首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
埃达克岩的Na亏损及其对地幔Na交代的指示意义   总被引:1,自引:3,他引:1  
埃达克岩是玄武质洋壳部分熔融的产物。然而,与实验室玄武岩部分熔融产生的埃达克质熔体相比,天然埃达克岩明显地高Mg、Cr和Ni,这表明埃达克岩浆在上升过程中有地幔成分的加入。本文的观察结果表明,全球新生代埃达克岩的Na2O含量低于5.8%,大约95%的新生代埃达克岩样品Na2O含量小于5.0%。然而,在埃达克岩产生的压力范围(1.5~3.0GPa),实验的玄武岩部分熔体大多数Na2O含量超过5.0%,最高达到9.0%,显示埃达克岩具有明显的Na亏损现象。我们认为这是埃达克熔体在热的地幔楔中与地幔橄榄岩反应的结果。在俯冲带,大洋板片熔融产生的熔体(埃达克熔体)上升并与地幔橄榄岩发生反应,原始的埃达克熔体获得MgO、Cr及Ni等地幔组分,但其Na2O和SiO2等通过反应进入地幔,导致地幔交代作用。根据长英质熔体与橄榄岩反应体系的相关系,我们认为,地幔单斜辉石、橄榄石、尖晶石的混染作用以及钠质角闪石和斜方辉石的分离结晶作用,是改变埃达克熔体组成并导致其Na亏损的一个重要的过程。埃达克岩的Na亏损为地幔Na交代作用和一些富Na的弧岩浆成因提供了重要证据。  相似文献   

2.
We performed partial melting experiments at 1 and 1.5 GPa, and 1180–1400 °C, to investigate the melting under mantle conditions of an olivine-websterite (GV10), which represents a natural proxy of secondary (or stage 2) pyroxenite. Its subsolidus mineralogy consists of clinopyroxene, orthopyroxene, olivine and spinel (+garnet at 1.5 GPa). Solidus temperature is located between 1180 and 1200 °C at 1 GPa, and between 1230 and 1250 °C at 1.5 GPa. Orthopyroxene (±garnet), spinel and clinopyroxene are progressively consumed by melting reactions to produce olivine and melt. High coefficient of orthopyroxene in the melting reaction results in relatively high SiO2 content of low melt fractions. After orthopyroxene exhaustion, melt composition is controlled by the composition of coexisting clinopyroxene. At increasing melt fraction, CaO content of melt increases, whereas Na2O, Al2O3 and TiO2 behave as incompatible elements. Low Na2O contents reflect high partition coefficient of Na between clinopyroxene and melt (\(D_{{{\text{Na}}_{ 2} {\text{O}}}}^{{{\text{cpx}}/{\text{liquid}}}}\)). Melting of GV10 produces Quartz- to Hyperstene-normative basaltic melts that differ from peridotitic melts only in terms of lower Na2O and higher CaO contents. We model the partial melting of mantle sources made of different mixing of secondary pyroxenite and fertile lherzolite in the context of adiabatic oceanic mantle upwelling. At low potential temperatures (T P < 1310 °C), low-degree melt fractions from secondary pyroxenite react with surrounding peridotite producing orthopyroxene-rich reaction zones (or refertilized peridotite) and refractory clinopyroxene-rich residues. At higher T P (1310–1430 °C), simultaneous melting of pyroxenite and peridotite produces mixed melts with major element compositions matching those of primitive MORBs. This reinforces the notion that secondary pyroxenite may be potential hidden components in MORB mantle source.  相似文献   

3.
Laboratory experiments on natural, hydrous basalts at 1–4 GPa constrain the composition of “unadulterated” partial melts of eclogitized oceanic crust within downgoing lithospheric slabs in subduction zones. We complement the “slab melting” experiments with another set of experiments in which these same “adakite” melts are allowed to infiltrate and react with an overlying layer of peridotite, simulating melt:rock reaction at the slab–mantle wedge interface. In subduction zones, the effects of reaction between slab-derived, adakite melts and peridotitic mantle conceivably range from hybridization of the melt, to modal or cryptic metasomatism of the sub-arc mantle, depending upon the “effective” melt:rock ratio. In experiments at 3.8 GPa, assimilation of either fertile or depleted peridotite by slab melts at a melt:rock ratio 2:1 produces Mg-rich, high-silica liquids in reactions which form pyrope-rich garnet and low-Mg# orthopyroxene, and fully consume olivine. Analysis of both the pristine and hybridized slab melts for a range of trace elements indicates that, although abundances of most trace elements in the melt increase during assimilation (because melt is consumed), trace element ratios remain relatively constant. In their compositional range, the experimental liquids closely resemble adakite lavas in island-arc and continental margin settings, and adakite veins and melt inclusions in metasomatized peridotite xenoliths from the sub-arc mantle. At slightly lower melt:rock ratios (1:1), slab melts are fully consumed, along with peridotitic olivine, in modal metasomatic reactions that form sodic amphibole and high-Mg# orthopyroxene.  相似文献   

4.
Patches of glass with a second generation of small crystals of olivine, clinopyroxene, and spinel are abundant in hydrous peridotite mantle xenoliths with tabular equigranular textures from two maar-type volcanoes, Meerfelder Maar and Dreiser Weiher (West Eifel, Germany). The patches are similar in size to the main phases of the hosting peridotite. Their central part is often occupied by relics of pargasitic amphibole. Mass-balance calculations show that the patches were formed by surface controlled incongruent thermal breakdown of amphibole according to the reaction: amphibole olivine + clinopyroxene + spinel + melt. Simultaneously with the decomposition of amphibole, small crystals of olivine, clinopyroxene, and spinel grew radially from the patch/peridotite interface toward the centre of the patch. Apart from sector zoning of clinopyroxene, the crystals are virtually homogeneous and are separated from the amphibole by a seam of melt (glass). Secondary olivines reveal higher Mg-numbers, secondary clinopyroxenes higher Cr2O3 concentrations than olivines and clinopyroxenes, respectively, of the host peridotite. The silica contents of melts produced by the above breakdown reaction range from 48 to 52% SiO2 as a function of the composition of the parent amphiboles. Patches surrounded by primary olivines only reveal no reaction with the host peridotite. The variation of SiO2, MgO and CaO in melts from these patches is the result of minor precipitation of olivine and clinopyroxene during fast cooling. If patches are in contact with primary olivine and orthopyroxene, melts are additionally modified by the reaction liquid 1 + orthopyroxene liquid 2 + olivine + clinopyroxene resulting in more silica-rich compositions between 54 and 58%. For the rare glasses richer in silica, a more complex formation is required. Veinlets along grain boundaries are filled with glasses which are chemically identical to those from nearby patches. This suggests that the veinlets were filled by melts formed by amphibole breakdown during entrainment of the xenoliths to the host magmas.  相似文献   

5.
This experimental study examines the mineral/melt partitioning of incompatible trace elements among high-Ca clinopyroxene, garnet, and hydrous silicate melt at upper mantle pressure and temperature conditions. Experiments were performed at pressures of 1.2 and 1.6 GPa and temperatures of 1,185 to 1,370 °C. Experimentally produced silicate melts contain up to 6.3 wt% dissolved H 2O, and are saturated with an upper mantle peridotite mineral assemblage of olivine+orthopyroxene+clinopyroxene+spinel or garnet. Clinopyroxene/melt and garnet/melt partition coefficients were measured for Li, B, K, Sr, Y, Zr, Nb, and select rare earth elements by secondary ion mass spectrometry. A comparison of our experimental results for trivalent cations (REEs and Y) with the results from calculations carried out using the Wood-Blundy partitioning model indicates that H 2O dissolved in the silicate melt has a discernible effect on trace element partitioning. Experiments carried out at 1.2 GPa, 1,315 °C and 1.6 GPa, 1,370 °C produced clinopyroxene containing 15.0 and 13.9 wt% CaO, respectively, coexisting with silicate melts containing ~1–2 wt% H 2O. Partition coefficients measured in these experiments are consistent with the Wood-Blundy model. However, partition coefficients determined in an experiment carried out at 1.2 GPa and 1,185 °C, which produced clinopyroxene containing 19.3 wt% CaO coexisting with a high-H 2O (6.26±0.10 wt%) silicate melt, are significantly smaller than predicted by the Wood-Blundy model. Accounting for the depolymerized structure of the H 2O-rich melt eliminates the mismatch between experimental result and model prediction. Therefore, the increased Ca 2+ content of clinopyroxene at low-temperature, hydrous conditions does not enhance compatibility to the extent indicated by results from anhydrous experiments, and models used to predict mineral/melt partition coefficients during hydrous peridotite partial melting in the sub-arc mantle must take into account the effects of H 2O on the structure of silicate melts.  相似文献   

6.
Diamond crystallization in multicomponent melts of variable composition is studied. The melt carbonates are K2CO3, CaCO3?MgCO3, and K-Na-Ca-Mg-Fe-carbonatites, and the melt silicates are model peridotite (60 wt.% olivine, 16 wt.% orthopyroxene, 12 wt.% clinopyroxene, and 12 wt.% garnet) and eclogite (50 wt.% garnet and 50 wt.% clinopyroxene). In the experiments carried out under the PT-conditions of diamond stability, the carbonate-silicate melts behave like completely miscible liquid phases. The concentration barriers of diamond nucleation (CBDN) in the melts with variable proportions of silicates and carbonates have been determined at 8.5 GPa. In the system peridotite–K2CO3–CaCO3?MgCO3–carbonatite they correspond to 30, 25, and 30 wt.% silicates, respectively, and in the analogous eclogite–carbonate system, 45, 30, and 35 wt.%. In the silicate-carbonate melts with higher silicate contents seed diamond growth occurs, which is accompanied by the crystallization of thermodynamically unstable graphite phase. In the experiments with melts compositionally corresponding to the CBDN at 7.0 GPa and 1200–1700 °C, a full set of silicate minerals of peridotite (olivine, orthopyroxene, clinopyroxene, garnet) and eclogite (garnet, clinopyroxene) parageneses was obtained. The minerals occur as syngenetic inclusions in natural diamonds; moreover, the garnets contain an impurity of Na, and the pyroxenes, K. The experimental data indicate that peridotite-carbonate and eclogite-carbonate melts are highly effective for the formation of diamond (or unstable graphite) together with syngenetic minerals and melts, which agrees with the carbonate-silicate (carbonatite) model for the mantle diamond formation.  相似文献   

7.
Dunite, wehrlite and websterite are rare members of the mantle xenolith suite in the Kimberley kimberlites of the Kaapvaal Craton in southern Africa. All three types were originally residues of extensive melt extraction and experienced varying amounts and types of melt re-enrichment. The melt depletion event, dated by Re-Os isotope systematics at 2.9 Ga or older, is evidenced by the high Mg# (Mg/(Mg + Fe)) of silicate minerals (olivine (0.89-0.93); pyroxene (0.88-0.93); garnet (0.72-0.85)), high Cr# (Cr/(Cr + Al)) of spinel (0.53-0.84) and mostly low whole-rock SiO2, CaO and Al2O3 contents. Shortly after melt depletion, websterites were formed by reaction between depleted peridotites and silica-rich melt (>60 wt% SiO2) derived by partial melting of eclogite before or during cratonization. The melt-peridotite interaction converted olivine into orthopyroxene.All three xenolith types have secondary metasomatic clinopyroxene and garnet, which occur along olivine grain boundaries and have an amoeboid texture. As indicated by the preservation of oxygen isotope disequilibrium in the minerals and trace-element concentrations in clinopyroxene and garnet, this metasomatic event is probably of Mesozoic age and was caused by percolating alkaline basaltic melts. This melt metasomatism enriched the xenoliths in CaO, Al2O3, FeO and high-field-strength-elements, and might correspond to the Karoo magmatism at 200 Ma. The websterite xenoliths experienced both the orthoyproxene-enrichment and clinopyroxene-garnet metasomatic events, whereas dunite and wehrlite xenoliths only saw the later basaltic melt event, and may have been situated further away from the source of melt migration channels.  相似文献   

8.
Mantle peridotites entrained as xenoliths in the lavas of Ngao Bilta in the eastern branch of the continental Cameroon Line were examined to constrain mantle processes and the origin and nature of melts that have modified the upper mantle beneath the Cameroon Line.The xenoliths consist mainly of lherzolite with subordinate harzburgite and dunite.They commonly contain olivine,orthopyroxene,clinopyroxene and spinel although the dunite is spinel-free.Amphibole is an essential constituent in the lherzolites.Mineral chemistry differs between the three types of peridotite:olivines have usual mantle-like Mg#of around 90 in lherzolites,but follow a trend of decreasing Mg#(to 82)and NiO(to 0.06 wt.%)that is continuous in the dunites.Lherzolites also contain orthopyroxenes and/or clinopyroxenes with low-Mg#,indicating a reaction that removes Opx and introduces Cpx,olivine,amphibole and spinel.This is attributed to reaction with a silica-undersaturated silicate melt such as nephelinite or basanite,which originated as a low-degree melt from a depleted source as indicated by low Al2O3 and Na2O in Cpx and high Na2O/K2O in amphibole.Thermobarometric estimates place the xenoliths at pressures of 11–15 kbar(35–50 km)and temperatures of 863–957C,along a dynamic rift geotherm and shallower than the region where carbonate melts may occur.The melt/rock reactions exhibited by the Ngao Bilta xenoliths are consistent with their peripheral position in the eastern branch of the Cameroon Volcanic Line in an area of thinned crust and lithosphere beneath the Adamawa Uplift.  相似文献   

9.
Spinel and plagioclase peridotites from the Mt.Maggiore (Corsica, France) ophiolitic massif record a composite asthenosphere–lithosphere history of partial melting and subsequent multi-stage melt–rock interaction. Cpx-poor spinel lherzolites are consistent with mantle residues after low-degree fractional melting (F = 5–10%). Opx + spinel symplectites at the rims of orthopyroxene porphyroclasts indicate post-melting lithospheric cooling (T = 970–1,100°C); this was followed by formation of olivine embayments within pyroxene porphyroclasts by melt–rock interaction. Enrichment in modal olivine (up to 85 wt%) at constant bulk Mg values, and variable absolute REE contents (at constant LREE/HREE) indicate olivine precipitation and pyroxene dissolution during reactive porous melt flow. This stage occurred at spinel-facies depths, after incorporation of the peridotites in the thermal lithosphere. Plagioclase-enriched peridotites show melt impregnation microtextures, like opx + plag intergrowths replacing exsolved cpx porphyroclasts and interstitial gabbronoritic veinlets. This second melt–rock interaction stage caused systematic chemical changes in clinopyroxene (e.g. Ti, REE, Zr, Y increase), related to the concomitant effects of local melt–rock interaction at decreasing melt mass, and crystallization of small (<3%) trapped melt fractions. LREE depletion in minerals of the gabbronoritic veinlets indicates that the impregnating melts were more depleted than normal MORB. Preserved microtextural evidence of previous melt–rock interaction in the impregnated peridotites suggests that they were progressively uplifted in response to lithosphere extension and thinning. Migrating melts were likely produced by mantle upwelling and melting related to extension; they were modified from olivine-saturated to opx-saturated compositions, and caused different styles of melt–rock interaction (reactive spinel harzburgites, vs. impregnated plagioclase peridotites) depending on the lithospheric depths at which interaction occurred. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
 Mantle xenoliths hosted by the Historic Volcan de San Antonio, La Palma, Canary Islands, fall into two main group. Group I consists of spinel harzburgites, rare spinel lherzolites and spinel dunites, whereas group II comprises spinel wehrlites, amphibole wehrlites, and amphibole clinopyroxenites. We here present data on group I xenoliths, including veined harzburgites and dunites which provide an excellent basis for detailed studies of metasomatic processes. The spinel harzburgite and lherzolite xenoliths have modal ol−opx−cpx ratios and mineral and whole rock major element chemistry similar to those found in Lanzarote and Hierro, and are interpreted as highly refractory, old oceanic lithospheric mantle. Spinel dunites are interpreted as old oceanic peridotite which has been relatively enriched in olivine and clinopyroxene (and highly incompatible elements) through reactions with basaltic Canarian magmas, with relatively high melt/peridotite ratio. Group I xenoliths from La Palma differ from the Hierro and Lanzarote ones by a frequent presence of minor amounts of phlogopite (and amphibole). Metasomatic processes are also reflected in a marked enrichment of strongly incompatible relative to moderately incompatible trace elements, and in a tendency for Fe−Ti enrichment along grain boundaries in some samples. The veins in the veined xenoliths show a gradual change in phase assemblage and composition of each phase, from Fe−Ti-rich amphibole+augite+Fe−Ti-oxides+apatite+basaltic glass, to Ti-poor phlogopite+Cr-diopside±chromite+ Si−Na−K-rich glass+fluid. Complex reaction zones between veins and peridotite include formation of clinopyroxene±olivine+glass at the expense of orthopyroxene in harzburgite, and clinopyroxene+spinel±amphibole±glass at the expense of olivine in dunite. The dramatic change in glass composition from the broadest to the narrowest veins includes increasing SiO2 from 44 to 67 wt%, decreasing TiO2/Al2O3 ratio from >0.24 to about 0.02, and increasing K2O and Na2O from 1.8 to >7.0 wt% and 3.8 to 6.7 wt%, respectively. The petrographic observations supported by petrographic mixing calculations indicate that the most silicic melts in the veined xenoliths formed as the result of reaction between infiltrating basaltic melt and peridotite wall-rock. The highly silicic, alkaline melt may represent an important metasomatic agent. Pervasive metasomatism by highly silicic melts (and possibly fluids unmixed from these) may account for the enriched trace element patterns and frequent presence of phlogopite in the upper mantle under La Palma. Received: 15 January 1996 / Accepted 30 May 1996  相似文献   

11.
This experimental study examines the mineral/melt partitioning of Na, Ti, La, Sm, Ho, and Lu among high-Ca clinopyroxene, plagioclase, and silicate melts analogous to varying degrees of peridotite partial melting. Experiments performed at a pressure of 1.5 GPa and temperatures of 1,285 to 1,345 °C produced silicate melts saturated with high-Ca clinopyroxene, plagioclase and/or spinel, and, in one case, orthopyroxene and garnet. Partition coefficients measured in experiments in which clinopyroxene coexists with basaltic melt containing ~18 to 19 wt% Al2O3 and up to ~3 wt% Na2O are consistent with those determined experimentally in a majority of the previous studies, with values of ~0.05 for the light rare earths and of ~0.70 for the heavy rare earths. The magnitudes of clinopyroxene/melt partition coefficients for the rare earth elements correlate with pyroxene composition in these experiments, and relative compatibilities are consistent with the effects of lattice strain energy. Clinopyroxene/melt partition coefficients measured in experiments in which the melt contains ~20 wt% Al2O3 and ~4 to 8 wt% Na2O are unusually large (e.g., values for Lu of up to 1.33±0.05) and are not consistent with the dependence on pyroxene composition found in previous studies. The magnitudes of the partition coefficients measured in these experiments correlate with the degree of polymerization of the melt, rather than with crystal composition, indicating a significant melt structural influence on trace element partitioning. The ratio of non-bridging oxygens to tetrahedrally coordinated cations (NBO/T) in the melt provides a measure of this effect; melt structure has a significant influence on trace element compatibility only for values of NBO/T less than ~0.49. This result suggests that when ascending peridotite intersects the solidus at relatively low pressures (~1.5 GPa or less), the compatibility of trace elements in the residual solid varies significantly during the initial stages of partial melting in response to the changing liquid composition. It is unlikely that this effect is important at higher pressures due to the increased compatibility of SiO2, Na2O, and Al2O3 in the residual peridotite, and correspondingly larger values of NBO/T for small degree partial melts.Editorial responsibility: T.L. Grove  相似文献   

12.
The influence of water on melting of mantle peridotite   总被引:47,自引:8,他引:39  
This experimental study examines the effects of variable concentrations of dissolved H2O on the compositions of silicate melts and their coexisting mineral assemblage of olivine + orthopyroxene ± clinopyroxene ± spinel ± garnet. Experiments were performed at pressures of 1.2 to 2.0 GPa and temperatures of 1100 to 1345 °C, with up to ∼12 wt% H2O dissolved in the liquid. The effects of increasing the concentration of dissolved H2O on the major element compositions of melts in equilibrium with a spinel lherzolite mineral assemblage are to decrease the concentrations of SiO2, FeO, MgO, and CaO. The concentration of Al2O3 is unaffected. The lower SiO2 contents of the hydrous melts result from an increase in the activity coefficient for SiO2 with increasing dissolved H2O. The lower concentrations of FeO and MgO result from the lower temperatures at which H2O-bearing melts coexist with mantle minerals as compared to anhydrous melts. These compositional changes produce an elevated SiO2/(MgO + FeO) ratio in hydrous peridotite partial melts, making them relatively SiO2 rich when compared to anhydrous melts on a volatile-free basis. Hydrous peridotite melting reactions are affected primarily by the lowered mantle solidus. Temperature-induced compositional variations in coexisting pyroxenes lower the proportion of clinopyroxene entering the melt relative to orthopyroxene. Isobaric batch melting calculations indicate that fluid-undersaturated peridotite melting is characterized by significantly lower melt productivity than anhydrous peridotite melting, and that the peridotite melting process in subduction zones is strongly influenced by the composition of the H2O-rich component introduced into the mantle wedge from the subducted slab. Received: 7 April 1997 / Accepted: 9 January 1998  相似文献   

13.
The Monglo adakite contains mafic and ultramafic xenoliths, which probably originated from the mantle section of an Early Cretaceous supra-subduction zone ophiolitic complex located within the Luzon arc crust. Spinel-bearing dunites are dominant among this xenolith collection and display evidence for three episodes of subduction-related melt percolation. The first one is evidenced by an undeformed clinopyroxene characterized by convex-upwards REE pattern. This clinopyroxene crystallized from a calc-alkaline basaltic magma, likely formed in the Cretaceous supra-subduction setting of the ophiolite. Then, two metasomatic events, evidenced by orthopyroxene-rich and amphibole-rich secondary parageneses, respectively, affected most of the spinel dunites. The opx-rich paragenesis is related to the circulation within the dunitic upper mantle of hydrous slab-derived melts similar to those affecting the mantle peridotite xenoliths from Papua New Guinea and Kamchatka. Finally the amphibole-rich veins are related to the interaction between the studied dunite xenoliths and the host adakite or an adakitic melt similar to it.  相似文献   

14.
In order to characterize the composition of the parental melts of intracontinental alkali-basalts, we have undertaken a study of melt and fluid inclusions in olivine crystals in basaltic scoria and associated upper mantle nodules from Puy Beaunit, a volcano from the Chaîne des Puys volcanic province of the French Massif Central (West-European Rift system). Certain melt inclusions were experimentally homogenised by heating-stage experiments and analysed to obtain major- and trace-element compositions. In basaltic scoria, olivine-hosted melt inclusions occur as primary isolated inclusions formed during growth of the host phase. Some melt inclusions contain both glass and daughter minerals that formed during closed-system crystallisation of the inclusion and consist mainly of clinopyroxene, plagioclase and rhönite crystals. Experimentally rehomogenised and naturally quenched, glassy inclusions have alkali-basalt compositions (with SiO2 content as low as 42 wt%, MgO>6 wt%, Na2O+K2O>5 wt%, Cl~1,000–3,000 ppm and S~400–2,000 ppm), which are consistent with those expected for the parental magmas of the Chaîne des Puys magmatic suites. Their trace-element signature is characterized by high concentration(s) of LILE and high LREE/HREE ratios, implying an enriched source likely to have incorporated small amounts of recycled sediments. In olivine porphyroclasts of the spinel peridotite nodules, silicate melt inclusions are secondary in nature and form trails along fracture planes. They are generally associated with secondary CO2 fluid inclusions containing coexisting vapour and liquid phases in the same trail. This observation and the existence of multiphase inclusions consisting of silicate glass and CO2-rich fluid suggest the former existence of a CO2-rich silicate melt phase. Unheated glass inclusions have silicic major-element compositions, with normative nepheline and olivine components, ~58 wt% SiO2, ~9 wt% total alkali oxides, <3 wt% FeO and MgO. They also have high chlorine levels (>3,000 ppm) but their sulphur concentrations are low (<200 ppm). Comparison with experimental isobaric trends for peridotite indicates that they represent high-pressure (~1.0 GPa) trapped aliquots of near-solidus partial melts of spinel peridotite. Following this hypothesis, their silica-rich compositions would reflect the effect of alkali oxides on the silica activity coefficient of the melt during the melting process. Indeed, the silica activity coefficient decreases with addition of alkalis around 1.0 GPa. For mantle melts coexisting with an olivine-orthopyroxene-bearing mineral assemblage buffering SiO2 activity, this decrease is therefore compensated by an increase in the SiO2 content of the melt. Because of their high viscosity and the low permeability of their matrix, these near-solidus peridotite melts show limited ability to segregate and migrate, which can explain the absence of a chemical relationship between the olivine-hosted melt inclusions in the nodules and in basaltic scoria.  相似文献   

15.
The Saramta peridotite massif is located within the Sharyzhalgai complex, SW margin of the Siberian craton. The Saramta massif was formed in the Archean and then juxtaposed with granulites of crystalline basement of the Siberian craton. The Saramta harzburgites are highly refractory in terms of lack of residual clinopyroxene, olivine Mg-number (up to 0.937), and spinel Cr-number (∼0.5), suggesting high degree of partial melting. Detailed study of their microstructures shows that they have extensively reacted with a SiO2-rich melt, leading to the crystallization of orthopyroxene, clinopyroxene, amphibole and spinel at the expense of olivine. The major element compositions of the least reacted harzburgites are similar to the residues of refractory peridotites produced by the fractional melting (initial melting pressures >3 GPa and melt fractions ∼40%). Moreover, non-residual clinopyroxenes are highly depleted in Yb, Zr and Ti, but highly enriched in LREE. A two-stage history is proposed for the Saramta peridotite: (1) primitive mantle underwent depletion in the garnet stability field followed by melting in the spinel stability field; (2) refractory harzburgites underwent refertilization by SiO2-rich melt in supra-subduction zone. Rare Saramta lherzolites probably formed from more refractory harzburgites as a result of such a melt–rock reaction. The Saramta peridotites are similar to low-T coarse-grained peridotites of subcratonic mantle. Processes of their formation, as reflected by textures and composition of minerals of the Saramta peridotites, are characteristic of the early stages of subcratonic mantle formation.  相似文献   

16.
Quaternary basalts in the Cerro del Fraile area contain two types of mantle xenoliths; coarse-grained (2–5 mm) C-type spinel harzburgites and lherzolites, and fine-grained (0.5–2 mm) intensely metasomatized F-type spinel lherzolites. C-type xenoliths have high Mg in olivine (Fo = 90–91) and a range in Cr# [Cr/ (Cr + Al) = 0.17–0.34] in spinel. Two C-type samples contain websterite veinlets and solidified patches of melt that is now composed of minute quenched grains of plagioclase + Cr-spinel + clinopyroxene + olivine. These patches of quenched melts are formed by decompression melting of pargasitic amphibole. High Ti contents and common occurrence of relic Cr-spinel in the quenched melts indicate that the amphibole is formed from spinel by interaction with the Ti-rich parental magma of the websterite veinlets. The fO2 values of these two C-type xenoliths range from ΔFMQ −0.2 to −0.4, which is consistent with their metasomatism by an asthenospheric mantle-derived melt. The rest of the C-type samples are free of “melt,” but show cryptic metasomatism by slab-derived aqueous fluids, which produced high concentrations of fluid-mobile elements in clinopyroxenes, and higher fO2 ranging from ΔFMQ +0.1 to +0.3. F-type lherzolites are intensely metasomatized to form spinel with low Cr# (∼0.13) and silicate minerals with low MgO, olivine (Fo = ∼84), orthpyroxene [Mg# = Mg/(Mg + ΣFe) = ∼0.86] and clinopyroxene (Mg# = ∼0.88). Patches of “melt” are common in all F-type samples and their compositions are similar to pargasitic amphibole with low TiO2 (<0.56 wt%), Cr2O3 (<0.55 wt%) and MgO (<16.3 wt%). Low Mg# values of silicate minerals, including the amphibole, suggest that the metasomatic agent is most likely a slab melt. This is supported by high ratios of Sr/Y and light rare earth elements (REE)/heavy REE in clinopyroxenes. F-type xenoliths show relatively low fO2 (ΔFMQ −0.9 to −1.1) compared to C-type xenoliths and this is explained by the fusion of organic-rich sediments overlying the slab during the slab melt. Trench-fill sediments in the area are high in organic matter. The fusion of such wet sediments likely produced CH4-rich fluids and reduced melts that mixed with the slab melt. High U and Th in bulk rocks and clinopyroxene in F-type xenoliths support the proposed interpretation.  相似文献   

17.
Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived  相似文献   

18.
The paper presents data on naturally quenched melt inclusions in olivine (Fo 69–84) from Late Pleistocene pyroclastic rocks of Zhupanovsky volcano in the frontal zone of the Eastern Volcanic Belt of Kamchatka. The composition of the melt inclusions provides insight into the latest crystallization stages (∼70% crystallization) of the parental melt (∼46.4 wt % SiO2, ∼2.5 wt % H2O, ∼0.3 wt % S), which proceeded at decompression and started at a depth of approximately 10 km from the surface. The crystallization temperature was estimated at 1100 ± 20°C at an oxygen fugacity of ΔFMQ = 0.9–1.7. The melts evolved due to the simultaneous crystallization of olivine, plagioclase, pyroxene, chromite, and magnetite (Ol: Pl: Cpx: (Crt-Mt) ∼ 13: 54: 24: 4) along the tholeiite evolutionary trend and became progressively enriched in FeO, SiO2, Na2O, and K2O and depleted in MgO, CaO, and Al2O3. Melt crystallization was associated with the segregation of fluid rich in S-bearing compounds and, to a lesser extent, in H2O and Cl. The primary melt of Zhupanovsky volcano (whose composition was estimated from data on the most primitive melt inclusions) had a composition of low-Si (∼45 wt % SiO2) picrobasalt (∼14 wt % MgO), as is typical of parental melts in Kamchatka and other island arcs, and was different from MORB. This primary melt could be derived by ∼8% melting of mantle peridotite of composition close to the MORB source, under pressures of 1.5 ± 0.2 GPa and temperatures 20–30°C lower than the solidus temperature of “dry” peridotite (1230–1240°C). Melting was induced by the interaction of the hot peridotite with a hydrous component that was brought to the mantle from the subducted slab and was also responsible for the enrichment of the Zhupanovsky magmas in LREE, LILE, B, Cl, Th, U, and Pb. The hydrous component in the magma source of Zhupanovsky volcano was produced by the partial slab melting under water-saturated conditions at temperatures of 760–810°C and pressures of ∼3.5 GPa. As the depth of the subducted slab beneath Kamchatkan volcanoes varies from 100 to 125 km, the composition of the hydrous component drastically changes from relatively low-temperature H2O-rich fluid to higher temperature H2O-bearing melt. The geothermal gradient at the surface of the slab within the depth range of 100–125 km beneath Kamchatka was estimated at 4°C/km.  相似文献   

19.
深部过程对埃达克质岩石成分的制约   总被引:45,自引:18,他引:27  
埃达克岩、太古宙TTG和中国东部广泛出露的燕山期埃达克质中酸性火山-侵入岩在岩石地球化学特征方面有许多相似之处,也有一些显著的差异。与典型的埃达克岩相比,太古宙TTG具有相对高Si和低Mg^#的特点:中国东部埃达克质岩石多表现为低Mg^#贫A120,和高K特征。埃达克岩相对高Mg^#是由于俯冲洋壳部分熔融产生的原生埃达克岩熔体受到了地幔橄榄岩的混染,太古宙TTG多无明显的地幔混染印记,反映其可能主要形成于下地壳底侵玄武岩的部分熔融,而与洋壳俯冲没有直接联系。中国东部埃达克质岩石相对低Mg^#畜K,暗示其可能是下地壳底侵玄武岩部分熔融或拆沉-熔融的产物,而幔源富钾熔体的混合、壳内分异和混染过程都有可能影响其成分特征中国东部部分地区的高镁埃达克质岩石可能揭示了下地壳拆沉一熔融和地幔混染过程。钾质埃达克岩的源区可能是被小比例软流圈熔体交代富集的底侵玄武岩层(增厚的下地壳)。结合燕山期岩浆作用和构造转换的特点来看,埃达克岩的形成是中国东部晚中生代岩石圈强烈减薄和大规模岩浆作用产物的一部分,这一重大构造体制的转换可能与地幔柱上涌对岩石圈的侵蚀和导致的伸展作用有关。  相似文献   

20.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号