首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Orthopyroxene-bearing migmatites, exposed at the summit of Cone Peak in the Santa Lucia Range, California, offer an opportunity to explore potential links between granulite facies metamorphism and migmatite formation. Geothermobarometry indicates that the metamorphic temperatures and pressures were in the approximate ranges of 700–750° C and 7.0–7.5 kbar. The rocks at the summit comprise three domains: relatively coarse-grained, leucocratic veins; relatively fine-grained, biotite-enriched zones at the margins of the veins; and a biotite–hornblende-bearing host rock. Orthopyroxene is concentrated in the veins, which have also the highest ratio of anhydrous to hydrous minerals of the three rock types. The composition of the veins, together with their textures and modes, suggest that they formed through anatexis involving a dehydration-melting reaction which consumed hornblende and produced orthopyroxene. Variability in mineralogy and composition indicates that there was some local migration of magma along the veins before their final solidification. The biotite-enriched zones formed either by the concentration of residual biotite at the margins of the vein, or through the metasomatic conversion of hornblende (and/or pyroxene) to biotite, or by a combination of the two processes. Significant differences in the chemistry of the neosome (vein + biotite-enriched zone) and the host rock rule out simple dehydration melting in a local closed system. The model that explains best the mineralogical and chemical patterns involves triggering of melting by an influx of a low- a H2O mixed fluid which added K and Si to and removed Ca from the neosome.  相似文献   

2.
Evidence of melting is presented from the Western Gneiss Region (WGR) in the core of the Caledonian orogen, Western Norway and the dynamic significance of melting for the evolution of orogens is evaluated. Multiphase inclusions in garnet that comprise plagioclase, potassic feldspar and biotite are interpreted to be formed from melt trapped during garnet growth in the eclogite facies. The multiphase inclusions are associated with rocks that preserve macroscopic evidence of melting, such as segregations in mafic rocks, leucosomes and pegmatites hosted in mafic rocks and in gneisses. Based on field studies, these lithologies are found in three structural positions: (i) as zoned segregations found in high‐P (ultra)mafic bodies; (ii) as leucosomes along amphibolite facies foliation and in a variety of discordant structures in gneiss; and (iii) as undeformed pegmatites cutting the main Caledonian structures. Segregations post‐date the eclogite facies foliation and pre‐date the amphibolite facies deformation, whereas leucosomes are contemporaneous with the amphibolite facies deformation, and undeformed pegmatites are post‐kinematic and were formed at the end of the deformation history. The geochemistry of the segregations, leucosomes and pegmatites in the WGR defines two trends, which correlate with the mafic or felsic nature of the host rocks. The first trend with Ca‐poor compositions represents leucosome and pegmatite hosted in felsic gneiss, whereas the second group with K‐poor compositions corresponds to segregation hosted in (ultra)mafic rocks. These trends suggest partial melting of two separate sources: the felsic gneisses and also the included mafic eclogites. The REE patterns of the samples allow distinction between melt compositions, fractionated liquids and cumulates. Melting began at high pressure and affected most lithologies in the WGR before or during their retrogression in the amphibolite facies. During this stage, the presence of melt may have acted as a weakening mechanism that enabled decoupling of the exhuming crust around the peak pressure conditions triggering exhumation of the upward‐buoyant crust. Partial melting of both felsic and mafic sources at temperatures below 800 °C implies the presence of an H2O‐rich fluid phase at great depth to facilitate H2O‐present partial melting.  相似文献   

3.
Anatexis of metapelitic rocks at the Bandelierkop Quarry (BQ) locality in the Southern Marginal Zone of the Limpopo Belt occurred via muscovite and biotite breakdown reactions which, in order of increasing temperature, can be modelled as: (1) Muscovite + quartz + plagioclase = sillimanite + melt; (2) Biotite + sillimanite + quartz + plagioclase = garnet + melt; (3) Biotite + quartz + plagioclase = orthopyroxene ± cordierite ± garnet + melt. Reactions 1 and 2 produced stromatic leucosomes, which underwent solid‐state deformation before the formation of undeformed nebulitic leucosomes by reaction 3. The zircon U–Pb ages for both leucosomes are within error identical. Thus, the melt or magma formed by the first two reactions segregated and formed mechanically solid stromatic veins whilst temperature was increasing. As might be predicted from the deformational history and sequence of melting reactions, the compositions of the stromatic leucosomes depart markedly from those of melts from metapelitic sources. Despite having similar Si contents to melts, the leucosomes are strongly K‐depleted, have Ca:Na ratios similar to the residua from which their magmas segregated and are characterized by a strong positive Eu anomaly, whilst the associated residua has no pronounced Eu anomaly. In addition, within the leucosomes and their wall rocks, peritectic garnet and orthopyroxene are very well preserved. This collective evidence suggests that melt loss from the stromatic leucosome structures whilst the rocks were still undergoing heating is the dominant process that shaped the chemistry of these leucosomes and produced solid leucosomes. Two alternative scenarios are evaluated as generalized petrogenetic models for producing Si‐rich, yet markedly K‐depleted and Ca‐enriched leucosomes from metapelitic sources. The first process involves the mechanical concentration of entrained peritectic plagioclase and garnet in the leucosomes. In this scenario, the volume of quartz in the leucosome must reflect the remaining melt fraction with resultant positive correlation between Si and K in the leucosomes. No such correlation exists in the BQ leucosomes and in similar leucosomes from elsewhere. Consequently, we suggest disequilibrium congruent melting of plagioclase in the source and consequential crystallization of peritectic plagioclase in the melt transfer and accumulation structures rather than at the sites of biotite melting. This induces co‐precipitation of quartz in the structures by increasing SiO2 content of the melt. This process is characterized by an absence of plagioclase‐induced fractionation of Eu on melting, and the formation of Eu‐enriched, quartz + plagioclase + garnet leucosomes. From these findings, we argue that melt leaves the source rapidly and that the leucosomes form incrementally as melt or magma leaving the source dumps its disequilibrium Ca load, as well as quartz and entrained ferromagnesian peritectic minerals, in sites of magma accumulation and escape. This is consistent with evidence from S‐type granites suggesting rapid magma transfer from source to high level plutons. These findings also suggest that leucosomes of this type should be regarded as constituting part of the residuum from partial melting.  相似文献   

4.
Incipient charnockites have been widely used as evidence for the infiltration of CO2‐rich fluids driving dehydration of the lower crust. Rocks exposed at Kakkod quarry in the Trivandrum Block of southern India allow for a thorough investigation of the metamorphic evolution by preserving not only orthopyroxene‐bearing charnockite patches in a host garnet–biotite felsic gneiss, but also layers of garnet–sillimanite metapelite gneiss. Thermodynamic phase equilibria modelling of all three bulk compositions indicates consistent peak‐metamorphic conditions of 830–925 °C and 6–9 kbar with retrograde evolution involving suprasolidus decompression at high temperature. These models suggest that orthopyroxene was most likely stabilized close to the metamorphic peak as a result of small compositional heterogeneities in the host garnet–biotite gneiss. There is insufficient evidence to determine whether the heterogeneities were inherited from the protolith or introduced during syn‐metamorphic fluid flow. U–Pb geochronology of monazite and zircon from all three rock types constrains the peak of metamorphism and orthopyroxene growth to have occurred between the onset of high‐grade metamorphism at c. 590 Ma and the onset of melt crystallization at c. 540 Ma. The majority of metamorphic zircon growth occurred during protracted melt crystallization between c. 540 and 510 Ma. Melt crystallization was followed by the influx of aqueous, alkali‐rich fluids likely derived from melts crystallizing at depth. This late fluid flow led to retrogression of orthopyroxene, the observed outcrop pattern and to the textural and isotopic modification of monazite grains at c. 525–490 Ma.  相似文献   

5.
This study uses field, petrographic and geochemical methods to estimate how much granitic melt was formed and extracted from a granulite facies terrane, and to determine what the grain‐ and outcrop‐scale melt‐flow paths were during the melt segregation process. The Ashuanipi subprovince, located in the north‐eastern Superior Province of Quebec, is a large (90 000 km2) metasedimentary terrane, in which > 85% of the metasediments are of metagreywacke composition, that was metamorphosed at mid‐crustal conditions (820–900 °C and 6–7 kbar) in a late Archean dextral, transpressive orogen. Decrease in modal biotite and quartz as orthopyroxene and plagioclase contents increase, together with preserved former melt textures indicate that anatexis was by the biotite dehydration reaction: biotite + quartz + plagioclase = melt + orthopyroxene + oxides. Using melt/orthopyroxene ratios for this reaction derived from experimental studies, the modal orthopyroxene contents indicate that the metagreywacke rocks underwent an average of 31 vol% partial melting. The metagreywackes are enriched in MgO, CaO and FeOt and depleted in SiO2, K2O, Rb, Cs, and U, have lower Rb/Sr, higher Rb/Cs and Th/U ratios and positive Eu anomalies compared to their likely protolith. These compositions are modelled by the extraction of between 20 and 40 wt %, granitic melt from typical Archean low‐grade metagreywackes. A simple mass balance indicates that about 640 000 km3 of granitic melt was extracted from the depleted granulites. The distribution of relict melt at thin section‐ and outcrop‐scales indicates that in layers without leucosomes melt extraction occurred by a pervasive grain boundary (porous) flow from the site of melting, across the layers and into bedding planes between adjacent layers. In other rocks pervasive grain boundary flow of melt occurred along the layers for a few, to tens of centimetres followed by channelled flow of melt in a network of short interconnected and structurally controlled conduits, visible as the net‐like array of leucosomes in some outcrops. The leucosomes contain very little residual material (< 5% biotite + orthopyroxene) indicating that the melt fraction was well separated from the residuum left in situ as melt‐depleted granulite. Only 1–3 vol percentage melt remained in the melt‐depleted granulites, hence, the extraction of melt generated by biotite dehydration melting in these granulites, was virtually complete under conditions of natural melting and strain rates in a contractional orogen.  相似文献   

6.
The Winding Stair Gap in the Central Blue Ridge province exposes granulite facies schists, gneisses, granofelses and migmatites characterized by the mineral assemblages: garnet–biotite–sillimanite–plagioclase–quartz, garnet–hornblende–biotite–plagioclase–quartz ± orthopyroxene ± clinopyroxene and orthopyroxene–biotite–quartz. Multiple textural populations of biotite, kyanite and sillimanite in pelitic schists support a polymetamorphic history characterized by an early clockwise P–T path in which dehydration melting of muscovite took place in the stability field of kyanite. Continued heating led to dehydration melting of biotite until peak conditions of 850 ± 30 °C, 9 ± 1 kbar were reached. After equilibrating at peak temperatures, the rocks underwent a stage of near isobaric cooling during which hydrous melt ± K‐feldspar were replaced by muscovite, and garnet by sillimanite + biotite + plagioclase. Most monazite crystals from a pelitic schist display patchy zoning for Th, Y and U, with some matrix crystals having as many as five compositional zones. A few monazite inclusions in garnet, as well as Y‐rich cores of some monazite matrix crystals, yield the oldest dates of c. 500 Ma, whereas a few homogeneous matrix monazites that grew in the main foliation plane yield dates of 370–330 Ma. Culling and analysis of individual spot dates for eight monazite grains yields three age populations of 509 ± 14 Ma, 438 ± 5 Ma and 360 ± 5 Ma. These data suggest that peak‐temperature metamorphism and partial melting in the central Blue Ridge occurred during the Salinic or Taconic orogeny. Following near isobaric cooling, a second weaker thermal pulse possibly related to intrusion of nearby igneous bodies resulted in growth of monazite c. 360 Ma, coinciding with the Neoacadian orogeny.  相似文献   

7.
Granulite facies gabbroic and dioritic gneisses in the Pembroke Valley, Milford Sound, New Zealand, are cut by vertical and planar garnet reaction zones in rectilinear patterns. In gabbroic gneiss, narrow dykes of anorthositic leucosome are surrounded by fine‐grained garnet granulite that replaced the host two‐pyroxene hornblende granulite at conditions of 750 °C and 14 kbar. Major and trace element whole‐rock geochemical data indicate that recrystallization was mostly isochemical. The anorthositic veins cut contacts between gabbroic gneiss and dioritic gneiss, but change in morphology at the contacts, from the anorthositic vein surrounded by a garnet granulite reaction zone in the gabbroic gneiss, to zones with a septum of coarse‐grained garnet surrounded by anorthositic leucosome in the dioritic gneiss. The dioritic gneiss also contains isolated garnet grains enclosed by leucosome, and short planar trains of garnet grains linked by leucosome. Partial melting of the dioritic gneiss, mostly controlled by hornblende breakdown at water‐undersaturated conditions, is inferred to have generated the leucosomes. The form of the leucosomes is consistent with melt segregation and transport aided by fracture propagation; limited retrogression suggests considerable melt escape. Dyking and melt escape from the dioritic gneiss are inferred to have propagated fractures into the gabbroic gneiss. The migrating melt scavenged water from the surrounding gabbroic gneiss and induced the limited replacement by garnet granulite.  相似文献   

8.
Granulite facies cordierite–garnet–biotite gneisses from the southeastern Reynolds Range, central Australia, contain both orthopyroxene‐bearing and orthopyroxene‐free quartzofeldspathic leucosomes. Mineral reaction microstructures at the interface of gneiss and leucosome observed in outcrop and petrographically, reflect melt‐rock interaction during crystallization. Accessory monazite, susceptible to fluid alteration, dissolution and recrystallization at high temperature, is tested for its applicability to constrain the chemical and P–T–time evolution of melt‐rock reactions during crystallization upon cooling. Bulk rock geochemistry and phase equilibria modelling constrain peak pressure and temperature conditions to 6.5–7.5 kbar and ~850°C, and UPb geochronology constrains the timing of monazite crystallization to 1.55 Ga, coeval with the Chewings Orogeny. Modelling predicts the presence of up to 15 vol.% melt at peak metamorphic conditions. Upon cooling below 800°C, melt extraction and in situ crystallization of melt decrease the melt volume to less than 7%, at which time it becomes entrapped and melt pockets induce replacement reactions in the adjacent host rock. Replacement reactions of garnet, orthopyroxene and K‐feldspar liberate Y, REE, Eu and U in addition to Mg, Fe, Al, Si and K. We demonstrate that distinguishing between monazite varieties solely on the basis of U–Pb ages cannot solve the chronological order of events in this study, nor does it tie monazite to the evolution of melt or stability of rock‐forming minerals. Rather, we argue that analyses of various internal monazite textures, their composition and overprinting relations allow us to identify the chronology of events following the metamorphic peak. We infer that retrograde reactions involving garnet, orthopyroxene and K‐feldspar can be attributed to melt‐rock interaction subsequent to partial melting, which is reflected in the development of compositionally distinct monazite textural domains. Internal monazite textures and their composition are consistent with dissolution and precipitation reactions induced by a high‐T melt. Monazite rims enriched in Y, HREE, Eu and U indicate an increased availability of these elements, consistent with the breakdown of orthopyroxene, garnet and K‐feldspar observed petrographically. Our study indicates that compositional and textural analysis of monazite in relation to major rock‐forming minerals can be used to infer the post‐peak chemical evolution of partial melts during high‐ to ultrahigh‐temperature metamorphism.  相似文献   

9.
Fluid-absent melting experiments on a biotite (20 wt.%) andhornblende (2 wt.%) bearing tonalitic gneiss were conductedat 6 kbar (900–975C), 10 kbar (875–1075C), and14 kbar (950–975C) to study melt productivity from weaklyperaluminous quartzofeldspathic metamorphic rocks. At 6 kbar,biotite dehydration–melting is completed at 975C viaincongruent melting reactions that produce orthopyroxene, twooxides, and {small tilde}25 wt.% granitic melt. At 6 kbar, hornblendedisappears at 900C, probably in reaction with biotite. At 10kbar, biotite dehydration–melting produces <10 wt.%melt up to 950C via incongruent melting reactions that produceorthopyroxene, garnet, and granitic melt. Hornblende disappearsin the satne temperature interval either by resorption or byreaction with biotite. Widespread biotite dehydration–meltingoccurs between 950 and 975C and produces orthopyroxene, twooxides, and {small tilde}20 wt.% fluorine-rich (up to 0•31wt.%) granitic melt. At 14 kbar only a trace of melt is presentat 950C, and the amounts of hornblende and biotite are virtuallythe same as in the starting material. At 975C, hornblende isgone and {small tilde}10 wt.% granitic melt is produced by meltingof both biotite and hornblende. Our results show that hornblende-bearing assemblages cannotgo through dehydration–melting on their own (althoughthey can in combination with biotite) if the Ca content in thesource rock is too low to stabilize clinopyroxene. In such rocks,hornblende will either resorb or melt by reaction with biotite.Under fluid-absent conditions, intrusion of hot, mantle-derivedmagmas into the lower crust is necessary to initiate widespreaddehydration–melting in rocks with compositions similarto those discussed here. We argue that the high thermal stabilityof biotite in our starting material is caused mainly by theincorporation of fluorine. The relatively high F content inbiotite in the starting material (0•47 wt.%) suggests thatthe rock has experienced dehydroxylation in its past. F enrichmentby a previous fluid-absent partial melting event is excludedbecause of the lack of phases such as orthopyroxene and garnetwhich would have been produced. Our experiments show that thedehydration–melting of such F-enriched biotite producesF-rich granitic liquids, with compositions within the rangeof A-types granites, and leaves behind a granulitic residuedominated by orthopyroxene, quartz, and plagioclase. This studytherefore supports the notion that A-type granites can be generatedby H2O-undersaturated melting of rocks of tonalitic composition(Creaser et al., 1991), but does not require that these sourcerocks should be residual after a previous melting event.  相似文献   

10.
Abstract In the northeastern part of the Grenville Province, along the gulf of St Lawrence, cordierite is widespread in the migmatites of Baie Jacques Cartier (BJC) and Baie des Ha! Ha! (BHH). In the BJC area, rafts of mesosome occur in a pervasive network of leucosome consisting of cordierite-bearing pegmatite. In BHH, however, the mesosome and leucosome are well segregated and locally separated by thin biotite –hornblende melanosomes. Leucosomes in the BJC area record the highest temperatures (oxide thermometry = 900°C), whereas leucosomes of BHH and mesosomes of both areas indicate peak temperatures around 800°C (oxide thermometry; biotite–garnet thermometry with fluorine-rich biotite). Peak pressures were constrained at 720 MPa using the Ilm-Sil–Qtz–Grt–Rt (GRAIL) equilibrium. The area is thought to have undergone extensive melting under relatively modest pressures. The highest temperatures recorded in the BJC area are probably related to a pervasive impregnation of this terrane by aluminous granitic melts. Most post-peak P–T estimates for the mesosomes fall on a nearly isobaric, clockwise, P–T path (0.6 MPa/°C) with the exception of the high-temperature leucosomes of BJC, which fall about 100°C away from this path; this is additional evidence for the external origin of these leucosomes. The ultimate source of heat that generated the migmatites is thus though to be an underlying plutonic complex (anorthosite?).  相似文献   

11.
The migmatitic rocks exposed in Hafafit and Feiran areas exhibit some migmatitic structures as the banded, agmatic, boudinage and schlieren structures. The dominant type of these structures is the stromatic migmatites. Electron microprobe analyses of plagioclases, biotites and amphiboles from Hafafit and Feiran areas, in the Eastern Desert and Sinai, Egypt, are carried out and the metamorphic conditions are discussed. The present study revealed marked differences in the composition of plagioclases, biotites and amphiboles from Hafafit and Feiran localities. The obtained data indicated that plagioclases of the Feiran migmatites are of andesine and oligoclase composition, and display anorthite content from An20 to An38; whereas the Hafafit migmatites show a wider range of plagioclases from An10 to An60, and therefore plagioclases have labradorite, andesine and oligoclase composition. This may be due to the slow rate of the crystallisation processes. The analyses indicated that biotites of the studied areas are of metamorphic origin showing significant variation in Fe–Mg. It is worth mentioning that biotites from Hafafit migmatites have Mg–biotite composition while that of Feiram migmatites have Fe–biotite composition. High Mg and low Fe contents in biotite suggest higher crystallisation temperature. The composition of amphiboles in Hafafit migmatites is ferro-tschermakitic hornblende, while amphiboles from Feiram migmatites are magnesio-hornblende. High Ti content in the hornblende of Feiran migmatites suggests that they were formed at slightly higher temperatures and lower pressure than the Hafafit migmatites (i.e. Feiram migmatites and Hafafit migmatites were formed at granulite and amphibolite facies, respectively). Discrimination diagrams show that the muscovite is of secondary origin. Moreover, the present study confirmed that these migmatites are mainly formed by metamorphic differentiation via partial melting.  相似文献   

12.
A sequence of prograde isograds is recognized within the Dalradian Inzie Head gneisses where pelitic compositions have undergone variable degrees of partial melting via incongruent melting reactions consuming biotite. Three leucosome types are identified. At the lowest grades, granitic leucosomes containing porphyroblasts of cordierite (CRD‐melt) are abundant. At intermediate grades, CRD‐melt mingles with garnetiferous leucosomes (GT‐melt). At the highest grades, CRD‐melt coexists with orthopyroxene‐bearing leucosomes (OPX‐melt), while garnet is conspicuously absent. The prograde metamorphic field gradient is constrained to pressures of 2–3 kbar below the CRD‐melt isograd, and no greater than 4.5 kbar at the highest grade around Inzie Head. A petrogenetic grid, calculated using thermocalc , is presented for the K2O–FeO–MgO–Al2O3–SiO2–H2O (KFMASH) system for the phases orthopyroxene, garnet, cordierite, biotite, sillimanite, H2O and melt with quartz and K‐feldspar in excess. For the implied field gradient, the reaction sequence predicted by the grid is consistent with the successive prograde development of each leucosome type. Compatibility diagrams suggest that, as anatexis proceeded, bulk compositions may have been displaced towards higher MgO content by the removal of (relatively) ferroan granitic leucosome. An isobaric (P = 4 kbar) TaH2O diagram shows that premigmatization fluids must have been water‐rich (aH2O > 0.85) and suggests that, following the formation of small volumes of CRD‐melt, the system became fluid‐absent and melting reactions buffered aH2O to lower values as temperatures rose. GT‐ and OPX‐melt formed by fluid‐absent melting reactions, but a maximum of 7–11% CRD‐melt fraction can be generated under fluid‐absent conditions, much less than the large volumes observed in the field. There is strong evidence that the CRD‐melt leucosomes could not have been derived by buoyantly aided upwards migration from levels beneath the migmatites. Their formation therefore required a significant influx of H2O‐rich fluid, but in a quantity insufficient to have exhausted the buffering capacity of the solid assemblage plus melt. Fluid : rock ratios cannot have exceeded 1 : 30. The fluid was channelled through a regionally extensive shear zone network following melt‐induced failure. Such an influx of fluid at such depths has obvious consequences for localized crustal magma production and possibly for cordierite‐bearing granitoids in general.  相似文献   

13.
Chemical trends from north (amphibolite facies) to south (granulitefacies) along a 95 km traverse in Tamil Nadu, Southern India,include: whole-rock depletion of Rb, Cs, Th and U, enrichmentin Ti and F, and depletion in Fe and Mn in biotite and amphibole;increases in Al and decreases in Mn in orthopyroxene; enrichmentof fluorapatite in F. K-feldspar blebs are widespread alongquartz–plagioclase grain boundaries, and could indicateeither partial melting or metasomatism. In the northernmostportion of the traverse the principal rare earth element (REE)-bearingminerals are allanite and titanite. South of a clinopyroxeneisograd, monazite grains independent of fluorapatite are themajor REE- and Th-bearing phase. Further south independent monaziteis rare but Th-free monazite inclusions are common in fluorapatite.During prograde metamorphism, independent monazite was replacedby REE-rich fluorapatite in which the monazite inclusions laterformed. The loss of independent monazite was accompanied bya loss of whole-rock Th and possibly a small depletion in lightREE. Most mineralogical features along the traverse can be accountedfor by progressive dehydration and oxidation reactions. Trace-elementdepletion is best explained by the action of an externally derivedlow H2O activity brine migrating from a source at greater depth,possibly preceded or accompanied by partial melting. KEY WORDS: granulite facies; charnockite; metasomatism; Archean; Tamil Nadu, India; fluorapatite; monazite; allanite; titanite; biotite  相似文献   

14.
Mass-balance and mass-transfer in migmatites from the Colorado Front Range   总被引:5,自引:0,他引:5  
Metasomatic exchanges between the infiltrating fluids and wall rocks most likely initiated the formation of nine leucosomes in two large samples of the Precambrian biotite-quartz-feldspar migmatites from the east-central Colorado Front Range. The leucosomes, 2 to 20 mm thick and enclosed in mafic salvages 1 to 10 mm thick, are granitic to tonalitic in composition. Mass-balance calculations suggest that each leucosome formed by local introduction of mass. The net gains and losses calculated assuming that all such gains and losses were contained within the leucosome show that, in general, neither the gains nor the losses fit the composition of any silicate melt. It is more likely that the components were transported in a fluid. Recalculated on constant Al basis, the most significant relative mass transfers were gain of K and losses of Na and Mg by the rocks. The metasomatic reactions calculated are those for replacement of plagioclase by microcline and breakdown of biotite. The reactions must have been the cause of incipient migmatization. A mafic selvage formed from the paleosome by the loss of material whose composition is tonalitic to granodioritic varying systematically with the paleosome composition.It is proposed that an infiltrating fluid caused metasomatism and partial melting along its path and that the melt, segregated from the mafic residues, combined with the introduced material to form a leucosome. The degree of melting was controlled by the paleosome composition and by the net amount (but not the composition) of the introduced material. The cause of melting of the paleosome was most likely an increased due to the influx of H2O from the water-rich fluid.The compositional range of the metamorphic solution in equilibrium with these rocks was calculated from available experimental data. The sample calculations show that such fluid could have been responsible for the reactions and mass transfers observed.  相似文献   

15.
Making a distinction between partial melting and subsolidus segregation in amphibolite facies migmatites is difficult. The only significant melting reactions at lowpressures, either vapour saturated or muscovite dehydration melting, do not produce melanocratic peritectic phases. If protoliths are Si-rich and K-poor, then peritectic sillimanite and K-feldspar will form in scarce amounts, and may be lost by retrograde rehydration. The Roded migmatites of southern Israel (northernmost Arabian Nubian Shield) formed at P = 4.5 ± 1 kbar and T ≤ 700 °C and include Si-rich, K-poor paragneissic paleosome and trondhjemitic leucosomes. The lack of K-feldspar in leucosomes was taken as evidence for the non-anatectic origin of the Roded migmatites (Gutkin and Eyal, Isr J Earth Sci 47:117, 1998). It is shown here that although the Roded migmatites experienced significant post-peak deformation and recrystallization, microstructural evidence for partial melting is retained. Based on these microstructures, coupled with pseudosection modelling, indicators of anatexis in retrograded migmatites are established. Phase diagram modelling of neosomes shows the onset of muscovite dehydration melting at 4.5 kbar and 660 °C, forming peritectic sillimanite and K-feldspar. Adjacent non-melted paleosomes lack muscovite and would thus not melt by this reaction. Vapour saturation was not attained, as it would have formed cordierite that does not exist. Furthermore, vapour saturation would not allow peritectic K-feldspar to form, however K-feldspar is ubiquitous in melanosomes. Direct petrographic evidence for anatexis is rare and includes euhedral plagioclase phenocrysts in leucosomes and quartz-filled embayments in corroded plagioclase at leucosome-melanosome interfaces. In deformed and recrystallized rocks muscovite dehydration melting is inferred by: (1) lenticular K-feldspar enclosed by biotite in melanosomes, (2) abundant myrmekite in leucosomes, (3) muscovite–quartz symplectites after sillimanite in melanosomes and associated with myrmekite in leucosomes. While peritectic K-feldspar formed in melanosomes by muscovite dehydration melting reaction, K-feldspar crystallizing from granitic melt in adjacent leucosome was myrmekitized. Excess potassium was used in rehydration of sillimanite to muscovite.  相似文献   

16.
The Kelly's Mountain gneiss complex of Cape Breton Island, Nova Scotia, is a migmatitic paragneiss dominated by biotite- and cordierite-bearing assemblages. Metamorphic grade throughout the complex is in the upper amphibolite facies, with garnet absent and only retrograde muscovite present. In the high grade core of the complex the reaction biotite+andalusite+quartz=cordierite+K-feldspar+sillimanite+ilmenite+H2O is preserved. The pelitic migmatites contain cordierite- and K-feldspar-rich leucosomes and biotite-rich melanosomes. Minor clinopyroxene-bearing amphibolite in the complex does not show migmatitic textures. The migmatites are interpreted as in situ peraluminous partial melts on the basis of phase relations and textural criteria. Retrograde metamorphism under conditions of high fluid pressure locally produced muscovite after K-feldspar and muscovite+green biotite+chlorite after cordierite in paragneiss, and sphene after ilmenite in amphibolite. Peak metamorphic conditions of 1–3.5 kb and 580–700° C are estimated. The high geothermal gradient inferred from these conditions was probably caused by the intrusion of diorites associated with the gneiss complex. The Kelly's Mountain complex represents a rare example of migmatites formed in the low-pressure facies series, and illustrates some of the reactions involving melting in high grade pelitic rocks.  相似文献   

17.
Monazite in granulite facies metatexite migmatites (Christie Gneiss) hosting the Challenger Au deposit, South Australia, records a series of growth and resorption stages over a c. 60 Myr period between 2470 and 2410 Ma. A combination of electron microprobe X‐ray mapping and in situ ion‐microprobe dating was used to delineate and date five compositional domains. The oldest prograde metamorphic components are preserved in granoblastic gneisses surrounding the deposit, and as small high‐Y cores in large monazite grains in Au‐bearing migmatites. In metatexite leucosomes, these cores were partially resorbed prior to the growth of large high‐Th monazite domains that crystallized during partial melting and stromatic migmatite development at c. 2443 Ma. Subsequent heating to biotite dehydration conditions (c. 850 °C at 7 kbar) caused further partial melting roughly 10–15 Myr later, giving rise to c. 2428 Ma domains surrounding partly resorbed 2443 Ma grains that were entrained in the higher‐temperature melts. This period of partial melting coincided with isoclinal folding culminating in dextral transpression and represents the most likely window for remobilization of Au‐bearing polymetallic sulphide melts into low‐strain domains. Localized reaction of residual melt with the granulite facies assemblage during cooling gave rise to narrow high‐Y rims dated at 2414 ± 7 Ma. Although monazite from unmineralized granoblastic gneisses and migmatitic ore zones display the same range of U‐Pb dates, monazite in migmatites displays a higher overall Ca + Th + U content, indicating that compositional heterogeneities between ore zones and host rocks developed prior to 2470 Ma, perhaps a consequence of the hydrothermal alteration inferred to have accompanied gold mineralization.  相似文献   

18.
刘志鹏  李建威 《地质学报》2012,86(7):1077-1090
位于西秦岭南部的金厂石英闪长岩岩体内含有大量镁铁质暗色微粒包体,包体大多呈浑圆状和水滴状,部分呈不规则拉长状,与寄主岩的接触界线截然或呈渐变过渡关系。石英闪长岩中的磷灰石呈短柱状,而包体中的磷灰石则呈细长针状,反映基性岩浆的快速冷凝结晶。石英闪长岩中的斜长石发育振荡环带,核部的斜长石An低,而边部斜长石An先急剧上升,复又下降;核部与边部之间存在明显的间断,同时斜长石边部包裹有暗色矿物,指示其形成时可能有更基性的岩浆注入。寄主岩中的角闪石大多为普通角闪石和镁普通角闪石,属SiO2饱和型,而包体中角闪石一部分为镁普通角闪石,属SiO2饱和型,一部分为韭闪石、韭闪石质普通角闪石,属SiO2不饱和类型。包体中的角闪石自核部到边部,Al2O3与TiO2含量急剧下降,说明核部和幔部相对于边部形成于更高温的环境。寄主岩中黑云母部分为铁质黑云母,部分为镁质黑云母,而包体中黑云母均为镁质黑云母,在∑FeO/(∑FeO+MgO)对MgO图解上寄主岩与包体中黑云母均落入壳-幔混源区。寄主岩和包体中的锆石均为典型的岩浆锆石,LA-ICP-MS锆石U-Pb定年表明它们的形成年龄分别为212±2Ma及215±1Ma(2σ),在误差范围内基本一致,证明二者同时形成。综合以上岩相学和年代学证据认为,金厂石英闪长岩和镁铁质暗色微粒包体是幔源基性岩浆和壳源酸性岩浆混合作用的产物,形成于秦岭造山带中三叠世造山后伸展环境。结合区域上的研究结果认为,中—晚三叠世时期的幔源岩浆底侵和下地壳部分熔融在西秦岭广泛存在。  相似文献   

19.
W. Johannes  F. Holtz  P. M  ller 《Lithos》1995,35(3-4):139-152
The REE distributions in mesosomes, neosomes, leucosomes and melanosomes of four layered migmatites have been investigated. In one example (Arvika migmatites) the REE patterns in adjacent paragneisses, the presumed parent rock of the migmatites, were also determined. REE patterns of neosomes and mesosomes of Arvika migmatites are similar to the finegrained layers and coarse-grained layers, respectively, observed in the adjacent paragneiss. This is in agreement with the layer-by-layer paragneiss-migmatite transformation model.

The REE patterns of mesosomes and neosomes indicate that these lithologies may have been closed systems (for REE) during the formation of the migmatites. No indication of metasomatic reactions, melt segregation or injection could be detected. Within the neosomes, leucosomes are depleted and melanosomes enriched in REE contents. This is interpreted to be due to separation and concentration of accessory minerals (monazite, epidote, allanite, zircon, sphene, apatite, garnet) into the melanosomes. The behaviour of accessory minerals during migmatite formation is closely allied to that of biotite, which is also concentrated in the melanosomes.  相似文献   


20.
Three lines of evidence from schists of the Great Smoky Mountains, NC, indicate that isogradic monazite growth occurred at the staurolite-in isograd at ∼600°C: (1) Monazite is virtually absent below the staurolite-in isograd, but is ubiquitous (several hundred grains per thin section) in staurolite- and kyanite-grade rocks. (2) Many monazite grains are spatially associated with biotite coronas around garnets, formed via the reaction Garnet + Chlorite + Muscovite = Biotite + Plagioclase + Staurolite + H2O. (3) Garnets contain high-Y annuli that result from prograde dissolution of garnet via the staurolite-in reaction, followed by regrowth, and rare monazite inclusions occur immediately outside the annulus and in the matrix, but not in the garnet core. Larger monazite grains also exhibit quasi-continuous Th zoning with high Th cores and low Th rims, consistent with monazite growth via a single reaction and fractional crystallization during prograde growth. Common silicates may host sufficient P and LREEs that reactions among them can produce observable LREE phosphate. Specifically phosphorus contents of garnet and plagioclase are hundreds of parts per million, and dissolution of garnet and recrystallization of plagioclase could form thousands of phosphate grains several micrometers in diameter per thin section. LREEs may be more limiting, but sheet silicates and plagioclase can contain tens to ∼100 (?) ppm LREE, so recrystallization of these silicates to lower LREE contents could produce hundreds of grains of monazite per thin section. Monazite ages, determined via electron and ion microprobes, are ∼400 Ma, directly linking prograde Barrovian metamorphism of the Western Blue Ridge with the “Acadian” orogeny, in contrast to previous interpretations that metamorphism was “Taconian” (∼450 Ma). Interpretation of ages from metamorphic monazite grains will require prior chemical characterization and identification of relevant monazite-forming reactions, including reactions previously viewed as involving solely common silicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号