首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The orientations of ground motions are paramount when the pulse‐like motions and their unfavorable seismic responses are considered. This paper addresses the stochastic modeling and synthesizing of near‐fault impulsive ground motions with forward directivity effect taking the orientation of the strongest pulses into account. First, a statistical parametric analysis of velocity time histories in the orientation of the strongest pulse with a specified magnitude and various fault distances is performed. A new stochastic model is established consisting of a velocity pulse model with random parameters and a stochastic approach to synthesize high‐frequency velocity time history. The high‐frequency velocity history is achieved by integrating a stochastic high‐frequency accelerogram, which is generated via the modified K‐T spectrum of residual acceleration histories and then modulated by the specific envelope function. Next, the associated parameters of pulse model, envelope function, and power spectral density are estimated by the least‐square fitting. Some chosen parameters in the stochastic model of near‐fault motions based on correlation analysis are regarded as random variables, which are validated to follow the normal or lognormal distribution. Moreover, the number theoretical method is suggested to select efficiently representative points, for generating artificial near‐fault impulsive ground motions with the feature of the strongest pulse, which can be used to the seismic response and reliability analysis of critical structures conveniently. Finally, the simulated ground motions demonstrate that the synthetic ground motions generated by the proposed stochastic model can represent the impulsive characteristic of near‐fault ground motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A parameterized stochastic model of near‐fault ground motion in two orthogonal horizontal directions is developed. The major characteristics of recorded near‐fault ground motions are represented. These include near‐fault effects of directivity and fling step; temporal and spectral non‐stationarity; intensity, duration, and frequency content characteristics; directionality of components; and the natural variability of ground motions. Not all near‐fault ground motions contain a forward directivity pulse, even when the conditions for such a pulse are favorable. The proposed model accounts for both pulse‐like and non‐pulse‐like cases. The model is fitted to recorded near‐fault ground motions by matching important characteristics, thus generating an ‘observed’ set of model parameters for different earthquake source and site characteristics. A method to generate and post‐process synthetic motions for specified model parameters is also presented. Synthetic ground motion time series are generated using fitted parameter values. They are compared with corresponding recorded motions to validate the proposed model and simulation procedure. The use of synthetic motions in addition to or in place of recorded motions is desirable in performance‐based earthquake engineering applications, particularly when recorded motions are scarce or when they are unavailable for a specified design scenario. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
A procedure to generate horizontal pairs of synthetic near‐fault ground motion components for specified earthquake source and site characteristics is presented. Some near‐fault ground motions contain a forward directivity pulse; others do not, even when the conditions for such a pulse are favorable. The proposed procedure generates pulse‐like and non‐pulse‐like motions in appropriate proportions. We use our recent stochastic models of pulse‐like and non‐pulse‐like near‐fault ground motions that are formulated in terms of physically meaningful parameters. The parameters of these models are fitted to databases of recorded pulse‐like and non‐pulse‐like motions. Using these empirical “observations,” predictive relations are developed for the model parameters in terms of the earthquake source and site characteristics (type of faulting, earthquake magnitude, depth to top of rupture plane, source‐to‐site distance, site characteristics, and directivity parameters). The correlation coefficients between the model parameters are also estimated. For a given earthquake scenario, the probability of occurrence of a directivity pulse is first computed; pulse‐like and non‐pulse‐like motions are then simulated according to the predicted proportions using the empirical predictive models. The resulting time series are realistic and reproduce important features of recorded near‐fault ground motions, including the natural variability. Moreover, the statistics of their elastic response spectra agree with those of the NGA‐West2 dataset, with the additional feature of distinguishing between pulse‐like and non‐pulse‐like cases and between forward and backward directivity scenarios. The synthetic motions can be used in addition to or in place of recorded motions in performance‐based earthquake engineering, particularly when recorded motions are scarce.  相似文献   

4.
The purpose of this paper is to investigate the ground motion characteristics of the Chi‐Chi earthquake (21 September 1999) as well as the interpretation of structural damage due to this earthquake. Over 300 strong motion records were collected from the strong motion network of Taiwan for this earthquake. A lot of near‐field ground motion data were collected. They provide valuable information on the study of ground motion characteristics of pulse‐like near‐field ground motions as well as fault displacement. This study includes: attenuation of ground motion both in PGA and spectral amplitude, principal direction, elastic and inelastic response analysis of a SDOF system subjected to near‐field ground motion collected from this event. The distribution of spectral acceleration and spectral velocity along the Chelungpu fault is discussed. Based on the mode decomposition method the intrinsic mode function of ground acceleration of this earthquake is examined. A long‐period wave with large amplitude was observed in most of the near‐source ground acceleration. The seismic demand from the recorded near‐field ground motion is also investigated with an evaluation of seismic design criteria of Taiwan Building Code. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
This study proposes an improved energy‐based approach for quantitative classification of velocity‐pulse‐like ground motions. The pulse amplitude is determined, in its value and in time location, by the amplitude of the half‐cycle pulse having the largest seismic energy. After conducting statistical analyses, a newly‐determined threshold level for selecting pulse‐like ground motions is derived; and then what followed is a comparison analysis of three pulse‐detecting schemes, one using the wavelet analysis, the other two using the energy concept. It is believed that other than providing a useful way of classifying pulse‐like ground motions for structural demand analysis, knowledge of this work could also benefit the development of the ground motion prediction equations accounting for pulse effects, and further to aid the probabilistic seismic hazard analysis in a near‐fault environment. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
Near‐fault ground motions impose large demands on structures compared to ‘ordinary’ ground motions. Recordings suggest that near‐fault ground motions with ‘forward’ directivity are characterized by a large pulse, which is mostly orientated perpendicular to the fault. This study is intended to provide quantitative knowledge on important response characteristics of elastic and inelastic frame structures subjected to near‐fault ground motions. Generic frame models are used to represent MDOF structures. Near‐fault ground motions are represented by equivalent pulses, which have a comparable effect on structural response, but whose characteristics are defined by a small number of parameters. The results demonstrate that structures with a period longer than the pulse period respond very differently from structures with a shorter period. For the former, early yielding occurs in higher stories but the high ductility demands migrate to the bottom stories as the ground motion becomes more severe. For the latter, the maximum demand always occurs in the bottom stories. Preliminary regression equations are proposed that relate the parameters of the equivalent pulse to magnitude and distance. The equivalent pulse concept is used to estimate the base shear strength required to limit story ductility demands to specific target values. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

7.
A methodology for the performance‐based seismic risk assessment of classical columns is presented. Despite their apparent instability, classical columns are, in general, earthquake resistant, as proven from the fact that many classical monuments have survived many strong earthquakes over the centuries. Nevertheless, the quantitative assessment of their reliability and the understanding of their dynamic behavior are not easy, because of the fundamental nonlinear character and the sensitivity of their response. In this paper, a seismic risk assessment is performed for a multidrum column using Monte Carlo simulation with synthetic ground motions. The ground motions adopted contain a high‐ and low‐frequency component, combining the stochastic method, and a simple analytical pulse model to simulate the directivity pulse contained in near source ground motions. The deterministic model for the numerical analysis of the system is three‐dimensional and is based on the Discrete Element Method. Fragility curves are produced conditional on magnitude and distance from the fault and also on scalar intensity measures for two engineering demand parameters, one concerning the intensity of the response during the ground shaking and the other the residual deformation of the column. Three performance levels are assigned to each engineering demand parameter. Fragility analysis demonstrated some of the salient features of these spinal systems under near‐fault seismic excitations, as for example, their decreased vulnerability for very strong earthquakes of magnitude 7 or larger. The analysis provides useful results regarding the seismic reliability of classical monuments and decision making during restoration process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
This paper is devoted to investigate the effects of near‐fault ground motions on the seismic responses of nonlinear MDOF structures considering soil‐structure interaction (SSI). Attempts are made to take into account the effects of different frequency‐content components of near‐fault records including pulse‐type (PT) and high‐frequency (HF) components via adopting an ensemble of 54 near‐fault ground motions. A deep sensitivity analysis is implemented based on the main parameters of the soil‐structure system. The soil is simulated based on the Cone model concept, and the superstructure is idealized as a nonlinear shear building. The results elucidate that SSI has approximately increasing and mitigating effects on structural responses to the PT and HF components, respectively. Also, a threshold period exists above which the HF component governs the structural responses. As the fundamental period of the structure becomes shorter and structural target ductility reduces, the contribution of the HF component to the structural responses increases, elaborately. Soil flexibility makes the threshold period increase, and the effect of the PT component becomes more significant than the HF one. In the case of soil‐structure system, slenderizing the structure also increases this threshold period and causes the PT component to be dominant. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
Ground motions with strong velocity pulses are of particular interest to structural earthquake engineers because they have the potential to impose extreme seismic demands on structures. Accurate classification of records is essential in several earthquake engineering fields where pulse‐like ground motions should be distinguished from nonpulse‐like records, such as probabilistic seismic hazard analysis and seismic risk assessment of structures. This study proposes an effective method to identify pulse‐like ground motions having single, multiple, or irregular pulses. To effectively characterize the intrinsic pulse‐like features, the concept of an energy‐based significant velocity half‐cycle, which is visually identifiable, is first presented. Ground motions are classified into 6 categories according to the number of significant half‐cycles in the velocity time series. The pulse energy ratio is used as an indicator for quantitative identification, and then the energy threshold values for each type of ground motions are determined. Comprehensive comparisons of the proposed approach with 4 benchmark identification methods are conducted, and the results indicate that the methodology presented in this study can more accurately and efficiently distinguish pulse‐like and nonpulse‐like ground motions. Also presented are some insights into the reasons why many pulse‐like ground motions are not detected successfully by each of the benchmark methods.  相似文献   

10.
Residual displacements of single‐degree‐of‐freedom systems due to ground motions with velocity pulses or fling step displacements are presented as a function of period T and of its ratio to the pulse period Tp. Four hysteretic behaviors are considered: bilinear elastoplastic, stiffness‐degrading with cycling, stiffness‐cum‐strength degrading, with or without pinching. When expressed in terms of T/Tp, peak inelastic and residual displacements due to motions with a pulse or fling appear similar to those due to far‐fault motions, if the response to far‐field records are expressed in terms of the ratio of T to the record's characteristic period. However, as the latter is usually much shorter than the pulse period of motions with fling, the range of periods of interest for common structures becomes a short‐period range under fling motions and exhibits very large amplification of residual and peak inelastic displacements. Similar, but less acute, are the effects of motions with a velocity pulse. Wavelets of different complexity are studied as approximations to near‐fault records. Simple two‐parameter wavelets for fling motions overestimate peak inelastic displacements; those for pulse‐type motions overestimate residual displacements. A more complex four‐parameter wavelet for motions with a velocity pulse predicts overall well residual and peak displacements due to either pulse‐ or fling‐type motions; a hard‐to‐identify parameter of the wavelet impacts little computed residual displacements; another significantly affects them and should be carefully estimated from the record. Even this most successful of wavelets overpredicts residual displacements for the periods of engineering interest. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In order to investigate the response of structures to near‐fault seismic excitations, the ground motion input should be properly characterized and parameterized in terms of simple, yet accurate and reliable, mathematical models whose input parameters have a clear physical interpretation and scale, to the extent possible, with earthquake magnitude. Such a mathematical model for the representation of the coherent (long‐period) ground motion components has been proposed by the authors in a previous study and is being exploited in this article for the investigation of the elastic and inelastic response of the single‐degree‐of‐freedom (SDOF) system to near‐fault seismic excitations. A parametric analysis of the dynamic response of the SDOF system as a function of the input parameters of the mathematical model is performed to gain insight regarding the near‐fault ground motion characteristics that significantly affect the elastic and inelastic structural performance. A parameter of the mathematical representation of near‐fault motions, referred to as ‘pulse duration’ (TP), emerges as a key parameter of the problem under investigation. Specifically, TP is employed to normalize the elastic and inelastic response spectra of actual near‐fault strong ground motion records. Such normalization makes feasible the specification of design spectra and reduction factors appropriate for near‐fault ground motions. The ‘pulse duration’ (TP) is related to an important parameter of the rupture process referred to as ‘rise time’ (τ) which is controlled by the dimension of the sub‐events that compose the mainshock. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Three analytical studies of base‐isolated structures are carried out. First, six pairs of near‐fault motions oriented in directions parallel and normal to the fault were considered, and the average of the response spectra of these earthquake records was obtained. This study shows that in addition to pulse‐type displacements, these motions contain significant energy at high frequencies and that the real and pseudo‐velocity spectra are quite different. The second analysis modelled the response of a model of an isolated structure with a flexible superstructure to study the effect of isolation damping on the performance of different isolation systems under near‐fault motion. The results show that there exists a value of isolation system damping for which the superstructure acceleration for a given structural system attains a minimum value under near‐fault motion. Therefore, although increasing the bearing damping beyond a certain value may decrease the bearing displacement, it may transmit higher accelerations into the superstructure. Finally, the behaviour of four isolation systems subjected to the normal component of each of the near‐fault motions were studied, showing that EDF type isolation systems may be the optimum choice for the design of isolated structures in near‐fault locations. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

13.
Nonlinear static procedures, which relate the seismic demand of a structure to that of an equivalent single‐degree‐of‐freedom oscillator, are well‐established tools in the performance‐based earthquake engineering paradigm. Initially, such procedures made recourse to inelastic spectra derived for simple elastic–plastic bilinear oscillators, but the request for demand estimates that delve deeper into the inelastic range, motivated investigating the seismic demand of oscillators with more complex backbone curves. Meanwhile, near‐source (NS) pulse‐like ground motions have been receiving increased attention, because they can induce a distinctive type of inelastic demand. Pulse‐like NS ground motions are usually the result of rupture directivity, where seismic waves generated at different points along the rupture front arrive at a site at the same time, leading to a double‐sided velocity pulse, which delivers most of the seismic energy. Recent research has led to a methodology for incorporating this NS effect in the implementation of nonlinear static procedures. Both of the previously mentioned lines of research motivate the present study on the ductility demands imposed by pulse‐like NS ground motions on oscillators that feature pinching hysteretic behaviour with trilinear backbone curves. Incremental dynamic analysis is used considering 130 pulse‐like‐identified ground motions. Median, 16% and 84% fractile incremental dynamic analysis curves are calculated and fitted by an analytical model. Least‐squares estimates are obtained for the model parameters, which importantly include pulse period Tp. The resulting equations effectively constitute an R ? μ ? T ? Tp relation for pulse‐like NS motions. Potential applications of this result towards estimation of NS seismic demand are also briefly discussed. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
地震动的频谱特征是影响结构动力反应的重要因素。以集集地震动记录为数据基础,对反映地震动频谱特征的4个参数周期(反应谱卓越周期Tp,平滑化反应谱卓越周期To,傅氏幅值谱平均周期Tm和反应谱特征周期Tg)进行了研究。依据理论模型,经非线性回归分析,给出了不同场地上地震动各周期分量随断层距变化的经验公式。结果表明,不同的频谱参数周期反映地震动不同的频谱特征;同一场地上各周期随断层距的增大而增大;To和Tm具有较好的可估性。  相似文献   

15.
Unique to the near‐source region of a large earthquake is the occurrence of strong impulsive ground motion and surface faulting referred to as ‘fling‐step’ motion. The objective of this study is to synthesize broad‐band time histories over a wide range of frequencies by characterizing rupture directivity and fling effects from the comprehensive strong motion database of the near‐fault Chi‐Chi event. To aid in the generation of these special types of ground motions, a hybrid modeling technique is introduced based on the stochastic finite‐fault radiation method and an efficient analytical approach to incorporate the observed low‐frequency features in the records close to the ruptured fault. The results show that the overall agreement among the developed hybrid methodology and recorded waveforms and response spectra is quite satisfying. A brief discussion on the design of infrastructures near seismic fault is also included. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Rupture directivity effects in ground motion are known since many years to both seismologists and earthquake engineers, i.e. in sites that are in a particular geometrical configuration with respect to the rupture, the velocity fault‐normal signals may show a large pulse which occurs at the beginning of the record and contains the most of energy. The results are waveforms different from ordinary ground motions recorded in the far field or in geometrical conditions not favorable with respect to directivity. Current attenuation laws are not able to capture such effect well, if at all, and current probabilistic seismic hazard analysis is not able to predict the resulting peculiar spectral shape. Moreover, it is believed that structures with dynamic behavior in a range of periods related to the pulse period may be subjected to underestimated seismic demand. In the paper this is investigated and increments in both elastic and inelastic seismic actions are quantified using a large dataset of records, from the next generation attenuation project (NGA), in which a fraction is comprised of velocity pulses identified in other studies. These analyses employ recently developed tools and procedures to assess directivity effects and to quantify the associated threat in terms of seismic action on structures. Subsequently, the same tools are used in one of the first attempts to identify near‐source effects in the data recorded during a normal faulting earthquake, the mainshock of the recent Abruzzo (central Italy) sequence, leading to conclude that pulse‐like effects are likely to have occurred in the event, that is (1) observation of pulse‐like records in some near‐source stations is in fair agreement with existing predictive models, (2) the increment in seismic demand shown by pulse‐like ground motion components complies with the results of the analysis of the NGA data, and (3) seismic demand in non‐impulsive recordings is generally similar to what expected for ordinary records. The results may be useful as a benchmark for inclusion of near‐source effect in design values of seismic action and structural risk analysis. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
Numerical and analytical solutions are presented for the elastic and inelastic response of single‐degree‐of‐freedom yielding oscillators to idealized ground acceleration pulses. These motions are typical of near‐fault earthquake recordings generated by forward rupture directivity and may inflict damage in the absence of substantial structural strength and ductility capacity. Four basic pulse waveforms are examined: (1) triangular; (2) sinusoidal; (3) exponential; and (4) rectangular. In the first part of the article, a numerical study is presented of the effect of oscillator period, strength, damping, post‐yielding stiffness and number of excitation cycles, on inelastic response. Results are presented in the form of dimensionless graphs and regression formulas that elucidate the salient features of the problem. It is shown that conventional Rµ relations may significantly underestimate ductility demand imposed by near‐fault motions. The second part of the article concentrates on elastic‐perfectly plastic oscillators. Closed‐form solutions are derived for post‐yielding response and associated ductility demand. It is shown that all three ground motion histories (i.e. acceleration, velocity, and displacement) control oscillator response—contrary to the widespread view that ground velocity alone is of leading importance. The derived solutions provide insight on the physics of inelastic response, which is often obscured by the complexity of numerical algorithms and actual earthquake motions. The model is evaluated against numerical results from near‐field recordings. A case study is presented. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

18.
A stochastic ground‐motion simulation and modification technique is developed to generate energy‐compatible and spectrum‐compatible (ECSC) synthetic motions through wavelet packet characterization and modification in both frequency and time domains. The ECSC method significantly advances traditional spectral matching approaches, because it generates ground motions that not only match the target spectral accelerations, but also match Arias intensity build‐up and significant durations. The great similarity between the ECSC simulated motions and the actual recorded motions is demonstrated through one‐to‐one comparison of a variety of intensity measures. Extensive numerical simulations were also performed to validate the performance of the ECSC ground motions through nonlinear analyses of elasto‐plastic oscillators. The ECSC method can be easily implemented in the generalized conditional intensity measure framework by directly simulating a set of motions following a targeted distribution of multiple intensity measures. Therefore, the ECSC method has great potential to be used in performance‐based earthquake design and analysis. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
This article investigates the characteristics of the accidental eccentricity in symmetric buildings due to torsional response arising from wave passage effects in the near‐fault region. The soil–foundation–structure system is modeled as a symmetric cylinder placed on a rigid circular foundation supported on an elastic halfspace and subjected to obliquely incident plane SH waves simulating the action of near‐fault pulse‐like ground motions. The translational response is computed assuming that the superstructure behaves as a shear beam under the action of translational and rocking base excitations, whereas the torsional response is calculated using the mathematical formulation proposed in a previous study. A broad range of properties of the soil–foundation–structure system and ground motion input are considered in the analysis, thus facilitating a detailed parametric investigation of the structural response. It is demonstrated that the normalized accidental eccentricity is most sensitive to the pulse period (TP) of the near‐fault ground motions and to the uncoupled torsional‐to‐translational fundamental frequency ratio (Ω) of the structure. Furthermore, the normalized accidental eccentricities due to simplified pulse‐like and broadband ground motions in the near‐fault region are computed and compared against each other. The results show that the normalized accidental eccentricity due to the broadband ground motion is well approximated by the simplified pulse for longer period buildings, while it is underestimated for shorter period buildings. For symmetric buildings with values of Ω commonly used in design practice, the normalized accidental eccentricity due to wave passage effects is less than the typical code‐prescribed value of 5%, except for buildings with very large foundation radius. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

20.
Arias intensity, Ia, has been identified as an efficient intensity measure for the estimation of earthquake‐induced losses. In this paper, a new model for the prediction of Arias intensity, which incorporates nonlinear site response through the use of the average shear‐wave velocity and a heteroskedastic variance structure, is proposed. In order to estimate the effects of ground motions on spatially‐distributed systems, it is important to take into account the spatial correlation of the intensity measure. However, existing loss‐estimation models, which use Ia as an input, do not take this aspect of the ground motion into account. Therefore, the potential to model the spatial correlation of Arias intensity is also investigated. The empirical predictive model is developed using recordings from the Pacific Earthquake Engineering Research Center Next Generation of Attenuation database whereas the model for spatial correlation makes use of the well‐recorded events from this database, that is the Northridge and Chi‐Chi earthquakes. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号