首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Continuous temperature measurements at 11 stream sites in small lowland streams of North Zealand, Denmark over a year showed much higher summer temperatures and lower winter temperatures along the course of the stream with artificial lakes than in the stream without lakes. The influence of lakes was even more prominent in the comparisons of colder lake inlets and warmer outlets and led to the decline of cold‐water and oxygen‐demanding brown trout. Seasonal and daily temperature variations were, as anticipated, dampened by forest cover, groundwater input, input from sewage plants and high downstream discharges. Seasonal variations in daily water temperature could be predicted with high accuracy at all sites by a linear air‐water regression model (r2: 0·903–0·947). The predictions improved in all instances (r2: 0·927–0·964) by a non‐linear logistic regression according to which water temperatures do not fall below freezing and they increase less steeply than air temperatures at high temperatures because of enhanced heat loss from the stream by evaporation and back radiation. The predictions improved slightly (r2: 0·933–0·969) by a multiple regression model which, in addition to air temperature as the main predictor, included solar radiation at un‐shaded sites, relative humidity, precipitation and discharge. Application of the non‐linear logistic model for a warming scenario of 4–5 °C higher air temperatures in Denmark in 2070‐2100 yielded predictions of temperatures rising 1·6–3·0 °C during winter and summer and 4·4–6·0 °C during spring in un‐shaded streams with low groundwater input. Groundwater‐fed springs are expected to follow the increase of mean air temperatures for the region. Great caution should be exercised in these temperature projections because global and regional climate scenarios remain open to discussion. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

3.
Particular attention is given to the reliability of hydrological modelling results. The accuracy of river runoff projection depends on the selected set of hydrological model parameters, emission scenario and global climate model. The aim of this article is to estimate the uncertainty of hydrological model parameters, to perform sensitivity analysis of the runoff projections, as well as the contribution analysis of uncertainty sources (model parameters, emission scenarios and global climate models) in forecasting Lithuanian river runoff. The impact of model parameters on the runoff modelling results was estimated using a sensitivity analysis for the selected hydrological periods (spring flood, winter and autumn flash floods, and low water). During spring flood the results of runoff modelling depended on the calibration parameters that describe snowmelt and soil moisture storage, while during the low water period—the parameter that determines river underground feeding was the most important. The estimation of climate change impact on hydrological processes in the Merkys and Neris river basins was accomplished through the combination of results from A1B, A2 and B1 emission scenarios and global climate models (ECHAM5 and HadCM3). The runoff projections of the thirty-year periods (2011–2040, 2041–2070, 2071–2100) were conducted applying the HBV software. The uncertainties introduced by hydrological model parameters, emission scenarios and global climate models were presented according to the magnitude of the expected changes in Lithuanian rivers runoff. The emission scenarios had much greater influence on the runoff projection than the global climate models. The hydrological model parameters had less impact on the reliability of the modelling results.  相似文献   

4.
The present study sets out to investigate the sensitivity of water availability to climate change for a large western Himalayan river (the Satluj River basin with an area of 22 275 km2 and elevation range of 500 to 7000 m), which receives contributions from rain, snow and glacier melt runoff. About 65% of the basin area is covered with snow during winter, which reduces to about 11% after the ablation period. After having calibrated a conceptual hydrological model to provide accurate simulations of observed stream flow, the hydrological response of the basin was simulated using different climatic scenarios over a period of 9 years. Adopted plausible climate scenarios included three temperature scenarios (T + 1, T + 2, T + 3 °C) and four rainfall scenarios (P ? 10, P ? 5, P + 5 and P + 10%). The effect of climate change was studied on snowmelt and rainfall contribution runoff, and total stream flow. Under warmer climate, a typical feature of the study basin was found to be reduction in melt from the lower part of the basin owing to a reduction in snow covered area and shortening of the summer melting season, and, in contrast, an increase in the melt from the glacierized part owing to larger melt and an extended ablation period. Thus, on the basin scale, reduction in melt from the lower part was counteracted by the increase from melt from upper part of the basin, resulting in a decrease in the magnitude of change in annual melt runoff. The impact of climate change was found to be more prominent on seasonal rather than annual water availability. Reduction of water availability during the summer period, which contributes about 60% to the annual flow, may have severe implications on the water resources of the region, because demand of water for irrigation, hydropower and other usage is at its peak at this time. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
Heavy winter rainfall produces double‐peak hydrographs at the Slapton Wood catchment, Devon, UK. The first peak is saturation‐excess overland flow in the hillslope hollows and the second (i.e. the delayed peak) is subsurface stormflow. The physically‐based spatially‐distributed model SHETRAN is used to try to improve the understanding of the processes that cause the double peaks. A three‐stage (multi‐scale) approach to calibration is used: (1) water balance validation for vertical one‐dimensional flow at arable, grassland and woodland plots; (2) two‐dimensional flow for cross‐sections cutting across the stream valley; and (3) three‐dimensional flow in the full catchment. The main data are for rainfall, stream discharge, evaporation, soil water potential and phreatic surface level. At each scale there was successful comparison with measured responses, using as far as possible parameter values from measurements. There was some calibration but all calibrated values at one scale were used at a larger scale. A large proportion of the subsurface runoff enters the stream from three dry valleys (hillslope hollows), and previous studies have suggested convergence of the water in the three large hollows as being the major mechanism for the production of the delayed peaks. The SHETRAN modelling suggests that the hillslopes that drain directly into the stream are also involved in producing the delayed discharges. The model shows how in the summer most of the catchment is hydraulically disconnected from the stream. In the autumn the catchment eventually ‘wets up’ and shallow subsurface flows are produced, with water deflected laterally along the soil‐bedrock interface producing the delayed peak in the stream hydrograph. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

6.
As a response to climate change, shifting rainfall trends including increased multi-year droughts and an escalation in extreme rainfall events are expected in the Middle East. The purpose of this study is to evaluate the potential impact of these shifting trends on stream flow in the Jordan River and its tributaries. We use a non-homogeneous hidden Markov model to generate artificial daily rainfall simulations which capture independently shifting trends of increased droughts and escalated extreme. These simulations are then used as input into a hydrological model calibrated for the upper catchments of the Jordan River to compare the impact on stream flow and water resources between the different rainfall scenarios. We compare the predicted baseflow and surface flow components of the tested watersheds, and find that while an increase in extreme rainfall events increases the intensity and frequency of surface flow, the over all flow to the Jordan River, and the characteristics of the baseflow in the Jordan River system is not largely impacted. In addition, though it has been suggested that in the case of a multi-year drought the karstic nature of the aquifer might lead to more intense, non-linear reductions in stream flow, here we quantify and show the conditions when annual stream flow reduce linearly with rainfall, and when these relations will become non-linear.  相似文献   

7.
We investigated the role of increasingly well‐constrained geologic structures in the subsurface (i.e., subsurface architecture) in predicting streambed flux and hyporheic residence time distribution (RTD) for a headwater stream. Five subsurface realizations with increasingly resolved lithological boundaries were simulated in which model geometries were based on increasing information about flow and transport using soil and geologic maps, surface observations, probing to depth to refusal, seismic refraction, electrical resistivity (ER) imaging of subsurface architecture, and time‐lapse ER imaging during a solute tracer study. Particle tracking was used to generate RTDs for each model run. We demonstrate how improved characterization of complex lithological boundaries and calibration of porosity and hydraulic conductivity affect model prediction of hyporheic flow and transport. Models using hydraulic conductivity calibrated using transient ER data yield estimates of streambed flux that are three orders of magnitude larger than uncalibrated models using estimated values for hydraulic conductivity based on values published for nearby hillslopes (10?4 vs. 10?7 m2/s, respectively). Median residence times for uncalibrated and calibrated models are 103 and 100 h, respectively. Increasingly well‐resolved subsurface architectures yield wider hyporheic RTDs, indicative of more complex hyporheic flowpath networks and potentially important to biogeochemical cycling. The use of ER imaging to monitor solute tracers informs subsurface structure not apparent from other techniques, and helps to define transport properties of the subsurface (i.e., hydraulic conductivity). Results of this study demonstrate the value of geophysical measurements to more realistically simulate flow and transport along hyporheic flowpaths.  相似文献   

8.
Stream temperature is an important control of many in-stream processes. There is rising concern about increases in stream temperature with projected climate changes and human-related water activities. Here, we investigate the responses to climate change and water diversions in Eel River basin. The increase in stream temperatures is considered to be the result of changes in air temperature, the proportion of base flow and the amount of stream flow derived from historical and future simulations using the integrated VIC hydrologic model and ANN stream temperature model. The results show that stream temperature will increase throughout the basin in the future under two climate change representative concentration pathways (RCPs 4.5 and 8.5) and will also be influenced by the water diversion activities schedules. Specifically, the stream temperature increases, in the late twenty-first century under RCP8.5 scenarios, from 1.20 to 2.40 °C in summer and from 0.58–3.46 °C in winter respectively; Water diversion activities in Eel River Basin can increase nearly 1 °C in stream temperature. Therefore, both climate change and water diversion activities can substantially cause the rise of more than 2 °C in stream temperature. In conclusion, stream temperature is mainly sensitive to the proportion of base flow in summer, but also the change of the amount of stream flow in winter in our case study area. In addition, it should be noted that the low intensity irrigation schedule has lower impacts on increasing stream temperature, whereas the high intensity irrigation schedule will further exacerbate the rise of stream temperature. Understanding the different impacts of climate change scenarios and irrigation schedules on stream temperature can help identify climate-sensitive regions, climate-sensitive seasons and water diversion schedules as well as assist in planning for climate change and social adaptive management.  相似文献   

9.
《国际泥沙研究》2016,(3):212-219
In this paper, the site-specific impact of climate change on sediment yield has been assessed for the Naran watershed, Pakistan. Observed data has been gathered for period 1961–2010 and HaDCM3 GCM predictors of SRES scenarios A2 and B2 have been downloaded. Future precipitation and temperature time series have been statistically downscaled for time horizon 2011–2040 and 2041–2070. Downscaled data show both increasing and decreasing changes with respect to the observation. Potential sediment yield for future related to climate change has been simulated. The results show that the both snowy and monsoon seasonal stream discharges are expected to increase. This will lead to increase in annual sus-pended sediment yields. Percentage-wise, a less discharge and more sediment yield are expected during the early summer. The study concluded that the climate change and variability are influencing the watershed, and suspended sediment yield is likely to increase in the future.  相似文献   

10.
Potential hydrological impacts of climate change on long‐term water balances were analysed for Harp Lake and its catchment. Harp Lake is located in the boreal ecozone of Ontario, Canada. Two climate change scenarios were used. One was based on extrapolation of long‐term trends of monthly temperature and precipitation from a 129‐year data record, and another was based on a Canadian general circulation model (GCM) predictions. A monthly water balance model was calibrated using 26 years of hydrological and meteorological data, and the model was used to calculate hydrological impact under two climate change scenarios. The first scenario with a warmer and wetter climate predicted a smaller magnitude of change than the second scenario. The first scenario showed an increase in evaporation each month, an increase in catchment runoff in summer, fall and winter, but a decrease in spring, resulting in a slight increase in lake level. Annual runoff and lake level would increase because the precipitation change overrides evaporation change. The second scenario with a warmer, drier climate predicted a greater change, and indicated that evaporation would increase each month, runoff would increase in many months, but would decrease in spring, causing the lake level to decrease slightly. Annual runoff and lake level would decrease because evaporation change overrides precipitation change. In both scenarios, the water balance changes in winter and spring are pronounced. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

11.
This study aims to analyse the combined impacts of future discharges and sea levels on erosion–sedimentation potential, and its seasonal changes, in a ~43‐km‐long coastal river reach of South‐west Finland. To our knowledge, this kind of combined study has not been performed before. In addition to surveying the present erosion–sedimentation conditions, the daily erosion–sedimentation potential is simulated with a one‐dimensional hydrodynamic model for the 1971–2000 and 2070–2099 periods by applying four discharge scenarios. Different sea level stages are also employed in the simulations. All scenarios forecast increasing autumn and winter discharges, but diminishing summer discharges. This indicates increasing river channel erosion, particularly during winters and autumns. Although discharge changes have altogether a greater influence on erosion–sedimentation potential, the importance of sea level changes on sedimentation is noticeable in the estuary. The rising sea level scenarios increase the sedimentation potential. In total, by 2070–2099, the erosion potential may increase in most parts of the study area. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Prem B. Parajuli 《水文研究》2010,24(26):3785-3797
The climatic processes such as changes in precipitation, temperature and atmospheric CO2 concentration can intensify the effects on water resources. An assessment of the effects of long‐term climate change on water resources is essential to the development of water quality improvement programs. This study was conducted in the Upper Pearl River Watershed (UPRW) in east‐central Mississippi to assess the effects of long‐term potential future climate change on average mean monthly stream flow from the five spatially distributed U. S. Geological Survey (USGS) gage stations in the UPRW using the Soil and Water Assessment Tool. The model was calibrated (January 1981 to December 1994) and validated (January 1995 to September 2008) using monthly measured stream flow data. The calibrated and validated model determined good to very good performance for stream flow prediction (R2 and E from 0·60 to 0·86) between measured and predicted stream flow values. The root mean square error values (from 14 to 37 m3 s?1) were estimated at similar levels of errors during model calibration and validation. The results showed that long‐term (50 years) average monthly stream flow sensitivity due to climate change effects was found the greatest as a result of percentage change in the precipitation followed by carbon dioxide (CO2) concentration and temperature. The long‐term model simulation scenarios as compared with the base scenario for all five spatially distributed USGS gage stations in the UPRW estimated an average monthly stream flow decrease (from 54 to 67%) and average monthly stream flow increase (from 67 to 79%) depending on the spatial characteristics of the USGS gage stations. Overall, the results indicate that the UPRW hydrology is very sensitive to potential future climate changes and that these changes could stimulate increased streamflow generation from the watershed. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This study attempts to assess the uncertainty in the hydrological impacts of climate change using a multi-model approach combining multiple emission scenarios, GCMs and conceptual rainfall-runoff models to quantify uncertainty in future impacts at the catchment scale. The uncertainties associated with hydrological models have traditionally been given less attention in impact assessments until relatively recently. In order to examine the role of hydrological model uncertainty (parameter and structural uncertainty) in climate change impact studies a multi-model approach based on the Generalised Likelihood Uncertainty Estimation (GLUE) and Bayesian Model Averaging (BMA) methods is presented. Six sets of regionalised climate scenarios derived from three GCMs, two emission scenarios, and four conceptual hydrological models were used within the GLUE framework to define the uncertainty envelop for future estimates of stream flow, while the GLUE output is also post processed using BMA, where the probability density function from each model at any given time is modelled by a gamma distribution with heteroscedastic variance. The investigation on four Irish catchments shows that the role of hydrological model uncertainty is remarkably high and should therefore be routinely considered in impact studies. Although, the GLUE and BMA approaches used here differ fundamentally in their underlying philosophy and representation of error, both methods show comparable performance in terms of ensemble spread and predictive coverage. Moreover, the median prediction for future stream flow shows progressive increases of winter discharge and progressive decreases in summer discharge over the coming century.  相似文献   

14.
The impact and uncertainty of climate change on the hydrology of the Mara River basin (MRB) was assessed. Sixteen global circulation models (GCMs) were evaluated, and five were selected for the assessment of future climate scenarios in the basin. Observed rainfall and temperature data for the control period (1961–1990) were combined with expected GCMs output using the delta and direct statistical downscaling methods and three greenhouse gas emission scenarios (A1B, A2 and B1). Uncertainties of climate change were addressed through compare and contrast of results across diverse GCMs, future climate scenarios and the two downscaling methods. Both methods produced a relatively similar annual rainfall amount, but their monthly and daily pattern showed considerable differences. The relative advantages and disadvantages of implementing one method over the other were also explored. The hydrologic impact of climate change in the basin was assessed using Soil and Water Assessment Tool. The model was calibrated and validated with observed data in the control period with (Nash–Sutcliff efficiency, coefficient of determination) results of (calibration: 0.68, 0.69) and (validation: 0.43, 0.44) at Mara Mines. Results have shown a statistically significant increase in flow volume of the Mara River flow at Mara Mines for the year 2046–2065 and 2081–2100. With due attention to the limitations, findings of this study have a wider application for water resources sustainability analysis in the MRB in the face of uncertainties due to climate change. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
An essential part of hydrological research focuses on hydrological extremes, such as river peak flows and associated floods, because of their large impact on economy, environment, and human life. These extremes can be affected by potential future environmental change, including global climate change and land cover change. In this paper, the relative impact of both climate change and urban expansion on the peak flows and flood extent is investigated for a small‐scale suburban catchment in Belgium. A rainfall‐runoff model was coupled to a hydrodynamic model in order to simulate the present‐day and future river streamflow. The coupled model was calibrated based on a series of measured water depths and, after model validation, fed with different climate change and urban expansion scenarios in order to evaluate the relative impact of both driving factors on the peak flows and flood extent. The three climate change scenarios that were used (dry, wet winter, wet summer) were based on a statistical downscaling of 58 different RCM and GCM scenario runs. The urban expansion scenarios were based on three different urban growth rates (low, medium, high urban expansion) that were set up by means of an extrapolation of the observed trend of urban expansion. The results suggest that possible future climate change is the main source of uncertainty affecting changes in peak flow and flood extent. The urban expansion scenarios show a more consistent trend. The potential damage related to a flood is, however, mainly influenced by land cover changes that occur in the floodplain. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
The obvious decline in stream flow to the Biliu River reservoir over the period 1990–2005 has raised increasing concerns. Climate change and human activities, which mainly include land use changes, hydraulic constructions and artificial water consumption, are considered to be the most likely reasons for the decline in stream flow. This study centres on a detailed analysis of the runoff response to changes in human activities. Using a distributed hydrological model, (Soil and Water Assessment Tool), we simulated runoffs under different human activity and climate scenarios to understand how each scenario impacts stream flow. The results show that artificial water consumption correlates with the precipitation (wet, normal and dry) of the year in question and is responsible for most of the decrease in runoff during each period and for each different wetness year. A Fuzzy Inference Model is also used to find the relationship between the precipitation and artificial water consumption for different years, as well as to make inferences regarding the future average impact on runoff. Land use changes in the past have increased the runoff by only a small amount, while another middle reservoir (Yunshi) has been responsible for a decrease in runoff since operation began in 2001. We generalized the characteristics of the human activities to predict future runoff using climate change scenarios. The future annual flow will increase by approximately 10% from 2011 to 2030 under normal human activities and future climate change scenarios, as indicated by climate scenarios with a particularly wet year in the next 20 years. This study could serve as a framework to analyse and predict the potential impacts of changes both in the climate and human activities on runoff, which can be used to inform the decision making on the river basin planning and management. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
This paper focuses on surface–subsurface water exchange in a steep coarse‐bedded stream with a step‐pool morphology. We use both flume experiments and numerical modelling to investigate the influence of stream discharge, channel slope and sediment hydraulic conductivity on hyporheic exchange. The model step‐pool reach, whose topography is scaled from a natural river, consists of three step‐pool units with 0.1‐m step heights, discharges ranging between base and over‐bankfull flows (scaled values of 0.3–4.5 l/s) and slopes of 4% and 8%. Results indicate that the deepest hyporheic flow occurs with the steeper slope and at moderate discharges and that downwelling fluxes at the base of steps are highest at the largest stream discharges. In contrast to findings in a pool‐riffle morphology, those in this study show that steep slopes cause deeper surface–subsurface exchanges than gentle slopes. Numerical simulation results show that the portion of the hyporheic zone influenced by surface water temperature increases with sediment hydraulic conductivity. These experiments and numerical simulations emphasize the importance of topography, sediment permeability and roughness elements along the channel surface in governing the locations and magnitude of downwelling fluxes and hyporheic exchange. Our results show that hyporheic zones in these steep streams are thicker than previously expected by extending the results from streams with pool‐riffle bed forms. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
A simple conceptual semi‐distributed modelling approach for assessing the impacts of climate change on direct groundwater recharge in a humid tropical river basin is investigated. The study area is the Chaliyar river basin in the state of Kerala, India. Many factors affecting future groundwater recharge include decrease or increase in precipitation and temperature regimes, coastal flooding, urbanization and changes in land use. The model is based on the water‐balance concept and links the atmospheric and hydrogeologic parameters to different hydrologic processes. It estimates daily water‐table fluctuation and is calibrated and validated using 10 years of data. Data for the first 6 years (2000 to 2005) is used for model calibration, and data for the remaining four years (2006 to 2009) is used for validation. For assessing the impact of predicted climate change on groundwater recharge during the period 2071–2100, temperature and precipitation data in two post climate change scenarios, A2 and B2, were predicted using the Regional Climate Model (RCM), PRECIS (Providing Regional Climates for Impact Studies). These data were then corrected for biases and used in a hydrologic model to predict groundwater recharge in the post climate change scenario. Due to lack of reliable data and proper knowledge as to the magnitude and extent of future climatic changes, it may not be possible to include all the possible effects quantitatively in groundwater recharge modelling. However, the study presents a scientific method to assess the impact of predicted climate change on groundwater recharge and would help engineers, hydrologists, administrators and planners to devise strategies for the efficient use as well as conservation of freshwater resources. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
Interactions between headwater aquifers and peatlands have received limited scientific attention. Hydrological stresses, including those related to climate change, may adversely impact these interactions. In this study, the dynamics of a southern Québec headwater system where a peatland is present is simulated under current conditions and with climate change. The model is calibrated in steady state on field‐measured data and provides satisfactory results for transient‐state conditions. Under current conditions, simulations confirm that the peatland is fed by the fractured bedrock aquifer year‐round and provides continuous baseflow to its outlets. Climate change is simulated through its impact on groundwater recharge. Predicted precipitation and temperature data from a suite of regional climate model scenarios provide a net precipitation variation range from +10% to ?30% for the 2041–2070 horizon. Calibrated recharge is modified within this range to perform a sensitivity analysis of the headwater model to recharge variations (+10%, ?15% and ?30%). Total contribution from the aquifer to rivers and streams varies from +14% to ?44% of the baseline for +10% to ?30% recharge changes from spring 2010 data, for example. With higher recharge, the peatland receives more groundwater, which could significantly change its vegetation pattern and eventually ecosystem functions. For a ?30% recharge, the peatland becomes perched above the aquifer during the summer, fall and winter. Recharge reductions also induce sharp declines in groundwater levels and drying streams. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Ecosystems within the subhumid Boreal Plains of Northern Alberta host ecologically and commercially significant habitat and natural resources. However, these ecosystems exist under a delicate hydrologic balance that may be upset as the climate warms by 2 to 5 °C over the next century. In this study, numerical simulations were used to predict climate change impacts at a catchment composed of a mosaic of Boreal Plains ecosystems including a small pond, peatlands with sparse black spruce, and hillslopes with predominantly aspen forests. Simulations were conducted with a fully integrated groundwater–surface water code using a 2‐D model previously calibrated to a decade of hydrologic data that included a range in climatic conditions. Projections from 13 climate change scenarios were simulated from 2011 to 2090 and compared to a base case scenario that assumed no climate change. Results indicate peatland water levels may decline by up to 1 m; however, sensitivity simulations indicate that the decline in water levels may be moderated by several feedback mechanisms that restrict evaporative losses and moderate water level changes. In contrast, higher evapotranspiration losses from the aspen hillslopes are predicted to result in near‐surface soils becoming increasingly drier. Thus, the aspen may frequently be water stressed and increasingly susceptible to secondary maladies such as pests and disease. Reduced pond water levels are also predicted with the development of frequent ephemeral conditions in warmer and drier scenarios. Concurrent decreases in stream flow may further impact downstream ecosystems. Further research into the regional health and sustainability of Boreal Plains ecosystems is warranted and could benefit from the development of improved numerical tools capable of extending the processes considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号