首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Damage to building structures due to underground blast‐induced ground motions is a primary concern in the corresponding determination of the safe inhabited building distance (IBD). Because of the high‐frequency nature of this category of ground motions and especially the presence of significant vertical component, the characteristics of structural response and damage differ from those under seismic type low‐frequency ground motions. This paper presents a numerical investigation aimed at evaluating reinforced concrete (RC) structure damage generated by underground blast‐induced ground excitation. In the numerical model, two damage indices are proposed to model reinforced concrete failure. A fracture indicator is defined to track the cracking status of concrete from micro‐ to macrolevel; the development of a plastic hinge due to reinforcement yielding is monitored by a plastic indicator; while the global damage of the entire structure is correlated to structural stiffness degradation represented by its natural frequency reduction. The proposed damage indices are calibrated by a shaking table test on a 1: 5‐scale frame model. They are then applied to analyse the structural damage to typical low‐ to high‐rise RC frames under blast‐induced ground motions. Results demonstrate a distinctive pattern of structural damage and it is shown that the conventional damage assessment methods adopted in seismic analysis are not applicable here. It is also found that the existing code regulation on allowable peak particle velocity of blast‐induced ground motions concerning major structural damage is very conservative for modern RC structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

2.
On March 11th 2011 a M w 9.0 mega-thrust interface subduction earthquake, the Great East Japan Earthquake, occurred 130 km off the northeast coast of Japan in the Pacific Ocean at the Japan Trench, triggering tsunami which caused damage along 600 km of coastline. Observations of damage to buildings (including vertical evacuation facilities) and coastal defences in Tōhoku are presented following investigation by the Earthquake Engineering Field Investigation Team (EEFIT) at 10 locations in Iwate and Miyagi Prefectures. Observations are presented in the context of the coastal setting and tsunami characteristics experienced at each location. Damage surveys were carried out in Kamaishi City and Kesennuma City using a damage scale for reinforced concrete (RC), timber and steel frame buildings adapted from an earlier EEFIT tsunami damage scale. Observations show that many sea walls and breakwaters were overtopped, overturned, or broken up, but provided some degree of protection. We show the extreme variability of damage in a local area due to inundation depth, flow direction, velocity variations and sheltering. Survival of many RC shear wall structures shows their high potential to withstand local earthquake and significant tsunami inundation but further research is required into mitigation of scour, liquefaction, debris impact, and the prevention of overturning failure. Damage to steel and timber buildings are also discussed. These observations are intended to contribute to mitigation of future earthquake and tsunami damage by highlighting the key features which influence damage level and local variability of damage sustained by urban coastal infrastructure when subjected to extreme tsunami inundation depths.  相似文献   

3.
2012 Emilia earthquake,Italy: reinforced concrete buildings response   总被引:1,自引:1,他引:0  
Data of the Italian National Institute of Statistics are collected aimed at characterizing Reinforced Concrete (RC) building stock of the area struck by the 2012 Emilia earthquake (number of storeys, age of construction, structural typology). Damage observations, collected right after the event in reconnaissance reports, are shown and analyzed emphasizing typical weaknesses of RC buildings in the area. The evolution of seismic classification for Emilia region and RC buildings’ main characteristics represent the input data for the assessment of non-structural damage of infilled RC buildings, through a simplified approach (FAST method), based on EMS-98 damage scale. Peak Ground Acceleration (PGA) capacities for the first three damage states of EMS-98 are compared with registered PGA in the epicentral area. Observed damage and damage states evaluated for the PGA of the event, in the epicentral area, are finally compared. The comparison led to a fair agreement between observed and numerical data.  相似文献   

4.
A series of studies was conducted on three buildings of steel reinforced concrete structures with RC shear walls damaged in the 1995 Hyogo-ken Nanbu earthquake. These buildings are located in an area where structural damage centred around. Two of these buildings suffered severe damage, while the third was not structurally damaged. Our studies deal with site inspections, including micro-tremor measurement of buildings, the evaluation of input motions, and the response analyses considering soil–structure interaction. The results of simulation analyses of the two severely damaged buildings correspond to their actual damage state. From the response analyses of the one slender building with no structural damage, it was concluded that uplifting is the main reason it did not suffer any structural damage. Through these studies, the importance of soil–structure interaction and effective input motion is fully understood. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

5.
On 6th April 2009 an earthquake of magnitude M w =  6.3 occurred in the Abruzzo region; the epicentre was very close to the city of L’Aquila (about 6 km away). The event produced casualties and damage to buildings, lifelines and other infrastructures. An analysis of the main damage that reinforced concrete (RC) structures showed after the event is presented in this study. In order to isolate the main causes of structural and non-structural damage, the seismological characteristics of the event are examined, followed by an analysis of the existing RC building stock in the area. The latter issue came under scrutiny after the release of official data about structural types and times of construction, combined with a detailed review of the most important seismic codes in force in the last 100 years in Italy. Comparison of the current design provisions of the Italian and European codes with previous standards allows the main weaknesses of the existing building stock to be determined. Damage to structural and non-structural elements is finally analyzed thanks to photographic material collected in the first week after the event; the main causes of damage are then inferred.  相似文献   

6.
The report summarizes the observed damage to a variety of buildings near the epicenter of the M6.8 Luding earthquake in Sichuan Province, China. They include base-isolated buildings, multi-story reinforced concrete (RC) frame buildings, and masonry buildings. The near-field region is known to be tectonically highly active, and the local intensity level is the highest, that is, 0.4g peak ground acceleration (PGA) for the design basis earthquake, in the Chinese zonation of seismic ground motion parameters. The extent of damage ranged from the weak-story collapse that claimed lives to the extensive nonstructural damage that suspended occupancy. The report highlights the first observation of the destruction of rubber bearings and viscous dampers in the isolation layer of Chinese seismically isolated buildings. It also features the rare observation of the brittle shear failure of RC columns in moment-resisting frames in a region of such a high seismic design requirement. Possible reasons that may have attributed to the reported damage are suggested by providing facts observed in the field. However, careful forensic analyses are needed before any conclusive judgment can be made.  相似文献   

7.
This paper deals with the period evaluation of Reinforced Concrete (RC) framed buildings in elastic, yield and severely damaged states. Firstly, period-height relationships either reported in the literature, or obtained from both numerical simulations (eigenvalue analyses) and experimental measurements (ambient vibration analyses) have been examined and compared. Structural types representing low-rise, mid-rise and high-rise RC buildings without earthquake resistant design, widely present in the Italian and European built environment, have been studied. Results have shown high differences between numerical and experimental period values. Period elongation (stiffness degradation) during and after strong ground shaking has been also examined based on results from experimental in situ and laboratory tests performed on some RC framed building structures which suffered moderate-heavy damage. Some comments on the relationship between damage level and period elongation are reported.  相似文献   

8.
A growing attention has been addressed to the influence of infills on the seismic behavior of Reinforced Concrete buildings, also supported by the observation of damage to infilled RC buildings after severe earthquakes (e.g. L’Aquila 2009, Lorca 2011). In this paper, a numerical investigation on the influence of infills on the seismic behavior of four different case study buildings is carried out: four- and eight-storey buildings, designed for seismic loads according to the current Italian technical code or for gravity loads only according to an obsolete technical code, are considered. Seismic capacity at two Limit States (Damage Limitation and Near Collapse) is assessed through static push-over analyses, within the N2 spectral assessment framework. Different infill configurations are considered (Bare, Uniformly Infilled, Pilotis), and a sensitivity analysis is carried out, thus evaluating the influence of main material and capacity parameters on seismic response, depending on the number of storeys and the design typology. Fragility curves are obtained, through the application of a Response Surface Method. Seismic performance is also expressed in terms of failure probability, given a reference time period.  相似文献   

9.
High-rise buildings are an efficient solution to meet the housing challenges of global urbanization that is happening at an incredible pace. Code-based seismic design philosophies are aimed at achieving collapse-prevention under major earthquakes, implying extensive structural damage associated with important losses. A number of high-performance systems have been investigated for enhancing the resilience of high-rise buildings whose design is especially challenging due to higher-mode effects even when a flexural mechanism is formed at the base of the structure. To this end, this paper proposes a new concept consisting of a three-dimensional uncoupled rocking and shear mechanism system for high-rise buildings where reinforced concrete (RC) core walls are used as the lateral-force-resisting system. The proposed system provides a dual-mechanism at the base that independently limits both overturning moments (OTMs) and shear forces and thus more effectively mitigates higher-mode effects. The characteristic mechanics of the proposed system are first studied through an idealized model. A physical embodiment is then designed, detailed, and validated through advanced models and extensive nonlinear dynamic analyses. A 42-story RC core-wall building that is located in Los Angeles and was studied as part of the PEER Tall Buildings Initiative is used as a reference structure in this study. Results confirmed that the proposed system eliminates damage at the base of the walls and minimizes the inelastic demands over the height of the building. In a general sense, the proposed concept provides a framework in which the intended dual mechanism can be implemented to a wider range of high-rise structures.  相似文献   

10.
Masonry buildings are primarily constructed out of bricks and mortar which become discrete pieces and cannot sustain horizontal forces created by a strong earthquake.The collapse of masonry walls may cause significant human casualties and economic losses.To maintain their integrity,several methods have been developed to retrofit existing masonry buildings,such as the constructional RC frame which has been extensively used in China.In this study,a new method using precast steel reinforced concrete(PSRC)panels is developed.To demonstrate its effectiveness,numerical studies are conducted to investigate and compare the collapse behavior of a structure without retrofitting,retrofitted with a constructional RC frame,and retrofitted with external PSRC walls(PSRCW).Sophisticated finite element models(FEM)were developed and nonlinear time history analyses were carried out.The results show that the existing masonry building is severely damaged under occasional earthquakes,and totally collapsed under rare earthquakes.Both retrofitting techniques improve the seismic performance of existing masonry buildings.However,it is found that several occasional earthquakes caused collapse or partial collapse of the building retrofitted with the constructional RC frame,while the one retrofitted by the proposed PSRC wall system survives even under rare earthquakes.The effectiveness of the proposed retrofitting method on existing masonry buildings is thus fully demonstrated.  相似文献   

11.
The paper analyses the seismic fragility of precast reinforced concrete buildings using observational damage data gathered after the 2012 Emilia earthquakes that struck Northern Italy. The damage level in 1890 buildings was collected, classified and examined. Damage matrices were then evaluated, and finally, empirical fragility curves were fitted using Bayesian regression. Building damage was classified using a six‐level scale derived from EMS‐98. The completeness of the database and the spatial distribution of the buildings investigated were analysed using cadastral data as a reference. The intensity of the ground motion was quantified by the maximum horizontal peak ground acceleration, which was obtained from ShakeMaps. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

12.
Large number of vulnerable reinforced concrete (RC) buildings exists in earthquake prone areas. These low cost residential and/or commercial buildings, which are three to seven-stories high, usually do not receive essential engineering services during the construction phase. Finding cheap, easily applicable and occupant friendly retrofitting techniques are extremely important to reduce the seismic risk of these buildings. As an attempt to this, a particular type of high strength clay brick is studied to evaluate its potential for the structural retrofitting. A set of experiment was conducted to assess the important mechanical characteristics of the infill walls made from these bricks. Also the performance of two RC frames retrofitted with these walls, having different connection details between the wall and RC members was examined experimentally. The analytical nonlinear static analyses of these specimens have been performed using SeismoStruct to achieve some model parameters for representing the “infill wall model” in the program. Adaptive pushover and nonlinear time history analyses were conducted to investigate the performance of a six storey representative RC frame retrofitted with these walls. Evaluation of the results obtained in these analyses prove that this retrofitting technique introduces important strength and stiffness increments to the structure, regarding its seismic demands, which are similar to the results obtained from the experiments.  相似文献   

13.
This study focuses on the seismic safety evaluation of masonry buildings in Turkey for in‐plane failure modes using fragility curves. Masonry buildings are classified and a set of fragility curves are generated for each class. The major structural parameters in the classification of masonry buildings are considered as the number of stories, load‐bearing wall material, regularity in plan and the arrangement of walls (required length, openings in walls, etc.), in accordance with the observations from previous earthquakes and field databases. The fragility curves are generated by using time history (for demand) and pushover (for capacity) analyses. From the generated sets of fragility curves, it is observed that the damage state probabilities are significantly influenced from the number of stories and wall material strength. In the second stage of the study, the generated fragility curves are employed to estimate the damage of masonry buildings in Dinar after the 1995 earthquake. The estimated damage by fragility information is compared with the inspected visual damage as assessed from the Damage Evaluation Form. For the quantification of fragility‐based damage, a single‐valued index, named as ‘vulnerability score’ (VS), is proposed. There seems to be a fair agreement between the two damage measures. In addition to this, decisions regarding the repair or demolition of masonry buildings in Dinar due to visual damage inspection are on comparable grounds with the relative measure obtained from VS of the same buildings. Hence, the fragility‐based procedure can provide an alternative for the seismic safety evaluation of masonry buildings in Turkey. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

14.
An earthquake with a magnitude of 5.7 $(\text{ M}_{\mathrm{L}})$ has struck Simav, Kutahya located in the western part of Turkey on May 19, 2011. The ground motion caused observable damage within 25 km radius from the epicenter. Although the earthquake is moderate, its effects on the structures are serious. This paper presents the observations on seismic damages of reinforced concrete (RC) and masonry structures. Common reasons of damage in RC buildings are: low quality of concrete, detailing mistakes of reinforcement, short column, pounding, overhangs and misconstructed gable and outer infill wall parts. Interesting cases related to these deficiencies are reported. Damages in the masonry buildings are due to lack of connection between orthogonal walls and unsuitable location and dimension of openings. The damages at structures are more noticeable at regions with unfavorable soil conditions like plain regions or foothills. However, on stiffer soils at hilly sides, the damages seem to be more limited and masonry structures are observed to be less affected compared to the RC ones. The damages in RC buildings found to be increasing with story number for light damage states. However, for heavier damage states, 4–5 story buildings are observed to be the most damaged.  相似文献   

15.
We have tried to estimate the yield shear strengths of reinforced concrete (RC) buildings based on the damage statistics in Kobe surveyed after the Hyogo‐ken Nanbu, Japan, earthquake of 1995 and the non‐linear response analyses for synthetic waveforms calculated from a complex seismic source and a three‐dimensional basin structure. First, a set of building models that represented the RC building stock in Kobe was constructed and plausible non‐linear multi‐degree‐of‐freedom models with four different numbers of stories were created based on the current seismic code and construction practice. For response analysis the damage criterion and the strength distribution should be assumed a priori. When the damage ratios for these standard models were calculated it was found that the damage ratios were so high that we had to increase the average yield strengths in order to match the calculated damage ratios to those observed. After searching the best models it was found that the estimated average yield strengths should be much higher than those based on the code, especially for low‐rise buildings. Using this set of building models we succeeded in reproducing the belt‐shaped area with high damage ratios in Kobe. One can apply the proposed methodology to different countries if there is enough damage data, strong motion records, and building statistics. If there is sparse damage data at several locations only, then our models can be adjusted to reproduce observed damage data and used for damage prediction as a first‐order approximation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

16.
The study of the structural behaviour of damaged RC buildings during ground motion is a fundamental topic in the modern earthquake engineering. Many studies have been carried out in order to better understand the real evolution of the damage in RC buildings during a seismic event. In this work, a damaged RC building has been intensively investigated in terms of materials property and stiffness evolution in order to interpreting the structural and nonstructural surveyed damage. The peculiarity of this building is its damage sequence during the 2002 Molise earthquake. In fact, the town of Bonefro suffered moderate damage (MCS intensity VII), with the exception of the investigated reinforced concrete building. The October 31, 2002 event (M=5.4) caused some structural damage to this building. The second event (M=5.3), on November 1, 2002, increased substantially the damage level (grade 4 according to the 1998 European Macroseismic Scale). It occurred just while, due to fortuitous circumstances, a 5 min. seismic velocimetric recording was being taken. The working group has performed some frequency analyses based on the recording. Several non linear models have been defined to understand the damage evolution of the building and the local and global damage patterns through for static analyses. Finally, linear and non linear models have been developed with the main goal of identifying the characteristics of a reliable undamaged structural model.  相似文献   

17.
Probabilistic fragility functions have been developed for low-rise, reinforced concrete buildings subjected to earthquake triggered slow-moving slides, applying a recently published methodology by the same authors [5] (Fotopoulou and Pitilakis, 2012). We performed an extensive numerical parametric study considering different idealized slope configurations, soil and geological settings, as well as distances of the structure to the slope's crest and foundation typologies. Various features of the structural damage are explored, highlighting trends on the building's behavior to the permanent co-seismic slope deformations. The proposed generalized probabilistic fragility curves have been developed as a function of the expected outcrop peak ground acceleration (PGA) as provided by modern seismic codes, i.e. EC8, or the induced permanent slope ground displacements (PGD) for different slope angles, water table level and soil type, foundation typology and seismic design code. Detailed sensitivity analyses of the above parameters, reveal their relative importance for the vulnerability analysis and the quantitative risk assessment of low-rise RC buildings subjected to earthquake triggered slow-moving slides.  相似文献   

18.
Reinforced concrete (RC) wall is a common type of structural component used in high-rise buildings to resist lateral loads induced by earthquakes. RC walls are typically designed and detailed to dissipate energy through significant inelastic responses to meet expected seismic performance under moderate-to-strong earthquakes. However, costly repair or even demolition caused by excessive residual deformation is usually inevitable. Given this deficiency, this study investigates the feasibility of utilizing superelastic shape memory alloy (SMA) bars to achieve self-centering (SC) RC walls. Under this condition, the residual deformation of SC–RC walls is reduced by superelastic SMA with large recoverable strain and remarkable fatigue properties. The mechanical properties of superelastic nickel–titanium bars and SC–RC wall design are described. A numerical SC–RC wall model is developed and validated by comparing the test results. Parametric studies of SC–RC wall systems are then conducted to investigate the effects of axial compressive load ratio, bottom slit length, and lower plateau stress factor of SMA. Results show that the proposed SC–RC walls have excellent SC ability and moderate energy dissipation capacity. The damage regions and levels of the SC–RC wall systems are also discussed.  相似文献   

19.
Collapse resistance of high‐rise buildings has become a research focus because of the frequent occurrence of strong earthquakes and terrorist attacks in recent years. Research development has demonstrated that numerical simulation is becoming one of the most powerful tools for collapse analysis in addition to the conventional laboratory model tests and post‐earthquake investigations. In this paper, a finite element method based numerical model encompassing fiber‐beam element model, multilayer shell model, and elemental deactivation technique is proposed to predict the collapse process of high‐rise buildings subjected to extreme earthquake. The potential collapse processes are simulated for a simple 10‐story RC frame and two existing RC high‐rise buildings of 18‐story and 20‐story frame–core tube systems. The influences of different failure criteria used are discussed in some detail. The analysis results indicate that the proposed numerical model is capable of simulating the collapse process of existing high‐rise buildings by identifying potentially weak components of the structure that may induce collapse. The study outcome will be beneficial to aid further development of optimal design philosophy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

20.
The damage distribution in Adra town (south‐eastern Spain) during the 1993 and 1994 Adra earthquakes (5.0 magnitude), that reached a maximum intensity degree of VII (European Macroseismic Scale (EMS scale)), was concentrated mainly in the south‐east zone of the town and the most relevant damage occurred in reinforced concrete (RC) buildings with four or five storeys. In order to evaluate the influence of ground condition on RC building behaviour, geological, geomorphological and geophysical surveys were carried out, and a detailed map of ground surface structure was obtained. Short‐period microtremor observations were performed in 160 sites on a 100m × 100m dimension grid and Nakamura's method was applied in order to determine a distribution map of soil predominant periods. Shorter predominant periods (0.1–0.3 s) were found in mountainous and neighbouring zones and larger periods (greater than 0.5 s) in thicker Holocene alluvial fans. A relationship T = (0.049 ± 0.001)N, where T is the natural period of swaying motion and N is the number of storeys, has been empirically obtained by using microtremor measurements at the top of 38 RC buildings (ranging from 2 to 9 storeys). 1‐D simulation of strong motion on different soil conditions and for several typical RC buildings were computed, using the acceleration record in Adra town of the 1993 earthquake. It is noteworthy that all the aforementioned results show the influence of site effects in the degree and distribution of observed building damage. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号