首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
针对高分辨率遥感影像信息复杂浅层网络难以对其目标物特征信息充分学习,图像因裁剪导致边缘信息损失使得模型对图像边缘预测效果较差的问题,该文将U-Net收缩路径加深以增强网络对特征信息的学习能力,并加入随机失活函数(Dropout)层抑制过拟合现象的发生,扩张路径中加入批量归一化层以提高网络训练速度,并将忽略边缘交叉熵函数与骰子函数结合构建联合损失函数作为本文模型的损失函数以提高模型对图像边缘的预测效果。实验结果表明:该文方法对建筑物边缘能够进行有效预测;对建筑物轮廓以及较小建筑物的提取较之SVM、主干网络为VGG的U-Net提取效果有所提高;并在应用扩展研究数据集中有着较好的表现。  相似文献   

2.
在总结各种传统基于像素统计特征建筑物提取方法优缺点的基础上,本文结合高分辨率遥感影像的特点,通过对高分辨率遥感影像房屋的光谱特征和几何特征的分析,提出了一种基于高分辨率遥感影像的建筑物提取方法;并采用ERDAS,PCI等遥感软件,结合VC编程工具对该方法的可行性和有效性进行了实验分析与验证。  相似文献   

3.
针对全卷积网络进行遥感影像语义分割时存在的空间信息和上下文信息缺失问题,本文提出一种基于对象上下文信息的无人机遥感影像建筑物提取方法。该方法首先采用高分辨率网络(HRNet)作为主干网络提取空间信息完整的多尺度高分辨率特征;然后依据主干网络提取的特征在真实标签的监督下划分对象区域,并计算每个像素与对象区域之间的关系得到像素与对象区域的上下文信息;最后将主干网络提取的高分辨率特征与对象上下文信息组合实现特征增强,依据增强后的特征实现无人机遥感影像中建筑物的提取。两个数据集的实验结果均表明,本文方法有效提高建筑物提取精度。  相似文献   

4.
基于实例分割模型的建筑物自动提取   总被引:1,自引:0,他引:1  
传统的遥感影像目标提取方法大多采用目视解译或基于像素信息进行处理,难以适用于高分辨率影像中的复杂场景。而现有的卷积神经网络语义分割模型,由于难以达到较高的精度会出现提取目标粘连的情况。针对该问题,本文对实例分割模型Mask R-CNN进行改进,提出了一种高效、准确的高分辨率遥感影像建筑物提取算法。首先,在Mask R-CNN原有的特征提取部分每个层级的特征图后再增加一层卷积操作,以降低上采样造成的混叠效应;然后,在原有掩膜预测结构的基础上增加一个分支,改善掩膜预测的效果;最后,将改进后的网络在建筑物数据集上进行训练。结果表明,本文方法能够准确独立预测每个建筑物顶部,没有目标粘连情况,且mAP值较Mask R-CNN有所提高,能够有效实现遥感影像建筑物精细化提取。  相似文献   

5.
针对复杂场景下高分辨率遥感影像中建筑物提取精度低的问题,本文提出了一种融合多特征改进型PSPNet模型,在PSPNet网络的基础上,加入膨胀卷积模块并融合图像的浅层特征。试验结果表明,融合多特征改进型PSPNet模型的预测结果总体精度为95.90%,建筑物提取精度平均为77.77%,均高于其他模型。其在不同场景上的表现有所差异:复杂场景1的预测精度为80.35%;以城中村建筑物为主的场景2的预测精度为75%;以高层建筑物为主的场景3的预测精度为78.11%。因此本模型可有效地提升高分辨率遥感影像中复杂场景下的建筑物提取精度。  相似文献   

6.
针对传统的建筑物提取方法精度较低和边界不完整等问题,本文提出基于深度学习的高分辨率遥感影像建筑物提取方法。首先,采用主成分变换非监督预训练网络结构,获得待提取遥感影像特征。其次,为减少在池化过程中影像特征信息的丢失,提出自适应池化模型,通过非下采样轮廓波变换来获取影像纹理特征,并将纹理特征输入网络中参与建筑物提取。最后,将影像特征输入softmax分类器进行分类,获得建筑物提取结果。选取典型区域进行建筑物提取试验,并与典型建筑物提取方法进行对比分析,结果表明,本文提取方法精度高,并且提取建筑物的边界清晰、完整。  相似文献   

7.
利用遥感影像进行建筑物变化检测能够快速获取城镇扩张、违章建筑管控等结果.针对基于单一特征的高分辨率遥感影像变化检测算法检测结果较为粗糙,变化建筑物边缘效果不佳等问题,本文提出一种多特征信息融合与边缘约束的建筑物变化检测方法.引入改进的形态学建筑物指数,通过建筑物的多特征描述与差异特征集融合实现城镇区域建筑物变化信息自动...  相似文献   

8.
刘莹  陶超  闫培  邹峥嵘 《测绘学报》2017,46(7):910-917
为充分利用高分辨率遥感影像提供的细节信息,提高震害损毁建筑物检测精度,提出了一种图割框架下融合形状、边缘、角点等多种类型特征的损毁建筑物检测方法。该方法首先利用震前建筑物线划图提取包含单个建筑物的局部影像,用于图割能量函数建模,并分别根据建筑物的位置、形状、边缘以及角点构造能量函数的各约束项。在此基础上,通过最大流/最小割算法求解能量函数最小值,依据最小割能量进行地震前后局部影像中建筑物的相似性度量。最后利用最大期望算法(expectation maximization,EM)求得最小割能量的分类阈值,并根据错分率估值执行后处理以获得最终变化检测结果。采用2011年3月11日东日本大地震前后石卷港的高分辨率遥感影像进行试验,结果表明本文提出的方法能有效检测出损毁建筑物。  相似文献   

9.
高分辨率遥感影像的建筑物自动提取   总被引:1,自引:0,他引:1  
安文  杨俊峰  赵羲  史玉龙 《测绘科学》2014,39(11):80-84
文章结合结构图分析方法,提出一种针对高分辨率遥感影像中建筑物自动提取方法.该方法利用几何限制对线基元进行初连接,解决由于边缘检测无法完整提取建筑外边缘问题;通过构造结构图确立线基元之间连接关系,搜索结构图中闭合路径,建立高级别特征,对过于散列的线基元进行整合;在此基础上,综合考虑建筑物的几何结构、光谱特征等图像信息筛选闭合路径,实现对建筑物的提取.最后通过对天绘一号高分辨率遥感影像进行建筑物自动提取验证了该方法的有效性.  相似文献   

10.
多特征多尺度相结合的高分辨率遥感影像建筑物提取   总被引:3,自引:0,他引:3  
在高分辨率遥感影像中,建筑物通常表现为多尺度形态,且存在同谱异物和同物异谱现象。因此,本文提出了一种综合利用光谱特征、形状特征和纹理特征,并结合多尺度分割的建筑物分级提取方法。该方法首先对遥感影像进行形态学建筑物指数(MBI)计算,而后对其特征影像进行阈值分割,并借助形状特征参数实现建筑物初提取;然后引入面向对象思想完成遥感影像多尺度分割,并利用纹理特征实现单一尺度的建筑物对象识别;最后借助多尺度融合思想完成建筑物后提取。利用本文方法对冲绳某地区影像进行了建筑物提取试验。试验结果表明,该方法的识别查准率和查全率在对象级和像素级两方面均取得较高精度。  相似文献   

11.
矢量C-V模型的高光谱遥感影像分割   总被引:1,自引:0,他引:1  
王相海  周夏  方玲玲 《遥感学报》2015,19(3):443-450
高光谱遥感影像除了包含普通2维影像所具有的空间信息还包含了1维光谱信息,传统的针对2维影像的分割方法不能很好地应用于高光谱遥感影像。为此,本文提出一种能够同时处理多波段影像的高光谱遥感影像矢量C-V模型分割方法。首先选出高光谱遥感影像中目标与背景对比度较大的波段,并通过计算波段相关系数,去除其中的冗余信息形成新的波段组合,进而根据所确定的波段组合构建高光谱遥感影像矢量矩阵;在此基础上,构造基于该矢量矩阵的矢量C-V分割模型。模型中通过引入基于梯度的边缘引导函数,在保留传统C-V模型基于区域信息进行影像分割的基础上,利用影像的边缘细节信息,增强了模型在异质区域和复杂背景情况下对目标边缘的捕捉能力,提高了对高光谱遥感影像的分割精度和速度。最后利用HYPERION数据进行仿真实验,并将实验结果和传统C-V模型和相关方法进行了对比,结果表明,本文方法能够在短时间内有效地分割高光谱遥感影像,与传统方法相比,具有分割精度更高运算速度更快的特点。  相似文献   

12.
针对高分辨率遥感影像中阴影对道路提取产生较大干扰的问题,提出了一种基于脉冲耦合神经网络(PCNN)的城市道路提取方法。该方法首先在近红外波段检测并消除阴影和水体的影响,并使用PCNN对消除阴影后的灰度图像进行分割处理;然后使用形态学建筑物指数(MBI)和归一化差分植被指数(NDVI)分别提取出建筑物和植被信息,消除建筑物和植被的影响;最后提取受行道树影响较大的道路,并对处理后的图像作数学形态学法的处理。该文以深圳市SPOT-7高分辨率影像进行实验。实验表明,该方法能保留原始的道路边缘细节信息,并对阴影具有很好的抗干扰作用,提取的道路信息具有很好的连续性和完整性。  相似文献   

13.
遥感图像应用发展对图像质量的要求越来越高,不同质量的遥感图像往往需要不同的处理方法和参数。通过遥感图像质量等级分类研究,不仅能够为遥感图像的处理提供先验信息,还能够对遥感图像的客观质量评价和传感器的成像效果进行评估。为了克服现有的遥感图像质量等级分类方法计算参数获取困难、等级数量少的缺点,利用深度学习方法的分类机能,通过改进特征提取网络和等级分类设计,建立了一种基于深度卷积神经网络的遥感图像质量等级分类模型。通过质量等级分类预处理后,利用经典的深度学习方法进行目标检测实验。结果表明,所提方法在西北工业大学遥感图像数据集上质量等级分类的准确率、召回率、精确率和F1最高能达到0.976、0.972、0.974和0.973, 优于传统算法。利用卷积神经网络实现遥感图像质量等级分类,既拓展了深度学习的应用领域,又为遥感图像质量评估提供了一个新方法。  相似文献   

14.
UAVs are fast emerging as a remote sensing platform to complement satellite based remote sensing. Agriculture and ecology is one of the important applications of UAV remote sensing, also known as low altitude remote sensing (LARS). This work demonstrates the use and potential of LARS in agriculture, particularly small holder open field agriculture. Two UAVs are used for remote sensing. The first UAV is a fixed wing aircraft with a high spatial resolution visible spectrum also known as RGB camera as a payload. The second UAV is a quadrotor UAV with an RGB camera interfaced to an on-board single board computer as the payload. LARS was carried out to acquire aerial high spatial resolution RGB images of different farms. Spectral–spatial classification of high spatial resolution RGB images for detection, delineation and counting of tree crowns in the image is presented. Supervised classification is carried out using extreme learning machine (ELM), a single hidden layer feed forward network neural network classifier. ELM was modelled for RGB values as input feature vectors and binary (tree and non-tree pixels) output class. Due to similarities in spectral intensities, some of the non-tree pixels were classified as tree pixels and in order to remove them, spatial classification was performed on the image. Spatial classification was carried out using thresholded geometrical property filtering techniques. Threshold values chosen for carrying out spatial classification were analysed to obtain optimal values. Finally in the delineation and counting, the connected tree crowns were segmented using Watershed algorithm performed on the image after marking individual tree crowns using Distance Transform method. Five representative UAV images captured at different altitudes with different crowns of banana plant, mango trees and coconut trees were used to demonstrate the performance of the proposed method. The performance was compared with the traditional KMeans spectral–spatial method of clustering. Results and comparison of performance parameters of KMeans spectral–spatial and ELM spectral–spatial classification methods are presented. Results indicate that ELM performed better than KMeans.  相似文献   

15.
深度残差网络的多光谱遥感图像显著目标检测   总被引:2,自引:2,他引:0  
本文侧重于介绍智能化摄影测量深度学习的深度残差方法。显著目标检测致力于自动检测和定位图像中人最感兴趣的目标区域。多波段遥感图像因其更加丰富的光谱信息和揭示观测目标物理属性的能力在目标检测中获得重要应用。传统的显著目标检测方法通过手工设计特征,计算图像各像素或者超像素与邻域像素或者超像素之间的对比度检测显著目标。随着深度学习的巨大发展,特别是全卷积神经网络的引入,基于深度卷积网络的显著目标检测算法取得重要进步。然而,由于数据获取和标记的困难,多波段遥感图像显著目标检测的研究依然主要采用手工设计特征。本文研究基于深度卷积神经网络的多波段遥感图像显著目标检测算法,提出一种基于深度残差网络的自上而下的多光波段遥感图像显著目标检测网络,该网络可以有效挖掘深度残差网络不同层次上的显著性特征,以端对端方式实现显著目标检测。为了应对多波段遥感图像数据量有限、无法训练深度残差网络的问题,本文提出通过浅层神经网络从RGB图像直接生成多波段遥感图像,实现光谱方向的超分辨率。在现有多波段遥感图像和可见光图像显著目标检测数据集上的试验结果超过当前最好方法10%以上,验证了本文方法的有效性。  相似文献   

16.
结合nDSM的高分辨率遥感影像深度学习分类方法   总被引:1,自引:0,他引:1  
针对高分辨率遥感影像因其地物类内差异大、光谱信息相对欠缺导致现有影像分类方法存在错分现象较多、地物边界残缺不完整等问题,本文提出了一种归一化数字表面模型(nDSM)约束的高分辨率遥感影像深度学习分类方法。首先,将nDSM数据作为附加波段叠加在遥感影像上并获取训练样本;然后,利用优化的U-Net网络进行模型训练得到最优模型;最后,利用最优模型对附加了nDSM波段的遥感影像进行地物分类。试验结果表明,本文方法引入nDSM数据用于U-Net模型训练和分类,可有效提高影像分类精度,得到更加真实可靠的分类结果。  相似文献   

17.
多时相遥感影像语义分割色彩一致性对抗网络   总被引:2,自引:0,他引:2  
李雪  张力  王庆栋  艾海滨 《测绘学报》1957,49(11):1473-1484
利用深度卷积神经网络智能化地提取遥感图像中的建筑物对于数字城市构建、灾害侦查、土地管理等具有重要意义。多时相遥感图像之间的色彩差异会导致建筑物语义分割模型泛化能力下降。针对此,本文提出了注意力引导的色彩一致生成对抗网络(attention-guided color consistency adversarial network,ACGAN)。该算法以参考色彩风格图像及相同区域、不同时相的待纠正图像作为训练集,采用加入了U型注意力机制的循环一致生成对抗网络训练得到色彩一致模型。在预测阶段,该模型将待纠正图像的色调转换为参考色彩风格图像的色调,这一阶段基于深度学习模型的推理能力,而不再需要相应的参考色彩风格图像。为了验证算法的有效性,首先,将本文算法与传统的图像处理算法及其他循环一致生成对抗网络做了对比试验。结果表明,ACGAN色彩一致后的图像与参考色彩风格图像的色调更加相似。其次,将以上不同的色彩一致性算法处理后的结果图像进行建筑物语义分割试验,证明本文方法更加有利于多时相遥感图像语义分割模型泛化能力的提升。  相似文献   

18.
针对多模态、多尺度的高分辨率遥感影像分割问题,提出了结合空洞卷积的FuseNet变体网络架构对常见的土地覆盖对象类别进行语义分割。首先,采用FuseNet变体网络将数字地表模型(digital surface model,DSM)图像中包含的高程信息与红绿蓝(red green blue,RGB)图像的颜色信息融合;其次,在编码器和解码器中分别使用空洞卷积来增大卷积核感受野;最后,对遥感影像逐像素分类,输出遥感影像语义分割结果。实验结果表明,所提算法在国际摄影测量与遥感学会(International Society for Photogrammetry and Remote Sensing, ISPRS)提供的Potsdam、Vaihingen数据集上的mF1得分分别达到了91.6%和90.4%,优于已有的主流算法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号