profiles are converted into spectral acceleration using the input motion of the Gorkha earthquake. The results are limited, but show clear site amplification within the Siddhitol Region. The resulting ground motions exceed the design levels from the Nepalese Building Codes, indicating the need for site-specific hazard analysis and for revision of the building code to address the effect of site amplification.  相似文献   

20.
In this paper, the relations of the changes of earth resistivity (ρ) s recorded at 100 geoelectrical stations in 31 earthquakes occurred in the continent of China, to the active faults (active abyssal faults or badly active faults near the focal zone) and the causative stress fields are discussed and the following conclusions are obtained:
  1. On the condition that a station is near the active fault and in the direction of the causative stress (DCS) of an earthquake (EQ), the immediate variation ofρ s to the earthquake (called “immediate variation” for short) could be recorded generally at the station.
  2. The active fault which lies between a station and the epicenter of an earthquake seems to play a role in “obstructing” the recording of the imminent variation when the strike of the fault is close to the DCS of the earthquake. When that is parrallel with the DCS the “obstructing” function of the fault is strongest; when normal with the DCS, weakest.
The regularity seems to have the universality for moderate earthquakes and strong ones occurred in the continent of China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号