首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
浅层滑坡诱发沟谷泥石流的地形和降雨条件   总被引:1,自引:0,他引:1       下载免费PDF全文
余斌  王涛  朱渊 《水科学进展》2016,27(4):542-550
2011年贵州省望谟县打易镇的大范围浅层滑坡诱发的沟谷泥石流提供了研究这类泥石流地形和降雨条件的机会。在地质条件一致和小区域内的降雨条件基本一致的情况下,地形条件就是这些泥石流暴发与否的唯一决定因素。对比一些重要的地形因素与泥石流暴发的关系,得出了由流域面积、沟床纵比降和25°~45°山坡坡度面积比组成的泥石流综合地形因子T。在地形因子T的基础上,研究获得了由前期降雨量、1 h降雨强度、年平均降雨量等组成的降雨因子R。由地形因子T和降雨因子R获得的临界条件P可以判断该区域的泥石流暴发。由于研究工作部分基于泥石流的形成机理,研究成果还可用于其他区域的泥石流形成预测,为泥石流的预测预报提供了一个较好的方法。  相似文献   

2.
Debris flows are more frequent in central Taiwan, because of its mountainous geography. For example, many debris flows were induced by Typhoon Herb in 1996. The Chi-Chi earthquake with a magnitude of 7.3, which took place in 1999 in central Taiwan, induced many landslides in this region. Some landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001. This study investigates the characteristics of the gullies where debris flows have occurred for a comparison. Aerial photos of these regions dated in 1997 (before the earthquake) and 2001 (after the earthquake) are used to identify the occurrence of gully-type debris flows. A Geographic Information System (GIS) is applied to acquire hydrological and geomorphic characteristics: stream gradient, stream length, catchment gradient, catchment area, form factor, and geology unit of these gullies. These characteristics in different study regions are presented in a statistical approach. The study of how strong ground motion affects the debris flows occurrence is conducted. The characteristics of the debris flow gullies triggered by typhoons before and after the Chi-Chi earthquake are quantitatively compared. The analysis results show that a significant transformation in the characteristics was induced by the Chi-Chi earthquake. In general, the transformation points out a lower hydrological and geomorphic threshold to trigger debris flows after the Chi-Chi earthquake. The susceptibility of rock units to strong ground motion is also examined. The analysis of debris flow density and accumulated rainfall in regions of different ground motion also reveal that the rainfall threshold decreases after the Chi-Chi earthquake.  相似文献   

3.
A formation model for debris flows in the Chenyulan River Watershed, Taiwan   总被引:2,自引:0,他引:2  
Many debris flows were triggered in the Chenyulan River Watershed in Taiwan in a rainstorm caused by the Typhoon Toraji. There are 117 gullies with a significant steep topography in the catchment. During this Typhoon, debris flows were initiated in 43 of these gullies, while in 34 gullies, it was not certain whether they have occurred. High-intensity short-duration rainfall was the main triggering factor for these gully type debris flows which are probably entrained by a “fire hose” mechanism. Previous research identified 47 factors related to topography, geology, and hydrology, which may play a role in the formation of gully type debris flows. For a better understanding of the probability of the formation of debris flows, it is proposed to represent the factors related to topography, geology, and hydrology by one single factor. In addition to the existing topographic and geological factor, a normalized critical rainfall factor is suggested with an effective cumulative precipitation and a maximum hourly rainfall intensity. In this paper, a formation model for debris flows is proposed, which combines these topographic, geological, and hydraulic factors. A relationship of these factors with a triggering threshold is proposed. The model produces a good assessment of the probability of occurrence of debris flows in the study area. The model may be used for the prediction of debris flows in other areas because it is mostly based on the initiation mechanisms and not only on the statistical analyses of a unique variety of local factors. The research provides a new and exciting way to study the occurrence of debris flows initiated by a “fire hose” mechanism.  相似文献   

4.
Rapid debris flows are among the most destructive natural hazards in steep mountainous terrains. Prediction of their path and impact hinges on knowledge of initiation location and the size and constitution of the released mass. To better link mass release initiation with debris flow paths and runout lengths, we propose to capitalize on a newly developed model for rainfall-induced landslide initiation (“Catchment-scale Hydro-mechanical Landslide Triggering” CHLT model, von Ruette et al. 2013) and couple it with simple estimates of debris flow runout distances and pathways. Landslide locations and volumes provided by the CHLT model are used as inputs to simulate debris flow runout distances with two empirical- and two physically-based models. The debris flow runout models were calibrated using two landslide inventories in the Swiss Alps obtained following a large rainfall event in 2005. We first fitted and tested the models for the “Prättigau” inventory, where detailed information on runout path was available, and then applied the models to landslides inventoried from a different catchment (“Napf”). The predicted debris flow runout distances (emanating from CHLT simulated landslide positions) were well in the range of observed values for the physically-based approaches. The empirical approaches tend to overestimate runout distances relative to observations. These preliminary results demonstrate the added value of linking shallow landslide triggering models with predictions of debris flow runout pathways for a range of soil states and triggering events, thus providing a more complete hazard assessment picture for debris flow exposure at the catchment scale.  相似文献   

5.
汶川地震后,地震灾区泥石流具有暴发临界雨量小,规模大,危险性高的特点。在考虑降雨和地震作用下,采用灰色关联法分析北川县72条泥石流沟的泥石流规模、流域面积、主沟长度、流域相对高差、流域切割密度、不稳定沟床比、年均降雨量和地震烈度8个影响因子的权重,在此基础上建立震区泥石流危险性评价模型并进一步对其进行危险性评价。结果表明:影响因子中,年均降雨量和地震烈度所占权重最大; 运用本文模型得到的评价结果与刘希林模型基本一致,但危险度值相对提高,其中有7条泥石流沟危险度提高一个等级。  相似文献   

6.
岷县是甘肃南部泥石流频发地区。岷县泥石流多分布于洮河干支流两岸,为群发性泥石流。为了研究群发性泥石流的运动及堆积特征,选取了甘肃岷县麻路河流域为研究区域,以流域内2012年“5·10”暴发泥石流造成重大损失的6条泥石流沟作为整体研究对象,并考虑主河对泥石流堆积物的冲刷携带,运用FLO-2D模拟降雨前主河流动情况及不同降雨频率条件下主河及泥石流的流动情况。根据野外调查结果对比2%降雨频率条件下泥石流模拟结果,验证模型的可靠性。基于模拟结果用ArcGIS进行危险性评价,识别流域内高危险泥石流沟并划定高危险居民区,统计受冲击范围,为泥石流防治和预警工作提供科学依据。  相似文献   

7.
Debris flow susceptibility assessment is the premise of risk assessment. In this paper, Sichuan Province is chosen as a study area, where debris flow disasters happen frequently. Information value model is applied to calculate the information values of seven environmental factors, namely elevation, slope, aspect, flow accumulation, vegetation coverage, soil type and land-use type. Geographic information system technology is used to analyze the comprehensive information values so as to determine the debris flow susceptibility. The results show that the northeast, the central and the south of Sichuan are the most hazardous regions, which display a zonal distribution feature from the southeast to the south. From the validation results, 7.53 % of the total area suffers from high susceptibility and 19.97 % suffers from very high susceptibility. However, 80 % of the debris flows are concentrated in two regions. The actual occurrence ratios of debris flows of the high-susceptibility and very high-susceptibility areas are 4.95 and 2.14, respectively.  相似文献   

8.
Kuskonook Creek, an example of a debris flow analysis   总被引:1,自引:0,他引:1  
Two debris flows occurred on Kuskonook Creek in British Columbia, Canada, in August and September 2004. The initiation factors included a major forest fire in the catchment in 2003, in association with relatively small rainfall events and the accumulation of sediment in the creek channels since the last large debris flow event. Previous regional studies and morphometric comparisons with other similar catchments indicate that Kuskonook Creek has characteristics predisposed to debris flows, even without the affects of a forest fire. Based on the investigations and analyses, a magnitude/frequency relationship for future debris events on Kuskonook Creek was developed, and this information was used to carry out a partial risk assessment. It is suggested that for design purposes, a 1/50-year return period and the corresponding debris flow magnitude of 15,000 m3 would provide conservative protection to the users of the provincial highway at the mouth of the creek.  相似文献   

9.
Wei Zhou  Chuan Tang 《Landslides》2014,11(5):877-887
The Wenchuan earthquake-stricken area is frequently hit by heavy rainfall, which often triggers sediment-related disasters, such as shallow landslides, debris flows, and related natural events, sometimes causing tremendous damage to lives, property, infrastructure, and environment. The assessment of the rainfall thresholds for debris flow occurrence is very important in order to improve forecasting and for risk management. In the context of the Wenchuan earthquake-stricken area, however, the rainfall thresholds for triggering debris flows are not well understood. With the aim of defining the critical rainfall thresholds for this area, a detailed analysis of the main rainstorm events was carried out. This paper presents 11 rainfall events that induced debris flows which occurred between 2008 and 2012 after the Wenchuan earthquake. The rainfall thresholds were defined in terms of mean rainfall intensity I, rainfall duration D, and normalized using the mean annual precipitation (MAP). An ID threshold and a normalized I MAP D threshold graph could be set up for the Wenchuan earthquake-stricken area which forms the lower boundary of the domain with debris flow-triggering rainfall events. The rainfall threshold curves obtained for the study area were compared with the local, regional, and global curves proposed by various authors. The results suggest that debris flow initiation in the study area almost requires a higher amount of rainfall and greater intensity than elsewhere. The comparison of rainfall intensity prior to and after the earthquake clearly indicates that the critical rainfall intensity necessary to trigger debris flows decreased after the earthquake. Rainfall thresholds presented in this paper are generalized, so that they can be used in debris flow warning systems in areas with the same geology as the Wenchuan earthquake-stricken area.  相似文献   

10.
A dramatic increase in debris flows occurred in the years after the 2008 Wenchuan earthquake in SW China due to the deposition of loose co-seismic landslide material. This paper proposes a preliminary integrated model, which describes the relationship between rain input and debris flow run-out in order to establish critical rain thresholds for mobilizing enough debris volume to reach the basin outlet. The model integrates in a simple way rainfall, surface runoff, and concentrated erosion of the loose material deposited in channels, propagation, and deposition of flow material. The model could be calibrated on total volumes of debris flow materials deposited at the outlet of the Shuida catchment during two successive rain events which occurred in August 2011. The calibrated model was used to construct critical rainfall intensity-duration graphs defining thresholds for a run-out distance until the outlet of the catchment. Model simulations show that threshold values increase after successive rain events due to a decrease in erodible material. The constructed rainfall intensity-duration threshold graphs for the Shuida catchment based on the current situation appeared to have basically the same exponential value as a threshold graph for debris flow occurrences, constructed for the Wenjia catchment on the basis of 5 observed triggering rain events. This may indicate that the triggering mechanism by intensive run-off erosion in channels in this catchment is the same. The model did not account for a supply of extra loose material by landslips transforming into debris flow or reaching the channels for transportation by run-off. In August 2012, two severe rain events were measured in the Shuida catchment, which did not produce debris flows. This could be confirmed by the threshold diagram constructed by the model.  相似文献   

11.
Many debris flows were triggered within and also outside the Dayi area of the Guizhou Province, China, during a rainstorm in 2011. High-intensity short-duration rainfall was the main triggering factor for these gully-type debris flows which are probably triggered by a runoff-induced mechanism. A revised prediction model was introduced for this kind of gully-type debris flows with factors related to topography, geology, and hydrology (rainfall) and applied to the Wangmo River catchment. Regarding the geological factor, the “soft lithology” and “loose sediments” in the channel were added to the list of the average firmness coefficient for the lithology. Also, the chemical weathering was taken into account for the revised geological factor. Concerning the hydrological factor, a coefficient of variation of rainfall was introduced for the normalization of the rainfall factor. The prediction model for debris flows proposed in this paper delivered three classes of the probability of debris flow occurrence. The model was successfully validated in debris flow gullies with the same initiation mechanism in other areas of southwest China. The generic character of the model is explained by the fact that its factors are partly based on the initiation mechanisms and not only on the statistical analyses of a unique variety of local factors. The research provides a new way to predict the occurrence of debris flows initiated by a runoff-induced mechanism.  相似文献   

12.
贵州省望谟县2011年6月6日暴发了特大山洪泥石流,其中暴雨中心所在的打易镇多处暴发泥石流。短历时强降雨激发了沟床起动类型的泥石流。本文通过对贵州望谟河流域群发泥石流的调查,得出该流域的66条沟中,22条沟无沟床起动类型泥石流暴发,25条沟暴发沟床起动类型泥石流,还有19条沟无法确定是否有沟床起动类型泥石流暴发。在前期工作基础上,提出了地质条件和降水条件因子的改进方法;并在前期工作的3大条件(地形条件、地质条件和降水条件)之间的关系基础上,由贵州望谟群发泥石流数据得出改进沟床起动类型泥石流的临界值,提出了泥石流的预报模型。本文模型在我国西南地区的泥石流验证中非常成功,为泥石流的预报提供了一个新方法。预报模型中的地形因子和地质因子还可以判断泥石流流域的暴发频率,为正确地判断泥石流流域的特征打下了基础。预报模型也可以估算泥石流的暴发规模,为定量地预测泥石流危害范围提供了依据。  相似文献   

13.
Typhoon Herb in 1996 caused widespread debris flows in central Taiwan. The 7.3 Chi-Chi earthquake on September 21, 1999, which also took place in central Taiwan, induced many landslides in the region. These landslides turned into debris flows when Typhoon Toraji struck Taiwan in 2001. This research selects three regions which suffered a ground motion class of 5, 6, and 7 on the Richter scale during the Chi-Chi earthquake as study areas. Air photos from 1997 and 2001 of these regions are used to map the gully-type debris flows that took place after Typhoons Herb and Toraji, respectively. The gullies adjacent to the debris flow, but without a trace of debris flows, are also mapped as the non-debris flow data. The topography, hydrogeology, and rainfall factors – where debris flow occurred and in which there was no occurrence of debris flows in these gullies were retrieved from DTM, geological maps, and iso-countour maps, and of rainfall through GIS processing. These characteristic are introduced into a probabilistic neural network to build a predicting model for the probability of the occurrence of debris flows. Three series of cross analyses are conducted to compare the probability of the occurrence of debris flows of the same dataset predicted by different prediction models. The results reveal that the susceptibility of debris flows was elevated after the Chi-Chi earthquake struck. The upsurge of susceptibility was more obvious for the regions that received a higher class of ground motion.  相似文献   

14.
Typhoon Morakot brought extreme rainfall and initiated numerous landslides and debris flows in southern Taiwan in August of 2009. The purpose of this study is to identify the extreme rainfall-induced landslide frequency-area distribution in the Laonong River Basin in southern Taiwan and debris flow-initiated conditions under rainfall. Results of the analysis show that debris flows were initiated under high cumulative rainfall and long rainfall duration or high rainfall intensity. The relationship of mean rainfall intensity and duration threshold could reflect debris flow initiation characteristics under high rainfall intensity in short rainfall duration conditions. The relationship of cumulative rainfall and duration threshold could reflect debris flow initiation characteristics under high cumulative rainfall in long rainfall duration. Defining rainfall events by estimating rainfall parameters with different methodologies could reveal variations among intermittent rainfall events for the benefit of issuing debris flow warnings. The exponent of landslide frequency-area distribution induced by Typhoon Morakot is lower than that induced by the Chi-Chi earthquake. The lower exponent of landslide frequency-area distribution can be attributed to the transportation and deposition areas of debris flow that are included in the landslide area. Climate change induced high rainfall intensity and long duration of precipitation, for example, Typhoon Morakot brought increased frequency of debris flow and created difficulty in issuing warnings from rainfall monitoring.  相似文献   

15.
A number of methods for prediction of debris flows have been studied. However, the successful prediction ratios of debris flows cannot always maintain a stable and reliable level. The objective of this study is to present a stable and reliable analytical model for risk degree predictions of debris flows. This study proposes an Artificial Neural Networks (ANN) model that was constructed by seven significant factors using back-propagation (BP) algorithm. These seven factors include (1) length of creek, (2) average slope, (3) effective watershed area, (4) shape coefficient, (5) median size of soil grain, (6) effective cumulative rainfall, and (7) effective rainfall intensity. A total of 171 potential cases of debris flows collected in eastern Taiwan were fed into the ANN model for training and testing. The average ratio of successful prediction reaching 99.12% demonstrates that the presented ANN model with seven significant factors can provide a highly stable and reliable result for the prediction of debris flows in hazard mitigation and guarding systems.  相似文献   

16.
2010年8月13日四川都江堰市龙池地区暴发了特大规模的群发性暴雨型泥石流过程,给龙池地区的震后恢复重建带来了巨大的灾难,因此,研究该区泥石流发生机理和预警十分必要。本文在总结前人关于泥石流暴发与降雨条件研究成果基础上,发现泥石流物源含水量及地表径流流深等是导致流域内松散物源启动的主要原因。根据其前期降雨量和有效降雨强度等特征,建立了泥石流流域物源土体颗粒个别启动、局部启动和大量启动的判别式,建立了适合该区域暴雨泥石流预警模型,将可能诱发泥石流暴发的不同降雨条件划分为蓝、黄和红色3个危险等级,为该区泥石流监测预警提供了科学依据。  相似文献   

17.
泥石流风险及沟谷泥石流风险度评价   总被引:28,自引:4,他引:24  
风险一词虽然已经广泛被科学家和经济学家所使用 ,但涉及到自然灾害的风险研究则还是 2 0世纪 80年代中后期的事。国内有关泥石流风险的探讨 ,更是 2 0世纪 90年代才初见端倪。国际上 ,泥石流风险评价至今仍然是前沿探索性领域和新兴的研究课题。基于联合国对自然灾害风险的定义及其定量表达 ,本文给出了泥石流风险度 =危险度易损度这一数学命题的近似解。讨论了风险分级和不同风险等级的分布概率以及风险指南。以云南东川因民矿区黑山沟泥石流为例 ,对单沟泥石流风险度评价模型进行了示范应用  相似文献   

18.
余斌  杨凌崴  刘清华  常鸣 《地球科学》2020,45(4):1447-1456
泥石流形成区沟床宽度和颗粒粒径对沟床起动型泥石流的发生影响很大,在强烈地震影响区内显得尤为突出,但目前的泥石流预报中还没考虑到这两个因素,无法准确预测强震区泥石流的发生.在泥石流10 min和1 h精细化预报模型基础上,通过现场调查群发泥石流事件,结合汶川地震强烈影响区泥石流的演化特点,引入了泥石流形成区沟道宽度和颗粒粒径的影响,建立了改进的精细化泥石流10 min和1 h预报模型,并在贵州望谟打易和四川德昌群发泥石流、汶川地震强烈影响区的文家沟多次泥石流事件中获得了很好的验证结果,得出泥石流形成区的颗粒粒径代表泥石流的地质因子,泥石流形成区沟床宽度代表泥石流的地形因子之一,这2个因子在泥石流发生中的作用都非常重要;改进的精细化10 min和1 h预报模型以及临界值,可以用于强烈地震区和一般的泥石流预报.   相似文献   

19.
研究目的】泥石流灾害是白龙江流域分布广泛并常引起群死群伤的重大地质灾害,准确评价泥石流活动规模及其危险度,是泥石流危险性预警预报的前提,合理构建危险性预报模型是泥石流防灾减灾的关键。【研究方法】本文以研究区历史泥石流案例和对应降雨资料为基础数据,采用统计分析方法,通过分析形成泥石流关键地质环境条件及其相互关系,构建了白龙江流域潜在泥石流危险度定量评价模型,提出了两类泥石流危险级别临界判别模式。【研究结果】结果表明:(1)以泥石流活动规模、沟床平均比降、流域切割密度、不稳定沟床比例为判断因子的泥石流危险度动态定量计算模型,能快速准确预测未来不同工程情景和降雨频率工况下泥石流危险度;(2)影响降雨型泥石流发生的地形条件由流域面积、10°~40°斜坡坡度面积比、沟床平均纵比降等组成,降雨条件主要由泥石流爆发前的24 h累积降雨量、触发泥石流1 h降雨量或10 min降雨量等组成;(3)依据30条典型泥石流沟危险度计算结果,获得泥石流危险性临界判别值,提出了降雨型潜在泥石流危险性1 h预报模型(Ⅰ类)和10 min预报模型(Ⅱ类),其中Ⅰ类模型高危险度以上泥石流预测精度大于87.5%,Ⅱ类模型中等危险度以上泥石流预测精度大于80%,而两类预报模型验证准确率为83.3%。【结论】研究成果为泥石流精准预警预报提供了技术支撑,对建立中小尺度泥石流实时化预警系统具有一定参考意义。创新点:通过确定与泥石流相对应关键地质环境因子,构建了泥石流危险度动态定量评价模型,依据泥石流危险性1 h和10 min临界判别模式可准确实现潜在泥石流预警预报。  相似文献   

20.
Relationships between typhoon types and debris flow disasters in Taiwan   总被引:1,自引:1,他引:0  
Frequent debris flow disasters caused by heavy precipitation during the annual typhoon season are some of the most serious disasters in Taiwan. This study is on the debris flow disasters associated with the typhoons that hit Taiwan between 1986 and 2004. Typhoon data and records of debris flow disasters available for Nantou and Hualien counties in Taiwan were analyzed. The paths and rainfall characteristics of typhoons were found to have a great effect on the debris flows at these locations. Accordingly, the typhoons were grouped into four major types based on their paths and related disasters. The relationships between rainfall intensity and accumulation and debris flow are discussed for the four major typhoon types. The information may form the basis for providing useful indicators for disaster management.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号