首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
In metapelites of the Saualpe complex (Eastern Alps) continuous 10 µm to 20 µm wide garnet reaction rims formed along biotite-plagioclase and biotite-perthite interfaces. The pre-existing mineral assemblages are remnants of low pressure high temperature metamorphism of Permian age. The garnet reaction rims grew during the Cretaceous eclogite facies overprint. Reaction rim growth involved transfer of Fe and Mg components from the garnet-biotite interface to the garnet-feldspar interface and transfer of the Ca component in the opposite direction. The garnets show complex, asymmetrical chemical zoning, which reflects the relative contributions of short circuit diffusion along grain boundaries within the polycrystalline garnet reaction rims and volume diffusion through the grain interiors on bulk mass transfer. It is demonstrated by numerical modelling that the spacing of the grain boundaries, i.e. the grain size of the garnet in the reaction rim is a first order control on its internal chemical zoning.  相似文献   

2.
The metapelitic schists of Jandagh or simply Jandagh metapelites can be divided into four groups based on mineral assemblages: (1) quartz-muscovite schists, (2) quartz-muscovite-biotite schists, (3) garnet-muscovite-chlorite schists, and (4) garnet-muscovite-staurolite schists. The Jandagh garnet-muscovite-chlorite schists show the first appearance of garnets. These garnets contain 58–76% almandine, 1–18% spessartine, and 8–20% grossular. Microprobe analysing across the garnets demonstrates an increase in Mg# from core to rim. This is a feature of the prograde metamorphism of metapelites. Well-preserved garnet growth zoning is a sign that metapelites were rapidly cooled and later metamorphic phases had no effect here. The appearance of staurolite in garnet-muscovite-chlorite schists signifies a beginning of the amphibolite facies. The absence of zoning in staurolite suggests that its formation and growth during prograde metamorphism occurred at a widely spaced isograde. Thermobarometric investigations show that the Jandagh metapelites were formed within a temperature range of 400–670°C and pressures of 2.0–6.5 kbar. These results are in agreement with the mineral paragenetic evidence and show the development of greenschist and amphibolite facies in the area studied.  相似文献   

3.
The metamorphic rocks of the Aligudarz-Khonsar region can be divided into nine groups: slate, phyllite, sericite schist, biotite-muscovite schist, garnet schist, garnet-staurolite schist, staurolite schist, mylonitic granite, and marble. In this metamorphic region, four phases of metamorphism can be identified (dynamothermal, thermal, dynamic and retrograde metamorphism) and there are three deformation phases (D1, D2 and D3). Paleozoic pelagic shales experienced prograde metamorphism and polymetamorphism from the greenschist to amphibolite facies along the kyanite geotherm. The metapelites show prograde dynamothermal metamorphism from the greenschist to amphibolite facies. Maximum degree of dynamothermal metamorphism is seen in the Nughan bridge area. Also development of the mylonitic granites in the Nughan bridge area shows that dynamic metamorphism in this area was more intense than in other parts of the AligudarzKhonsar metapelitic zone. The chemical zoning of garnets shows three stages of growth and syn-tectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at the greenschist to amphibolite facies (kyanite zone). Thermodynamic studies of these rocks indicate that the metapelites in the Aligudarz-Khonsar region formed at 490–550°C and 0.47–5.6 kbar.  相似文献   

4.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

5.
沂水杂岩中变泥砂质岩石的岩石化学特征及年代   总被引:4,自引:3,他引:1  
赵子然  宋会侠  沈其韩  宋彪 《岩石学报》2009,25(8):1863-1871
含夕线石十字石榴二云斜长片麻岩是沂水杂岩中首次发现的一种少见的变泥砂质岩石,包裹于沂水生心官庄岩浆杂岩体中,为残留的变质表壳岩透镜体,它经历了两期变质作用的改造.早期高角闪岩相变质与区域麻粒岩相变质有关,峰期矿物共生组合主要为:石榴子石(中心域)+黑云母±白云母+斜长石+石英,M1峰期变质温压条件为:T=660±10℃,P=5.7±0.3kb;晚期角闪岩相变质矿物共生组合为:十字石+石榴子石(边部域)+黑云母±白云母+斜长石±夕线石+石英,以形成大量自形-半自形十字石和具有明显的成分环带的石榴子石为特征,晚期石榴子石的形成由核部→边部经历了一降温降压过程,石榴子石核部:T=650±10℃,P=7.7±0.5Kb,石榴子石边部:T=578±10℃,P=4.7±0.1kb;晚期变质作用早期(石榴子石成核)阶段与埋深导致的部分熔融有关,晚期石榴子石生长阶段与岩浆热事件有关.锆石SHRIMP U-Pb定年结果表明:碎屑锆石不一致线上交点年龄为2695±32Ma,代表变泥砂质岩石源区岩浆岩的结晶年龄,变泥砂质岩石的早期变质变质作用年龄小于此值;晚期变质作用年龄为2537±5Ma.  相似文献   

6.
在拉萨地块林芝杂岩体中新发现的石榴角闪岩矿物组合为石榴子石、角闪石、十字石、绿泥石、斜长石、钠云母以及少量的钛铁矿和磷灰石。石榴角闪岩中石榴石核部富锰(Xsps=0.12~0.15)贫铁(Xalm=0.45~0.50)而石榴子石边部相对贫锰(Xsps=0.01~0.03)富铁(Xalm=0.60~0.65),表明石榴子石的核部和边部分别形成于变质作用两个不同阶段。从核部到边部,镁铝榴石升高而钙铝榴石降低,表现为进变质环带特征,这表明石榴子石核部形成于进变质过程。生长在不同的变质阶段的角闪石具有不同的成分特征,作为变质基性岩中罕见的富铝矿物,十字石的结构特征记录了不同变质阶段的信息,结合石榴石的成分和结构特征,为相平衡模拟研究其P-T演化过程提供了可能。我们利用Perplex相图模拟软件在Mn-NCKMASHO体系中模拟出该石榴角闪岩的视剖面图,利用石榴子石边部镁铝榴石和钙铝榴石含量等值线确定出石榴角闪岩峰期温压为:610~630oC,12×105~13×105k Pa,对应峰期矿物组合为石榴子石,角闪石,十字石和白云母。同时结合十字石保存的退变信息得到该石榴角闪岩经历了一个顺时针的变质演化轨迹。  相似文献   

7.
The Marguerite Amphibolite and associated rocks in northern Fiordland, New Zealand, contain evidence for retention of Carboniferous metamorphic assemblages through Cretaceous collision of an arc, emplacement of large volumes of mafic magma, high‐P metamorphism and then extensional exhumation. The amphibolite occurs as five dismembered aluminous meta‐gabbroic xenoliths up to 2 km wide that are enclosed within meta‐leucotonalite of the Lake Hankinson Complex. A first metamorphic event (M1) is manifest in the amphibolite as a pervasively lineated pargasite–anorthite–kyanite or corundum ± rutile assemblage, and as diffusion‐zoned garnet in pelitic schist xenoliths within the amphibolite. Thin zones of metasomatically Al‐enriched leucotonalite directly at the margins of each amphibolite xenolith indicate element redistribution during M1 and equilibration at 6.6 ± 0.8 kbar and 618 ± 25 °C. A second phase of recrystallization (M2) formed patchy and static margarite ± kyanite–staurolite–chlorite–plagioclase–epidote assemblages in the amphibolite, pseudomorphs of coronas in gabbronorite, and thin high‐grossular garnet rims in the pelitic schists. Conditions of M2, 8.8 ± 0.6 kbar and 643 ± 27 °C, are recorded from the rims of garnet in the pelitic schists. Cathodoluminescence imaging and simultaneous acquisition of U‐Th‐Pb isotopes and trace elements by depth‐profiling zircon grains from one pelitic schist reveals four stages of growth, two of which are metamorphic. The first metamorphic stage, dated as 340.2 ± 2.2 Ma, is correlated with M1 on the basis that the unusual zircon trace element compositions indicate growth from a metasomatic fluid derived from the surrounding amphibolite during penetrative deformation. A second phase of zircon overgrowth coupled with crosscutting relationships date M2 to between 119 and 117 Ma. The Early Carboniferous event has not previously been recognized in northern Fiordland, whereas the latter event, which has been identified in Early Cretaceous batholiths, their xenoliths, and rocks directly at batholith margins, is here shown to have also affected the country rock. However, the effects of M2 are fragmentary due to limited element mobility, lack of deformation, distance from a heat source and short residence time in the lower crust during peak P and T. It is possible that many parts of the Fiordland continental arc achieved high‐P conditions in the Early Cretaceous but retain earlier metamorphic or igneous assemblages.  相似文献   

8.
Complex reaction textures in coronitic metagabbros and retrograded eclogites of the KTB pilot and an adjacent drilling provide evidence for a multistage metamorphic history in the Variscan basement of the NW Bohemian Massif. The eclogites show complete metamorphic recrystallization leaving no textural or mineral relics of their igneous precursors. In contrast, textural relics of the igneous protolith are still preserved in the metagabbros where the metamorphic overprint under high pressure conditions achieved only partial replacement of the initial assemblage plagioclase + augite + amphibole (+olivine or orthopyroxene?) + ilmenite to form the eclogite facies assemblage garnet + omphacite + kyanite + zoisite + quartz+rutile. The garnets in the metagabbros occur in the typical ‘necklace’ fashion at the borders between the original plagioclase and mafic phase domains. In the same rocks, omphacite formed by a topotactic reaction mechanism replacing igneous augite as well as in smaller grains at the margins of the texturally igneous clinopyroxene where it occurs without fixed orientation with respect to the relict phase. Both eclogites and metagabbros show a partial breakdown under high pressure granulite (transitional to high pressure amphibolite) facies conditions during which omphacite broke down to vermicular symplectites of diopside + plagioclase. A later pervasive medium pressure metamorphism under amphibolite facies conditions led to the development of assemblages dominated by hornblende + plagioclase+titanite: phases prevailing in the overwhelming majority of the surrounding metabasites. Subsequent vein-associated retrogression produced minerals typical of the greenschist to zeolite facies. All metamorphic stages may be represented in a single thin section but although the overall reaction sequence is apparent, the obvious disequilibrium in the rocks makes the use of conventional geothermobarometry difficult. However, calculations made by assuming an approach to domainal equilibrium show that both the eclogite facies and early breakdown occurred above 10 kb. As the metamorphic unit hosting these particular metabasites is generally characterized by pressures below 10 kb these results have important implications for understanding the tectonometamorphic evolution of the region. The relationship between the studied rocks and other units in the NW Bohemian Massif exhibiting a multistage metamorphic evolution is discussed and possible tectonic models evaluated.  相似文献   

9.
Early Palaeozoic kyanite–staurolite‐bearing epidote–amphibolites including foliated epidote–amphibolite (FEA), and nonfoliated leucocratic or melanocratic metagabbros (LMG, MMG), occur in the Fuko Pass metacumulate unit (FPM) of the Oeyama belt, SW Japan. Microtextural relationships and mineral chemistry define three metamorphic stages: relict granulite facies metamorphism (M1), high‐P (HP) epidote–amphibolite facies metamorphism (M2), and retrogression (M3). M1 is preserved as relict Al‐rich diopside (up to 8.5 wt.% Al2O3) and pseudomorphs after spinel and plagioclase in the MMG, suggesting a medium‐P granulite facies condition (0.8–1.3 GPa at > 850 °C). An unusually low‐variance M2 assemblage, Hbl + Czo + Ky ± St + Pg + Rt ± Ab ± Crn, occurs in the matrix of all rock types. The presence of relict plagioclase inclusions in M2 kyanite associated with clinozoisite indicates a hydration reaction to form the kyanite‐bearing M2 assemblage during cooling. The corundum‐bearing phase equilibria constrain a qualitative metamorphic P–T condition of 1.1–1.9 GPa at 550–800 °C for M2. The M2 minerals were locally replaced by M3 margarite, paragonite, plagioclase and/or chlorite. The breakdown of M2 kyanite to produce the M3 assemblage at < 0.5 GPa and 450–500 °C suggests a greenschist facies overprint during decompression. The P–T evolution of the FPM may represent subduction of an oceanic plateau with a granulite facies lower crust and subsequent exhumation in a Pacific‐type orogen.  相似文献   

10.
Samples of high‐pressure felsic granulites from the Bohemian Massif (Variscan belt of Central Europe) characterized by a peak metamorphic (high‐pressure) mineral assemblage of garnet kyanite plagioclase K‐feldspar quartz ± biotite show well‐developed plagioclase reaction rims around kyanite grains in two microstructural settings. In one setting, kyanite is randomly distributed in the polyphase matrix, whereas in the other setting, it is enclosed within large perthitic K‐feldspar. Kyanite is regarded as a relict of the high‐pressure metamorphic assemblage that became metastable during transition to a low‐pressure overprint. Plagioclase rims from both microstructural settings show continuous outwards decrease of the anorthite content from An32–25 at the contact with kyanite to An20–19 at the contact with the matrix or to the perthitic K‐feldspar respectively. Based on mass balance considerations, it is shown that in some cases, a small amount of kyanite was consumed in the rim‐forming reaction to provide the Al2O3 component for the growth of plagioclase, whereas in other cases no Al2O3 from kyanite was necessary. In a majority of examples, the necessary Al2O3 was supplied with CaO and Na2O from the surrounding matrix material. For kyanite in perthite, a thermodynamic analysis reveals that the kyanite became metastable at the interface with the host perthite at the peak metamorphic pressure, and therefore the plagioclase rim started to grow at ~ 18 kbar. In contrast, kyanite in the polyphase matrix remained stable down to pressures of ~ 16 kbar, and the plagioclase rim only started to grow at a later stage during the decompression. Plagioclase rims around kyanite inclusions within large perthite have a radial thickness of up to 50 μm. In contrast, the radial thickness of plagioclase rims around kyanite in the polycrystalline matrix is significantly larger, up to 200 μm. Another peculiarity is that the plagioclase rims around kyanite in the matrix are polycrystalline, whereas the plagioclase rims around kyanite inclusions in perthitic hosts are single crystals with the same crystallographic orientation as the host perthite. The difference in rim thickness for the two microstructural settings is ascribed to the differences in the efficiency of chemical mass transfer next to the reaction site. The comparatively large thickness of the plagioclase rims grown around kyanite in the matrix is probably due to efficient material transport along the grain and phase boundaries in the matrix. In contrast, chemical mass transfer was comparatively slow in the large perthitic K‐feldspar grains.  相似文献   

11.
Eclogite boudins occur within an orthogneiss sheet enclosed in a Barrovian metapelite‐dominated volcano‐sedimentary sequence within the Velké Vrbno unit, NE Bohemian Massif. A metamorphic and lithological break defines the base of the eclogite‐bearing orthogneiss nappe, with a structurally lower sequence without eclogite exposed in a tectonic window. The typical assemblage of the structurally upper metapelites is garnet–staurolite–kyanite–biotite–plagioclase–muscovite–quartz–ilmenite ± rutile ± silli‐manite and prograde‐zoned garnet includes chloritoid–chlorite–paragonite–margarite, staurolite–chlorite–paragonite–margarite and kyanite–chlorite–rutile. In pseudosection modelling in the system Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O (NCKFMASH) using THERMOCALC, the prograde path crosses the discontinuous reaction chloritoid + margarite = chlorite + garnet + staurolite + paragonite (with muscovite + quartz + H2O) at 9.5 kbar and 570 °C and the metamorphic peak is reached at 11 kbar and 640 °C. Decompression through about 7 kbar is indicated by sillimanite and biotite growing at the expense of garnet. In the tectonic window, the structurally lower metapelites (garnet–staurolite–biotite–muscovite–quartz ± plagioclase ± sillimanite ± kyanite) and amphibolites (garnet–amphibole–plagioclase ± epidote) indicate a metamorphic peak of 10 kbar at 620 °C and 11 kbar and 610–660 °C, respectively, that is consistent with the other metapelites. The eclogites are composed of garnet, omphacite relicts (jadeite = 33%) within plagioclase–clinopyroxene symplectites, epidote and late amphibole–plagioclase domains. Garnet commonly includes rutile–quartz–epidote ± clinopyroxene (jadeite = 43%) ± magnetite ± amphibole and its growth zoning is compatible in the pseudosection with burial under H2O‐undersaturated conditions to 18 kbar and 680 °C. Plagioclase + amphibole replaces garnet within foliated boudin margins and results in the assemblage epidote–amphibole–plagioclase indicating that decompression occurred under decreasing temperature into garnet‐free epidote–amphibolite facies conditions. The prograde path of eclogites and metapelites up to the metamorphic peak cannot be shared, being along different geothermal gradients, of about 11 and 17 °C km?1, respectively, to metamorphic pressure peaks that are 6–7 kbar apart. The eclogite–orthogneiss sheet docked with metapelites at about 11 kbar and 650 °C, and from this depth the exhumation of the pile is shared.  相似文献   

12.
This study analyses the mineralogical and chemical transformations associated with an Alpine shear zone in polymetamorphic metapelites from the Monte Rosa nappe in the upper Val Loranco (N‐Italy). In the shear zone, the pre‐Alpine assemblage plagioclase + biotite + kyanite is replaced by the assemblage garnet + phengite + paragonite at eclogite facies conditions of about 650 °C at 12.5 kbar. Outside the shear zone, only minute progress of the same metamorphic reaction was attained during the Alpine metamorphic overprint and the pre‐Alpine mineral assemblage is largely preserved. Textures of incomplete reaction, such as garnet rims at former grain contacts between pre‐existing plagioclase and biotite, are preserved in the country rocks of the shear zone. Reaction textures and phase relations indicate that the Alpine metamorphic overprint occurred under largely anhydrous conditions in low strain domains. In contrast, the mineralogical changes and phase equilibrium diagrams indicate water saturation within the Alpine shear zones. Shear zone formation occurred at approximately constant volume but was associated with substantial gains in silica and losses in aluminium and potassium. Changes in mineral modes associated with chemical alteration and progressive deformation indicate that plagioclase, biotite and kyanite were not only consumed in the course of the garnet‐and phengite‐producing reactions, but were also dissolved ‘congruently’ during shear zone formation. A large fraction of the silica liberated by plagioclase, biotite and kyanite dissolution was immediately re‐precipitated to form quartz, but the dissolved aluminium‐ and potassium‐bearing species appear to have been stable in solution and were removed via the pore fluid. The reaction causes the localization of deformation by producing fine‐grained white mica, which forms a mechanically weak aggregate.  相似文献   

13.
The metapelitic schists of the Golpayegan region can be divided into four groups based on their mineral assemblages: (1) garnet-chloritoid schists, (2) garnet schists, (3) garnet-staurolite schists, and (4) staurolite-kyanite schists. Paleozoic pelagic shales experienced progressive metamorphism and polymetamorphism from greenschist to amphibolite facies along the kyanite geotherm. Mylonitic granites are concentrated in the central part of the region more than in other areas, and formed during the dynamic metamorphic phase by activity on the NW-SE striking Varzaneh and Sfajerd faults. The presence of chloritoid in the metapelites demonstrates low-grade metamorphism in the greenschist facies. The textural and chemical zoning of garnets shows three stages of growth and syntectonic formation. With ongoing metamorphism, staurolite appeared, and the rocks reached amphibolite facies, but the degree of metamorphism did not increase past the kyanite zone. Thus, metamorphism of the pelitic sediments occurred at greenschist to lower amphibolite facies. Thermodynamic studies of these rocks indicate that the metapelites in the north Golpayegan region formed at 511?C618°C and 0.24?C4.1 kbar.  相似文献   

14.
Although ultrahigh‐pressure (UHP) metamorphic rocks are present in many collisional orogenic belts, almost all exposed UHP metamorphic rocks are subducted upper or felsic lower continental crust with minor mafic boudins. Eclogites formed by subduction of mafic lower continental crust have not been identified yet. Here an eclogite occurrence that formed during subduction of the mafic lower continental crust in the Dabie orogen, east‐central China is reported. At least four generations of metamorphic mineral assemblages can be discerned: (i) hypersthene + plagioclase ± garnet; (ii) omphacite + garnet + rutile + quartz; (iii) symplectite stage of garnet + diopside + hypersthene + ilmenite + plagioclase; (iv) amphibole + plagioclase + magnetite, which correspond to four metamorphic stages: (a) an early granulite facies, (b) eclogite facies, (c) retrograde metamorphism of high‐pressure granulite facies and (d) retrograde metamorphism of amphibolite facies. Mineral inclusion assemblages and cathodoluminescence images show that zircon is characterized by distinctive domains of core and a thin overgrowth rim. The zircon core domains are classified into two types: the first is igneous with clear oscillatory zonation ± apatite and quartz inclusions; and the second is metamorphic containing a granulite facies mineral assemblage of garnet, hypersthene and plagioclase (andesine). The zircon rims contain garnet, omphacite and rutile inclusions, indicating a metamorphic overgrowth at eclogite facies. The almost identical ages of the two types of core domains (magmatic = 791 ± 9 Ma and granulite facies metamorphic zircon = 794 ± 10 Ma), and the Triassic age (212 ± 10 Ma) of eclogitic facies metamorphic overgrowth zircon rim are interpreted as indicating that the protolith of the eclogite is mafic granulite that originated from underplating of mantle‐derived magma onto the base of continental crust during the Neoproterozoic (c. 800 Ma) and then subducted during the Triassic, experiencing UHP eclogite facies metamorphism at mantle depths. The new finding has two‐fold significance: (i) voluminous mafic lower continental crust can increase the average density of subducted continental lithosphere, thus promoting its deep subduction; (ii) because of the current absence of mafic lower continental crust in the Dabie orogen, delamination or recycling of subducted mafic lower continental crust can be inferred as the geochemical cause for the mantle heterogeneity and the unusually evolved crustal composition.  相似文献   

15.
A complete Barrovian sequence ranging from unmetamorphosed shales to sillimanite–K-feldspar zone metapelitic gneisses crops out in a region extending from the Hudson River in south-eastern New York state, USA, to the high-grade core of the Taconic range in western Connecticut. NNE-trending subparallel biotite, garnet, staurolite, kyanite, sillimanite and sillimanite–K-feldspar isograds have been identified, although the assignment of Barrovian zones in the high-grade rocks is complicated by the appearance of fibrolitic sillimanite at the kyanite isograd. Thermobarometric results and reaction textures are used to characterize the metamorphic history of the sequence. Pressure–temperature estimates indicate maximum metamorphic conditions of 475 °C, c. 3–4 kbar in the garnet zone to >720 °C, c. 5–6 kbar in the highest grade rocks exposed. Some samples in the kyanite zone record anomalous (low) peak conditions because garnet composition has been modified by fluid-assisted reactions. There is abundant petrographic and mineral chemical information indicating that the sequence (with the possible exception of the granulite facies zone) was infiltrated by a water-rich fluid after garnet growth was nearly completed. The truncation of fluid inclusion trails in garnet by rim growth or recrystallization, however, indicates that metamorphic reactions involving garnet continued subsequent to initial infiltration. The presence of these textures in some zones of a well-constrained Barrovian sequence allows determination of the timing of fluid infiltration relative to the P–T paths. Thermobarometric results obtained using garnet compositions at the boundary between fluid–inclusion-rich and inclusion-free regions of the garnet are interpreted to represent peak metamorphic conditions, whereas rim compositions record slightly lower pressures and temperatures. Assuming that garnet grew during a single metamorphic event, infiltration must have occurred at or slightly after the peak of metamorphism, i.e. 4–5 kbar and a temperature of c. 525–550 °C for staurolite and kyanite zone rocks.  相似文献   

16.
A re‐evaluation of the PT history of eclogite within the East Athabasca granulite terrane of the Snowbird tectonic zone, northern Saskatchewan, Canada was undertaken. Using calculated pseudosections in combination with new garnet–clinopyroxene and zircon and rutile trace element thermometry, peak metamorphic conditions are constrained to ~16 kbar and 750 °C, followed by near‐isothermal decompression to ~10 kbar. Associated with the eclogite are two types of occurrences of sapphirine‐bearing rocks preserving a rich variety of reaction textures that allow examination of the retrograde history below 10 kbar. The first occurs as a 1–2 m zone adjacent to the eclogite body with a peak assemblage of garnet–kyanite–quartz interpreted to have formed during the eclogite facies metamorphism. Rims of orthopyroxene and plagioclase developed around garnet, and sapphirine–plagioclase and spinel–plagioclase symplectites developed around kyanite. The second variety of sapphirine‐bearing rocks occurs in kyanite veins within the eclogite. The veins involve orthopyroxene, garnet and plagioclase layers spatially organized around a central kyanite layer that are interpreted to have formed following the eclogite facies metamorphism. The layering has itself been modified, with, in particular, kyanite being replaced by sapphirine–plagioclase, spinel–plagioclase and corundum–plagioclase symplectites, as well as the kyanite being replaced by sillimanite. Petrological modelling in the CFMAS system examining chemical potential gradients between kyanite and surrounding quartz indicates that these vein textures probably formed during further essentially isothermal decompression, ultimately reaching ~7 kbar and 750 °C. These results indicate that the final reaction in these rocks occurred at mid‐crustal levels at upper amphibolite facies conditions. Previous geochronological and thermochronological constraints bracket the time interval of decompression to <5–10 Myr, indicating that ~25 km of exhumation took place during this interval. This corresponds to minimum unroofing rates of ~2–5 mm year?1 following eclogite facies metamorphism, after which the rocks resided at mid‐crustal levels for 80–100 Myr.  相似文献   

17.
Relict eclogites and associated high-pressure rocks are present in the Eastern Segment of the SW Swedish gneiss region (the tectonic counterpart of the Parautochthonous Belt of the Canadian Grenville). These rocks give evidence of Sveconorwegian eclogite facies metamorphism and subsequent pervasive reworking and deformation at granulite and amphibolite facies conditions. The best-preserved eclogite relics suggest a clockwise PT t history, beginning in the amphibolite facies, progressing through the eclogite facies, decompressing and partially reequilibrating through the high- and medium-pressure granulite facies, before cooling through the amphibolite facies. Textures demonstrate the former coexistence of the plagioclase-free assemblages garnet+clinopyroxene+quartz+rutile+ilmenite, garnet+clinopyroxene+ kyanite+rutile, and garnet+kyanite+quartz+rutile. The former existence of omphacite is evidenced by up to 45 vol.% plagioclase expelled as small grains within large clinopyroxene. Matrix plagioclase is secondary and occurs expelled from clinopyroxene or in fine-grained, granulite facies reaction domains formed during resorption of garnet and kyanite. Garnet shows preserved prograde growth zoning with rimward increasing pyrope content, decreasing spessartine content and decreasing Fe/(Fe+Mg) ratio, but is partly resorbed and reequilibrated at the rims. PT estimates from microdomains with clinopyroxene+plagioclase+quartz+garnet indicate pressures of 9.5–12 kbar and temperatures of 705–795 °C for a stage of the granulite facies decompression. The preservation of the prograde zoning suggests that the rocks did not reside at these high temperatures for more than a few million years, and chemical disequilibrium and ‘frozen’ reaction textures indicate heterogeneous reaction progress and overstepping of reactions during the decompression through the granulite facies. Together these features suggest a rapid tectonic exhumation. The eclogite relics occur within a high-grade deformation zone with WNW–ESE stretching and associated oblique normal-sense, top-to-the-east (sensu lato) displacement, suggesting that extension was a main cause for the decompression and exhumation. Probable tectonic scenarios for this deformation are Sveconorwegian late-orogenic gravitational collapse or overall WNW–ESE extension.  相似文献   

18.
集安岩群石榴石以富铁为特征,均属铁铝榴石。形成于高角闪岩相的石榴石成分比较稳定,<FeO>平均含量32.20%,MgO5.17%,X_(Mg)平均值0.23;结晶于低角闪岩相的石榴石(FeO+MgO)含量33.50%,(MnO+CaO)6.91%。石榴石微区成分不均匀,晶体内具有一些微区成分环带,这种环带不是各进变质作用阶段p-T条件平衡或近平衡的产物。石榴石边缘存在着明显的扩散环带,表现为晶体边缘相对晶体核部,Ca含量和<FcO>含量增高,MgO含量降低,X_(Mg)值变小,反映本区变质峰期后经历的是一个近等压冷却的地质动力学过程。  相似文献   

19.
Abstract An outcrop of staurolite-bearing pelitic schist from the Solitude Range in the south-western Rocky Mountains, British Columbia, was examined in order to determine the nature of prograde garnet- and staurolite-producing reactions using information from garnet zoning and inclusion mineralogy. Although not present as a matrix phase, chloritoid is present as inclusions in garnet and is interpreted to have participated in the simultaneous growth of garnet and staurolite by a reaction such as chloritoid + quartz = garnet + staurolite + H2O.
A garnet zoning trend reversal, which is most pronounced with respect to almandine and grossular components, is present in the outer core of garnets. The location of the zoning reversal corresponds to the outer limit of chloritoid inclusions in garnet. As there is no evidence for polymetamorphism, the zoning reversal is interpreted to indicate continued garnet growth by prograde reaction(s) during a single metamorphic event after the exhaustion of chloritoid as a matrix phase.
Metamorphic conditions recorded by mineral rim compositions are 550–600° C at 6–7 kbar. Because there is no evidence for partial resorption of garnet during production of staurolite, we interpret these results to represent peak conditions.  相似文献   

20.
X‐ray composition maps and quantitative analyses for Mn, Ca and Cr have been made for six pelitic and calc‐pelitic garnet crystals and Al, Fe and Cr analyses maps have been made for two kyanite crystals, from lower and mid/upper amphibolite facies rocks from the Grenville Province of western Labrador, using an electron microprobe analyser and a laser ablation ICP‐MS. Garnet with spiral (‘snowball’) internal fabrics (Si) has spiral zoning in major elements, implying that growth was concentrated in discrete regions of the crystal at any one time (spiral zoning). Cr zoning is parallel to Si in low amphibolite facies garnet with both straight and spiral internal fabrics, indicating that the garnet overprinted a fabric defined by Cr‐rich (mica±chlorite±epidote) and Cr‐poor (quartz±plagioclase) layers during growth (overprint zoning) and that Cr was effectively immobile. In contrast, in mid/upper amphibolite facies garnet porphyroblasts lacking Si, Cr zoning is concentric, implying that Cr diffusion occurred. Cr zoning in kyanite porphyroblasts appears superficially similar to oscillatory zoning, with up to three or four annuli of Cr enrichment and/or depletion present in a single grain. However, the variable width, continuity, Cr concentration and local bifurcation of individual annuli suggest that an origin by overprint zoning may be more likely. The results of this study explain previously observed nonsystematic Cr zoning in garnet and irregular partitioning of Cr between coexisting metamorphic mineral pairs. In addition, this study points to the important role of crystal growth rate in determining the presence or absence of inclusions and the type of zoning exhibited by both major and trace elements. During fast growth, inclusions are preferentially incorporated into the growing porphyroblast and slow diffusing elements such as Cr are effectively immobile, whereas during slow growth, inclusions are not generally included in the porphyroblast and Cr zoning is concentric.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号