首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
通常情况下,随着地层压力降低,储层渗透率及流体性质的变化会导致气井产能方程随之发生变化。对于低渗透产水气藏,由于应力敏感、紊流效应、滑脱效应等非线性渗流效应及后期产水的影响,气井产能急剧降低。为了定量评价以上因素对气井产能的影响,基于常规二项式产能方程,建立了综合考虑地层压力变化、非线性渗流效应及产水对气井产能影响的产能方程。通过实例计算表明,由于应力敏感、紊流效应、滑脱效应等非线性渗流效应的综合影响,二项式系数A随地层压力的降低而减小,而系数B随地层压力的降低而增大;此外,由于后期产水影响,含水饱和度不断上升,气相相对渗透率随水气比的上升而减小,使二项式系数A、B均随水气比的上升而增大;因此,气井的产能下降幅度随地层压力下降呈线性升高趋势,随水气比下降呈对数降低趋势。该研究成果对于低渗透产水气井的产能预测及分析具有指导作用。  相似文献   

2.
王雯娟  雷霄  鲁瑞彬  陈健  何志辉 《地球科学》2019,44(8):2636-2642
南海西部存在大量高温高压高二氧化碳气藏,“三高”气藏气井测试费用高、产能预测难度大,设计变内压建束缚水应力敏感实验、含CO2天然气PVT实验研究应力敏感、CO2含量、表皮系数对高温高压气井产能的影响.通过大量实验,明确了高压气藏“两段式”应力敏感变化规律,得到了靶区应力敏感综合评价系数;分析不同压力下CO2含量对天然气偏差系数、黏度等参数的影响,高压下影响较低压下大,基于实验数据推导建立一种适用于高中低二氧化碳含量的全范围偏差系数校正模型.最终建立同时考虑应力敏感、二氧化碳、表皮系数影响的区域产能预测图版,提高产能预测精度,降低测试费用,在南海西部高温高压气井应用效果较好.   相似文献   

3.
低渗储层中启动压力梯度导致流体渗流规律呈现非线性特征,使得低渗储层的开发方式与中高渗储层不同。为了研究新立油田低渗储层中的非线性渗流现象,以新立油田天然低渗岩心为研究对象,通过精密压力测试多孔介质渗流实验分析超低界面张力体系对新立油田低渗岩心中单相及两相流体启动压力梯度的影响。研究结果表明:对于任何流体,新立油田低渗岩心均表现出非线性渗流特征,存在着一定启动压力梯度;低渗岩心拟启动压力梯度的值高于启动压力梯度,且两者均随着渗透率的提高而降低且与渗透率之间均为幂关系;超低界面张力体系可以明显地降低低渗岩心最小启动压力梯度与拟启动压力梯度;对于不同渗透率的岩心,两相临界启动压力梯度与含水饱和度的关系均表现出相似的变化规律,即两相临界启动压力梯度随着平均含水饱和度的上升先上升后降低;在不同渗透率下,对比水驱和超低界面张力体系驱的临界压力梯度最高点,超低界面张力体系下的临界压力梯度最高点明显小于水驱,这表明界面张力的减小可以明显地降低驱油时产生的两相临界压力梯度,超低界面张力体系改善了油藏的注入性。本研究对新立低渗储层水驱后开发方式的选择提供了参考。  相似文献   

4.
低渗透储层水平井—直井联合布井技术具有广泛的应用前景,其布井方式至关重要。首先利用劈分流场的方法直观地给出常规储层水平井—直井联合布井的产能评价方法;然后针对低渗透储层的渗流特点,在考虑启动压力梯度条件下建立新的井网渗流物理模型并求解得到产能评价公式;最后经分析计算给出启动压力梯度影响的面积井网极限注采井距关系曲线。研究结果为低渗透储层部署水平井—直井联合井网提供理论依据。  相似文献   

5.
低渗透储层水平井-直井联合布井技术具有广泛的应用前景,其布井方式至关重要。首先利用劈分流场的方法直观地给出常规储层水平井-直井联合布井的产能评价方法;然后针对低渗透储层的渗流特点,在考虑启动压力梯度条件下建立新的井网渗流物理模型并求解得到产能评价公式;最后经分析计算给出启动压力梯度影响的面积井网极限注采井距关系曲线。研究结果为低渗透储层部署水平井-直井联合井网提供理论依据。  相似文献   

6.
刘哲  单玄龙  衣健  代登亮 《世界地质》2017,36(3):880-888
火山岩气藏是松辽盆地长岭断陷深层重要的气藏类型。通过钻井岩芯、扫描电镜、孔渗测试及面孔率分析等资料,详细研究了火山岩储层的类型和特征;并结合地震资料和产能数据刻画了火山岩储层和气藏的空间分布特征,探索了不同类型火山岩储层对天然气成藏的控制作用。研究表明,研究区主要发育有气孔流纹岩储层、流纹质凝灰熔岩储层和块状流纹岩储层3种类型。气孔流纹岩储层以原生孔隙和微裂缝为主,属于较高-高孔,低渗-较高渗储层;流纹质凝灰熔岩储层主要发育脱玻化孔和构造裂缝,为中孔-特低渗储层;块状流纹岩储层储集空间以裂缝为主,属于特低孔-特低渗储层。气孔流纹岩型气藏的特点是多层工业气层纵向和横向叠加形成,气井产能高,含气面积大;流纹质凝灰熔岩型气藏的特点是块状气藏的气井产能中等;块状流纹岩型气藏的特点是块状气藏,气井产能小,需压裂后方能达到工业产能。  相似文献   

7.
致密岩石介质中的气体渗流有别于液体渗流,其中滑脱效应是影响致密岩石介质中气体渗流规律的一个重要因素。通过分析国内外学者在气体滑脱效应方面的研究进展,总结了滑脱效应的产生机理和产生条件,认为气体分子在孔壁附近的运动状态是产生滑脱效应的根本原因。同时围绕孔隙气体压力、围压、含水饱和度、气体性质等因素对气体滑脱效应的影响及实质进行综合分析。分析结果对研究低渗透多孔介质中气体渗流规律和测定低渗气田开发中气体渗透率参数等方面具有较大的参考意义。   相似文献   

8.
低渗气藏应力敏感性及评价方法的研究   总被引:32,自引:0,他引:32  
张琰  崔迎春 《现代地质》2001,15(4):453-457
中国的大多数气藏属于低渗气藏。低渗气藏与油藏相比 ,具有不同的渗流特点 ,其评价需要采用能模拟气藏特点的实验方法。目前 ,国内外尚无针对气藏损害特点的实验及评价方法。在对低渗气藏应力敏感性进行研究的基础上 ,提出了模拟气藏特点的储层应力敏感性实验和评价方法。  相似文献   

9.
低渗透页岩气藏中,气体渗流时会受滑脱效应的影响。建立了考虑滑脱效应的气、水两相页岩气藏渗流数学模型,并建立了理想地质模型,采用数值模拟方法,研究了水力压裂的不同裂缝参数对水平井产能的影响。模拟结果表明:裂缝条数、长度和间距是影响页岩气井产能的重要参数,而裂缝宽度和渗透率对产能的影响相对较弱;页岩气井的产能随着裂缝条数和裂缝长度的增加而增大;水平井的水平段长度及裂缝条数一定时,可通过增大裂缝间距来减少裂缝间的相互干扰。   相似文献   

10.
由于煤层气的解吸热效应,煤层气的运移过程是一个非等温过程。因此,温度场对煤层气渗流有着重要的影响。前人在研究煤层气渗流规律的研究中并没有同时考虑滑脱效应和温度场因素的影响,而在实际的深部开采中综合考虑滑脱效应和温度场的影响对研究深部煤层气运移规律有着重要的意义。因此本文建立了考虑滑脱效应及温度场的煤层气渗流数学模型,利用有限元数值方法研究了考虑滑脱效应和温度场耦合的煤层气运移规律;研究了考虑滑脱效应和温度场对压力场分布的影响;对考虑滑脱效应及温度场因素的煤层气产量进行了预测。得出了随着温度的升高煤储层的压力在降低,温度的升高对煤层气的产量有着负面的影响这一重要结论。  相似文献   

11.
苟燕  孙军昌  杨正明  周学民 《岩土力学》2014,35(9):2535-2542
采用变流压定围压试验方式,在高温、高压条件下模拟了气藏开发过程,研究了复杂火山岩气藏储层渗透率应力敏感性,对比了变流压定围压与常规的定流压变围压方式评价储层应力敏感性的异同。试验结果表明,火山岩储层渗透率随着孔隙压力的减小而减小,渗透率减小主要发生在孔隙压力从40 MPa下降至25 MPa的变化区间,渗透率损失率与其初始渗透率之间的相关性较差,这与常规沉积砂岩储层具有一定的差别。变流压定围压试验评价的应力敏感性强于定流压变围压评价结果,气藏储层有效应力变化范围内两种试验评价的应力敏感性结果差异更大。基于渗流力学理论,推导得到考虑应力敏感性的气井产能方程。计算结果表明,考虑应力敏感性时气井无阻流量约为不考虑应力敏感性时的63.28%,应力敏感性对气井产能的影响随着生产压差的增大而增大。  相似文献   

12.
火山岩气藏具有岩石类型多、岩性复杂、岩性岩相变化快、厚度变化大、非均质性强等特点,该类气藏的渗流机理比较复杂。为了更深入的了解火山岩气藏的渗流特性,以松南气田火山岩气藏岩心为目标,建立储层的物理模型,基于单相渗流理论,采用实验分析的方法,通过单相气体非线性渗流实验,得出了不同渗透率的火山岩气藏在不同孔隙压力下的滑脱效应大小,以此解释火山岩气藏的渗流机理,为火山岩气藏的产能预测、产量递减规律、可采储量的评价、气井合理配产等提供理论依据。  相似文献   

13.
低渗油藏存在启动压力梯度,严重影响了油藏开发效果,启动压力梯度越大,则储层动用程度越差.依据低渗透油藏流体渗流机理,采用单相渗流的生产动态数据及试井解释资料,利用试井方法求得研究区的启动压力梯度,并建立启动压力梯度与渗透率的相应关系.分析了典型反九点井组的注水井与边井及角井井间的驱动压力梯度变化特点,若得到注采排距过大,则在注采连线中点处的驱动压力梯度有可能小于启动压力梯度,在非主流线上驱动压力梯度就更小,从而导致无法建立有效的驱替系统,影响井间储量的动用.该方法采用定量分析低渗透油藏井间储量动用情况,为同类油藏确定井间剩余油分布及合理的井距提供了参考.  相似文献   

14.
根据低渗裂缝性砂岩油藏的储层特征,建立适合裂缝性砂岩油藏渗流的等效连续介质模型;通过实验得出有效压力改变对储层孔隙度、渗透率影响的规律;考虑低渗透油藏渗流时启动压力梯度和低渗储层的流-固耦合特性,将渗流力学与弹塑性力学相结合,建立起适合低渗透油藏的流-固耦合渗流数学模型,并给出其数值解.在黑油模型和弹塑性有限元程序的基础上,编制了计算低渗透油藏流-固耦合渗流的计算软件.通过数值模拟和不考虑流-固耦合时的计算结果相比,可以看出低渗油藏中流-固耦合效应十分明显.  相似文献   

15.
广安气田勘探开发层位为上三叠统须家河组须六段和须四段。储层砂体为三角洲分流河道、水下分流河道和河口坝沉积,为典型低孔、低渗孔隙型储层。气藏分布受构造和或岩性控制,发育了构造气藏、构造—岩性气藏和岩性气藏。为指导气田开发井位部署与合理配产,根据试采资料研究了气井产能特征,并把气井产能划分为Ⅰ、Ⅱ、Ⅲ和Ⅳ4大类7亚类,各类气井产能差异大,产水量差异也大,其中Ⅰ类、Ⅱ_1亚类和Ⅲ_1亚类气井产能较好或较稳定。通过分析控制广安气田气井产能的因素,认识到储层沉积微相、单井动储量、构造位置、产水量与工艺措施对气井产能有重要影响。在水动力强的分流河道、水下分流河道和河口坝沉积相带中,单井控制动储量越大,构造位置越高,产水量越小,压裂和储层保护措施相对合理,气井往往具有较高产能。  相似文献   

16.
非达西渗流拟启动压力梯度推算   总被引:1,自引:0,他引:1  
岩体启动压力梯度的大小是石油开采,工程防渗处理等方面需要考虑的影响因素.非线性渗流现象已被广泛所认同,低渗透性岩渗流存在启动压力梯度,它基本代表了流体产生渗流时的压力梯度大小.试验对试样进水端水压进行长期稳定控制,出水端采用精确测定流出水体积变化量的方法进行流量测定;当渗出端水体积的变化量与时间呈直线关系时,即认为该时...  相似文献   

17.
低渗致密砂岩气藏岩石的孔隙结构与物性特征   总被引:2,自引:0,他引:2  
根据表面与胶体化学原理,分析了低渗致密砂岩气藏的孔隙结构特征、物性特征以及它们之间的关系。孔隙结构特征表现为喉道小,分形维数高,孔喉径比大,弯曲度大且大多呈扁平形状,物性特征表现为渗透率低且对应力敏感,毛管压力高,毛管压力曲线陡峭,临界水饱和度高,气水界面模糊,并在深盆气藏中可能出现气水倒置、反常低的原生水饱和度、滑脱效应及明显的菲达西流动效应,着重用孔隙结构特征来解释它们的物性特征,对前人关于水膜及边界层性质异常等观点提出了质疑。  相似文献   

18.
为研究页岩气藏开发过程中介质变形和滑脱效应对微裂缝表观渗透率动态变化的影响规律,分析有效应力和多孔介质结构参数等对气体渗流影响机制,采用光滑平板模型,结合分形及气体微观渗流理论,建立了介质变形和滑脱效应耦合作用下的微裂缝表观渗透率动态模型,并对模型进行可靠性验证和参数敏感性分析。研究表明,页岩气藏降压开采过程中受介质变形和滑脱效应“一负一正”耦合影响,微裂缝表观渗透率呈先减小后增大趋势,且临界压力值约为5 MPa;不同有效应力状态下,由于介质变形和滑脱效应耦合机制的差异性,导致表观渗透率变化规律不同,从微观作用机制角度对实验中不同加载条件下页岩应力敏感性的差异做出了理论解释;微裂缝最大开度越小,表观渗透率曲线“凹槽”越深,同时微裂缝孔隙度及开度分形维数越高、迂曲度分形维数越低,表观渗透率值越大。  相似文献   

19.
低渗透油藏最小启动压力梯度实验研究   总被引:4,自引:0,他引:4  
据低渗油藏渗流特点,设计"非稳态驱替-毛细管计量"与"平衡法"相结合实验测试方法,测定了新疆油田天然低渗岩心水相、束缚水下油相、两相水驱油初期最小启动压力梯度.结果表明:在油、水粘度保持不变时,油、水相及水驱油初期最小启动压力梯度与岩石气测渗透率呈幂函数关系.该测试方法能快速准确测定岩样最小启动压力,具操作简单、耗时短、数据准确、易于应用等优点.  相似文献   

20.
孙军昌  杨正明  魏国齐  周学民 《岩土力学》2012,33(12):3577-3584
针对火山岩气藏储层岩石孔隙结构复杂、矿物组成及成岩机制与沉积砂岩不同等特点,选取尺寸较大的不同孔隙结构全直径岩芯进行渗透率应力敏感试验研究。试验结果表明,低渗火山岩气藏岩芯具有较强的应力敏感特征,岩芯渗透率的减小主要发生在有效应力小于20 MPa的范围内,但当有效应力大于30 MPa后,渗透率仍然具有一定程度的减小,这与低渗沉积砂岩具有明显的差别。岩性差异所引起的矿物组成、颗粒胶结等因素对火山岩渗透率应力敏感特征影响较小,孔隙结构差异是导致岩石渗透率应力敏感强弱差异的主要原因,其中裂缝型岩石应力敏感性最强,致密型和孔隙型岩石应力敏感性相对较弱。反复加载试验表明,钻井取芯所引起的应力释放是导致岩芯渗透率应力滞后效应的根本原因,2次加载和卸载过程中岩石孔隙发生的主要是弹性变形。岩芯高围压下的地层渗透率平均仅约为地面渗透率的50%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号