首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anthropogenic climate change is expected to change the discharge and sediment transport regime of river systems. Because rivers adjust their channels to accommodate their typical inputs of water and sediment, changes in these variables can potentially alter river morphology. In this study, a hierarchical modeling approach was developed and applied to examine potential changes in reach‐averaged bedload transport and spatial patterns of erosion and deposition for three snowmelt‐dominated gravel‐bed rivers in the interior Pacific Northwest. The modeling hierarchy was based on discharge and suspended‐sediment load from a basin‐scale hydrologic model driven by a range of downscaled climate‐change scenarios. In the field, channel morphology and sediment grain‐size data for all three rivers were collected. Changes in reach‐averaged bedload transport were estimated using the Bedload Assessment of Gravel‐bedded Streams (BAGS) software, and the Cellular Automaton Evolutionary Slope and River (CAESAR) model was used to simulate the spatial pattern of erosion and deposition within each reach to infer potential changes in channel geometry and planform. The duration of critical discharge was found to control bedload transport. Changes in channel geometry were simulated for the two higher‐energy river reaches, but no significant morphological changes were found for a lower‐energy reach with steep, cohesive banks. Changes in sediment transport and river morphology resulting from climate change could affect the management of river systems for human and ecological uses. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A comprehensive monitoring programme focusing on bedload transport behaviour was conducted at a large gravel‐bed river. Innovative monitoring strategies were developed during five years of preconstruction observations accompanying a restoration project. A bedload basket sampler was used to perform 55 cross‐sectional measurements, which cover the entire water discharge spectrum from a 200‐year flood event in 2013 to a rare low flow event. The monitoring activities provide essential knowledge regarding bedload transport processes in large rivers. We have identified the initiation of motion under low flow conditions and a decrease in the rate of bedload discharge with increasing water discharge around bankfull conditions. Bedload flux strongly increases again during high flood events when the entire inundation area is flooded. No bedload hysteresis was observed. The effective discharge for bedload transport was determined to be near mean flow conditions, which is therefore at a lower flow discharge than expected. A numerical sediment transport model was able to reproduce the measured sediment transport patterns. The unique dataset enables the characterisation of bedload transport patterns in a large and regulated gravel‐bed river, evaluation of modern river engineering measures on the Danube, and, as a pilot project has recently been under construction, is able to address ongoing river bed incision, unsatisfactory ecological conditions for the adjacent national park and insufficient water depths for inland navigation. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

3.
A large number of rivers are frozen annually, and the river ice cover has an influence on the geomorphological processes. These processes in cohesive sediment rivers are not fully understood. Therefore, this paper demonstrates the impact of river ice cover on sediment transport, i.e. turbidity, suspended sediment loads and erosion potential, compared with a river with ice‐free flow conditions. The present sediment transportation conditions during the annual cycle are analysed, and the implications of climate change on wintertime geomorphological processes are estimated. A one‐dimensional hydrodynamic model has been applied to the Kokemäenjoki River in Southwest Finland. The shear stress forces directed to the river bed are simulated with present and projected hydroclimatic conditions. The results of shear stress simulations indicate that a thermally formed smooth ice cover diminishes river bed erosion, compared with an ice‐free river with similar discharges. Based on long‐term field data, the river ice cover reduces turbidity statistically significantly. Furthermore, suspended sediment concentrations measured in ice‐free and ice‐covered river water reveal a diminishing effect of ice cover on riverine sediment load. The hydrodynamic simulations suggest that the influence of rippled ice cover on shear stress is varying. Climate change is projected to increase the winter discharges by 27–77% on average by 2070–2099. Thus, the increasing winter discharges and possible diminishing ice cover periods both increase the erosion potential of the river bed. Hence, the wintertime sediment load of the river is expected to become larger in the future. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a field investigation on river channel storage of fine sediments in an unglaciated braided river, the Bès River, located in a mountainous region in the southern French Prealps. Braided rivers transport a very large quantity of bedload and suspended sediment load because they are generally located in the vicinity of highly erosive hillslopes. Consequently, these rivers play an important role because they supply and control the sediment load of the entire downstream fluvial network. Field measurements and aerial photograph analyses were considered together to evaluate the variability of fine sediment quantity stored in a 2·5‐km‐long river reach. This study found very large quantities of fine sediment stored in this reach: 1100 t per unit depth (1 dm). Given that this reach accounts for 17% of the braided channel surface area of the river basin, the quantities of fine sediment stored in the river network were found to be approximately 80% of the mean annual suspended sediment yields (SSYs) (66 200 t year?1), comparable to the SSYs at the flood event scale: from 1000 t to 12 000 t depending on the flood event magnitude. These results could explain the clockwise hysteretic relationships between suspended sediment concentrations and discharges for 80% of floods. This pattern is associated with the rapid availability of the fine sediments stored in the river channel. This study shows the need to focus on not only the mechanisms of fine sediment production from hillslope erosion but also the spatiotemporal dynamics of fine sediment transfer in braided rivers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
This paper illustrates how the acoustic Doppler current profiler (ADCP) and single-beam echo-sounder (SBES) recordings can be used for the calibration of existing software to assist in generalizing the morphodynamic processes in large rivers at key sites such as bifi.trcations and confluences. Calibration of the MIKE21C numerical model by the Danish Hydraulic Institute at the 25-km-long reach of Lower Paran~ near Rosario (Argentina) is presented. This reach includes two downstream confluences and two bifurcations. The model simulates a 2-D depth-averaged flow velocity and the related sediment fluxes to predict the bifurcation morphodynamics that affects the Paranh waterway. To investigate the river channel bathymetry, roughness, flow discharge allocation at bifurcations, suspended sediment concentration and grain size distributions, several instruments were used. These instruments included two ADCPs by Teledyne RDI working at frequencies of 600 and 1,200 kHz, a Sontek ADCP working at a frequency of 1,000 kHz and a SBES. The method to assess suspended sediment concentration and grain size distributions has been previously described. This paper focuses primarily on investigating dune morphology (by means of SBES depth measurements) and friction velocity (by means of ADCP profiling) to determine the river channel bed-roughness. The 2-D model results agree with observed values of bed-roughness, flow velocity and suspended sediment concentration distributions at the investigated sections, known data of water slope and total load of bed sediment are in good agreement with model results.  相似文献   

6.
Most rivers in Taiwan are intermittent rivers with relatively steep slopes and carry rapid sediment‐laden flows during typhoon or monsoon seasons. A series of field experiments was conducted to collect suspended load data at the Tzu‐Chiang Bridge hydrological station of the lower Cho‐Shui River, which is a major river with the highest sediment yield in Taiwan. The river reach was aggrading with a high aspect ratio during the 1980s. Because of sand mining and extreme floods, it was incised and has had a relatively narrow main channel in recent years. The experimental results indicated that typical sediment transport equations can correctly predict the bed material load for low or medium sediment transport rates (e.g. less than about 1000 tons/day‐m). However, these equations far underestimate the bed material load for high sediment transport rates. The effects of cross‐sectional geometry change (i.e. river incision) and earthquakes on the sediment load were investigated in this study. An empirical sediment transport equation with consideration of the aspect ratio was also derived using the field data collected before and after river incision. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
8.
1 INTRODUCTION In recent years, due to the increase in population and industrial developments, mankind has faced manyproblems associated with rivers, coastal waters and reservoirs. Some of these problems are flood control,water supply, power generation, and irrigation. In addition, making new hydraulic structures changesnatural conditions. Prediction of these changes is necessary for designing such constructions. For solutionof these problems usually an assessment of flow pattern, sedim…  相似文献   

9.
Stream power can be an extremely useful index of fluvial sediment transport, channel pattern, river channel erosion and riparian habitat development. However, most previous studies of downstream changes in stream power have relied on field measurements at selected cross‐sections, which are time consuming, and typically based on limited data, which cannot fully represent important spatial variations in stream power. We present here, therefore, a novel methodology we call CAFES (combined automated flood, elevation and stream power), to quantify downstream change in river flood power, based on integrating in a GIS framework Flood Estimation Handbook systems with the 5 m grid NEXTMap Britain digital elevation model derived from IFSAR (interferometric synthetic aperture radar). This provides a useful modelling platform to quantify at unprecedented resolution longitudinal distributions of flood discharge, elevation, floodplain slope and flood power at reach and basin scales. Values can be resolved to a 50 m grid. CAFES approaches have distinct advantages over current methodologies for reach‐ and basin‐scale stream power assessments and therefore for the interpretation and prediction of fluvial processes. The methodology has significant international applicability for understanding basin‐scale hydraulics, sediment transport, erosion and sedimentation processes and river basin management. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
Suspended load transport can strongly impact ecosystems, dam filling and water resources. However, contrary to bedload, the use of physically based predicting equations is very challenging because of the complexity of interactions between suspended load and the river system. Through the analysis of extensive data sets, we investigated extent to which one or several river bed or flow parameters could be used as a proxy for quantifying suspended fluxes in gravel bed rivers. For this purpose, we gathered in the literature nearly 2400 instantaneous field measurements collected in 56 gravel bed rivers. Among all standard dimensionless parameters tested, the strongest correlation was observed between the suspended sediment concentration and the dimensionless bedload rate. An empirical relation between these two parameters was calibrated. Used with a reach average bedload transport formula, the approach allowed to successfully reproduce suspended fluxes measured during major flood events in seven gravel bed alpine rivers, morphodynamically active and distant from hillslope sources. These results are discussed in light of the complexity of the processes potentially influencing suspended load in a mountainous context. The approach proposed in this paper will never replace direct field measurements, which can be considered the only confident method to assess sediment fluxes in alpine streams; however, it can increment existing panel tools that help river managers to estimate even rough but not unrealistic suspended fluxes when measurements are totally absent. © 2019 John Wiley & Sons, Ltd.  相似文献   

11.
Knowledge of sediment exports from continental areas is essential for estimating denudation rates and biogeochemical cycles. However, the estimation of current sediment fluxes to the sea is often limited by the availability and quality of sediment discharge data. This study aims to quantify the relative contributions of French rivers to the sediment discharge to the ocean. Sediment fluxes were assessed using the French river quality database, which is characterized by a low temporal resolution but long‐term measurement periods. An improved rating curve approach (IRCA) using daily discharge data, which allows the estimation of mean annual sediment loads from infrequent sediment concentration data, was used to calculate sediment fluxes. The resulting mean annual sediment loads show that French rivers export c. 16.21 Mt yr‐1 of sediments to the sea. Among the 88 defined French rivers flowing to the sea, the four largest basins (Loire, Rhone, Garonne and Seine) export 13.2 Mt yr‐1, which corresponds to 81.3% of total exports. No relationship was found between the mass of exported sediment and the size of the drainage basins. This is due to the variety of river basin typologies among these rivers, including lowland rivers in temperate climates, such as the Seine on the one hand and rivers draining mountainous areas in Alpine/Mediterranean areas on the other hand, such as the Rhone. The latter contributes 60% to the total sediment export for France while its drainage area is only 19% of the total area considered. Differences between the river basins considered are also shown by temporal indicators describing the duration of the exports, which may be linked with sediment production processes over drained areas. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
The HIRHAM regional climate model suggests an increase in temperature in Denmark of about 3 °C and an increase in mean annual precipitation of 6–7%, with a larger increase during winter and a decrease during summer between a control period 1961–1990 and scenario period 2071–2100. This change of climate will affect the suspended sediment transport in rivers, directly through erosion processes and increased river discharges and indirectly through changes in land use and land cover. Climate‐change‐induced changes in suspended sediment transport are modelled for five scenarios on the basis of modelled changes in land use/land cover for two Danish river catchments: the alluvial River Ansager and the non‐alluvial River Odense. Mean annual suspended sediment transport is modelled to increase by 17% in the alluvial river and by 27% in the non‐alluvial for steady‐state scenarios. Increases by about 9% in the alluvial river and 24% in the non‐alluvial river were determined for scenarios incorporating a prolonged growing season for catchment vegetation. Shortening of the growing season is found to have little influence on mean annual sediment transport. Mean monthly changes in suspended sediment transport between ? 26% and + 68% are found for comparable suspended sediment transport scenarios between the control and the scenario periods. The suspended sediment transport increases during winter months as a result of the increase in river discharge caused by the increase in precipitation, and decreases during summer and early autumn months. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Processes of soil erosion and sediment transport are strongly influenced by land use changes so the modelling of land use changes is important with respect to the simulation of soil degradation and its on‐site and off‐site consequences. The reliability of simulation results from erosion models is circumscribed by considerable spatial variation in many parameters. However, most of the currently widely used erosion models at the mesoscale are semidistributed, which leads to difficulties in incorporating a high degree of spatial information, especially land use information, so that the effects of land use changes on soil erosion have hitherto not been investigated in detail using these models. In this article, a grid‐based distributed erosion and sediment transport model is introduced, which simulates the spatial pattern of erosion and deposition rates and sediment transport processes in river channels. In this model, land use affects soil erosion through altering soil loss and influencing sediment delivery. Simulated soil erosion for events recorded in 1989 and 1996 in the Lushi basin in China was analyzed by comparing it with historical land use maps. The results indicated that even relatively minor land use changes had a significant effect on regional soil erosion rates and sediment transport to rivers. The average erosion rate increased from 1989 to 1996, after the transformation of forest to farmland. The results of the study suggest that the proposed soil erosion model can be applied in similar river basins. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Physics‐based models have been increasingly developed in recent years and applied to simulate the braiding process and evolution of channel units in braided rivers. However, limited attention is given to lowland braided rivers where the transport of suspended sediment plays a dominant role. In the present study, a numerical model based on the basic physics laws of hydrodynamics and sediment transport is used to simulate the evolution process of a braided river dominated by suspended load transport. The model employs a fractional method to simulate the transport of graded sediments and uses a multiple‐bed‐layer approach to represent the sediment sorting process. An idealized braided river has been produced, with the hydrodynamic, sediment transport and morphological processes being analysed. In particular, the formation process of local pool–bar units in the predicted river has been investigated. A sensitivity analysis has also been undertaken to investigate the effects of grid resolution and an upstream perturbation on the model prediction. A variety of methods are applied to analyse the geometrical and topographical properties of the modelled river. Self‐organizing characteristics related to river geometry and topography are analysed by state‐space plots, which indicate a close relationship with the periodical erosion and deposition cycles of braiding. Cross‐sectional topography and slope frequency display similar geometries to natural rivers. Scaling characteristics are found by correlation analysis of bar parameters. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
Morphodynamics in sand‐bed braided rivers are associated with simultaneous evolution of mid‐channel bars and channels on the braidplain. Bifurcations around mid‐channel bars are key elements that divide discharge and sediment. This, in turn, may control the evolution of connected branches, with effects propagating to both upstream and downstream bifurcations. Recent works on bifurcation stability and development hypothesize major roles of secondary flow and gradient advantage. However, this has not been tested for channel networks within a fully developed dynamic braided river. A reason for this is a lack of detailed measurements with sufficient temporal and spatial length, covering multiple bifurcations. Therefore we used a physics‐based numerical model to generate a dataset of bathymetry, flow and sediment transport of an 80 km river reach with self‐formed braid bars and bifurcations. The study shows that bar dissection due to local transverse water surface gradients is the dominant bifurcation initiation mechanism, although conversion of unit bars into compound bars dominates in the initial stage of a braided river. Several bifurcation closure mechanisms are equally important. Furthermore, the study showed that nodal point relations for bifurcations are unable to predict short‐term bifurcation evolution in a braided river. This is explained by occurrence of nonlinear processes and non‐uniformity within the branches, in particular migrating bars and larger‐scale backwater‐effects, which are not included in the nodal point relations. Planform morphology, on the other hand, has predictive capacity: bifurcation angle asymmetry and bar‐tail limb shape are indicators for near‐future bifurcation evolution. Remote sensing data has predictive value, for which we developed a conceptual model for interactions between bars, bifurcations and channels in the network. We conducted a preliminary test of the conceptual model on satellite images of the Brahmaputra. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
Rivers link terrestrial ecosystems and marine ecosystems, and they transport large amounts of substances into oceans each year, including several forms of silicon(Si), carbon(C), and other nutrients. However, river damming affects the water flow and biogeochemical cycles of Si, C, and other nutrients through biogeochemical interacting processes. In this review, we first summarize the current understanding of the effects of river damming on the processes of biogeochemical Si cycle, especially the source, composition, and recycling process of biogenic silica(BSi). Then, we introduce dam impacts on the cycles of C and some other nutrients. Dissolved silicon in rivers is mainly released from phytolith dissolution and silicate weathering. BSi in suspended matter or sediments in most rivers mainly consists of phytoliths and mainly originates from soil erosion. However, diatom growth and deposition in many reservoirs formed by river interception may significantly increase the contribution of diatom Si to total BSi, and thus significantly influence the biogeochemical Si,C, and nutrient cycles. Yet the turnover of phytoliths and diatoms in different rivers formed by river damming is still poorly quantified. Thus, they should be further investigated to enhance our understanding about the effects of river damming on global biogeochemical Si, C and nutrient cycles.  相似文献   

17.
In the Hanford Reach of the Columbia River, a thin layer of recent alluvium overlies the sedimentary formations that comprise the unconfined groundwater aquifer. Experimental and modelling studies have demonstrated that this alluvial layer exerts significant control on the exchange of groundwater and surface water (hydrologic exchange flux), and is associated with elevated levels of biogeochemical activity. This layer is also observed to be strongly heterogeneous, and quantifying the spatial distribution of properties over the range of scales of interest is challenging. Facies are elements of a sediment classification scheme that groups complex geologic materials into a set of discrete classes according to distinguishing features. Facies classifications have been used as a framework for assigning heterogeneous material properties to grid cells of numerical models of flow and reactive transport in subsurface media. The usefulness of such an approach hinges on being able to relate facies to quantitative properties needed for flow and reactive transport modelling, and on being able to map facies over the domain of interest using readily available information. Although aquifer facies have been used in various modelling contexts, application of this concept to riverbed sediments is relatively new. Here, we describe an approach for categorizing and mapping recent alluvial (riverbed) sediments based on the integration of diverse observations with numerical simulations of river hydrodynamics. The facies have distinct distributions of sediment texture that correspond to variations in hydraulic properties, and therefore provide a useful framework for assigning heterogeneous properties in numerical simulations of hydrologic exchange flows and biogeochemical processes.  相似文献   

18.
19.
《Continental Shelf Research》2006,26(17-18):2281-2298
Since the 1960s a series of large reservoirs have been built in the upper and middle reaches of the Huanghe River. Changes caused by these reservoirs include a decrease in flood discharge and sediment load to the lower reaches and conversely, an increase of the silt concentration in the river water. This accumulation of silt in the river channel is a serious problem in the lower Huanghe River and has caused abnormal and distorted flow courses in the river bed. These effects include: shrinkage of the river channel, frequent dewatering (i.e., zero flow) in the river-mouth area, and hanging rivers (i.e., a river channel elevated above its floodplain). The zero-flow portion of the river has gradually extended upstream for nearly the entire 700 km of the lower reach. Utilization of the floodplains for agriculture and temporary villages has become a major problem. To counter these changes and situations, new measures, new methodology, and new thinking must be adapted incorporating results from the recent works on sediment transport and accumulation. Water conservancy works (dams, pumping stations, siphon-intakes, etc.) are typically used for adjustment of river water and sediment discharges and for irrigation and hydro-power generation. Recently, they are also being used to conduct tests using the reservoir water/sediment mix to flush out sediments deposited in the channel bed and transport the sediment to places where it is needed or into the Bohai Sea. Additionally, the future of the new deltaic sub-lobe in the Bohai Sea (developed in 1996) and the present estuary needs to be considered with respect to future development.  相似文献   

20.
Aggregation processes of fine sediments have rarely been integrated in numerical simulations of cohesive sediment transport in riverine systems. These processes, however, can significantly alter the hydrodynamic characteristics of suspended particulate matter (SPM), modifying the particle settling velocity, which is one of the most important parameters in modelling suspended sediment dynamics. The present paper presents data from field measurements and an approach to integrate particle aggregation in a hydrodynamic sediment transport model. The aggregation term used represents the interaction of multiple sediment classes (fractions) with corresponding multiple deposition behaviour. The k–ε–turbulence model was used to calculate the coefficient of vertical turbulent mixing needed for the two‐dimensional vertical‐plane simulations. The model has been applied to transport and deposition of tracer particles and natural SPM in a lake‐outlet lowland river (Spree River, Germany). The results of simulations were evaluated by comparison with field data obtained for two levels of river discharge. Experimental data for both discharge levels showed that under the prevailing uniform hydraulic conditions along the river reach, the settling velocity distribution did not change significantly downstream, whereas the amount of SPM declined. It was also shown that higher flow velocities (higher fluid shear) resulted in higher proportions of fast settling SPM fractions. We conclude that in accordance with the respective prevailing turbulence structures, typical aggregation mechanisms occur that continuously generate similar distribution patterns, including particles that settle toward the river bed and thus mainly contribute to the observed decline in the total SPM concentration. In order to determine time‐scales of aggregation and related mass fluxes between the settling velocity fractions, results of model simulations were fitted to experimental data for total SPM concentration and of settling velocity frequency distributions. The comparison with simulations for the case of non‐interacting fractions clearly demonstrated the practical significance of particle interaction for a more realistic modelling of cohesive sediment and contaminant transport. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号