首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, a coupled model was used to estimate the responses of soil moisture and net primary production of vegetation (NPP) to increasing atmospheric CO2 concentration and climate change. The analysis uses three experiments simulated by the second-generation Earth System Model (CanESM2) of the Canadian Centre for Climate Modelling and Analysis (CCCma), which are part of the phase 5 of the Coupled Model Intercomparison Project (CMIP5). The authors focus on the magnitude and evolution of responses in soil moisture and NPP using simulations modeled by CanESM, in which the individual effects of increasing CO2 concentration and climate change and their combined effect are separately accounted for. When considering only the single effect of climate change, the soil moisture and NPP have a linear trend of 0.03 kg m^-2 yr^-1 and-0.14 gC m^- 2 yr^-2, respec- tively. However, such a reduction in the global NPP results from the decrease of NPP at lower latitudes and in the Southern Hemisphere, although increased NPP has been shown in high northern latitudes. The largest negative trend is located in the Amazon basin at -1.79 gC m^-2 yr^-2. For the individual effect of increasing CO2 concentration, both soil moisture and NPP show increases, with an elevated linear trend of 0.02 kg m^-2 yr^-1 and 0.84 gC m^-2 yr^-2, respectively. Most regions show an increasing NPP, except Alaska. For the combined effect of increasing atmospheric CO2 and climate change, the increased soil moisture and NPP exhibit a linear trend of 0.04 kg m^2 yr^-1 and 0.83 gC m^2 yr^-2 at a global scale. In the Amazon basin, the higher reduction in soil moisture is illustrated by the model, with a linear trend of-0.39 kg m^-2 yr^-1, for the combined effect. Such a change in soil moisture is caused by a weakened Walker circulation simulated by this coupled model, compared with the single effect of increasing CO2 concentration (experiment M2), and a consequence of the reduction in NPP is also shown in this area, with a linear trend of-  相似文献   

2.
Data from the World Wide Lightning Location Network (WWLLN) for the period 2005-2011 and data composite of the Lightning Imaging Sensor/Optical Transient Detector (LIS/OTD) for 1995-2010 are used to analyze the lightning activity and its diurnal variation over land and ocean of the globe. The Congo basin shows a peak mean annual flash density of 160.7 fl km-2 yr-1 according to the LIS/OTD. The annual mean land to ocean flash ratio is 9.6:1, which confirms the result from Christian et al. in 2003 based on only 5-yr OTD data. The lightning density detected by the WWLLN is in general one order of magnitude lower than that of the LIS/OTD. The diurnal cycle of the lightning activity over land shows a single peak, with the maximum activity occurring around 1400-1900 LT (Local Time) and a minimum in the morning from both datasets. The oceanic diurnal variation has two peaks: the early morning peak between 0100 and 0300 LT and the afternoon peak with a stronger intensity between 1100 and 1400 LT over the Pacific Ocean, as revealed from the WWLLN dataset; whereas the diurnal variation over ocean in the LIS/OTD dataset shows a large fluctuation.  相似文献   

3.
In this study, the authors developed an en- semble of Elman neural networks to forecast the spatial and temporal distribution of fossil-fuel emissions (ff) in 2009. The authors built and trained 29 Elman neural net- works based on the monthly average grid emission data (1979-2008) from different geographical regions. A three-dimensional global chemical transport model, God- dard Earth Observing System (GEOS)-Chem, was applied to verify the effectiveness of the networks. The results showed that the networks captured the annual increasing trend and interannual variation of ff well. The difference between the simulations with the original and predicted ff ranged from -1 ppmv to 1 ppmv globally. Meanwhile, the authors evaluated the observed and simulated north-south gradient of the atmospheric CO2 concentrations near the surface. The two simulated gradients appeared to have a similar changing pattern to the observations, with a slightly higher background CO2 concentration, - 1 ppmv. The results indicate that the Elman neural network is a useful tool for better understanding the spatial and tem- poral distribution of the atmospheric C02 concentration and ft.  相似文献   

4.
The Brazilian coast is characterized by dif- ferent tidal regimes and distinct meteorological influ- ences. The northern part has larger tidal amplitudes and is permanently affected by trade winds and tropical distur- bances; the southern portion has smaller tidal amplitudes and is frequently influenced by extratropical cyclone ac- tivity. Besides these aspects, many features regarding current structure and behavior are also present, such as the equatorial system of currents, the subtropical gyre and the corresponding western boundary currents, and the Bra- zil-Malvinas confluence region. Within this context, ef- forts were made to develop the BRAZCOAST system, capable of describing the processes that determine the oceanic circulation from large to coastal scales. A cus- tomized version of the Princeton Ocean Model (POM) was implemented in a basin-scale domain covering the whole of the tropical and southern Atlantic Ocean, with 0.5° spatial resolution, as well as three nested grids with (1/12)° resolution covering the different parts of the Bra- zilian shelf, in a one-way procedure. POM was modified to include tidal potential generator terms and a par- tially-clamped boundary condition for tidal elevations. The coarse grid captured large-scale features, while the nested grids detailed local circulations affected by bathymetry and coastal restrictions. An interesting aspect at the coarse grid level was the relevance of the Weddell Sea to the location of the tidal amphidromic systems.  相似文献   

5.
1961-200年中国各季降水趋势变化   总被引:1,自引:0,他引:1       下载免费PDF全文
Trends in six indices of precipitation in China for seasons during 1961-2007 were analyzed based on daily observations at 587 stations. The trends were estimated by using Sen's method with Mann-Kendall's test for quantifying the significance. The geographical patterns of trends in the seasonal indices of extremes were similar to those of total precipitation. For winter, both total and extreme precipitation increased over nearly all of China, except for a small part of northern China. Increasing trends in extreme precipitation also occurred at many stations in southwestern China for spring and the midlower reaches of the Yangtze River and southern China for summer. For autumn, precipitation decreased in eastern China, with an increasing length of maximum dry spell, implying a drying tendency for the post-rainy season. Wetting trends have prevailed in most of western China for all seasons. The well-known 'flood in the south and drought in the north' trend exists in eastern China for summer, while a nearly opposite trend pattern exist for spring.  相似文献   

6.
A right annual cycle is of critical importance for a model to improve its seasonal prediction skill. This work assesses the performance of the Grid-point Atmospheric Model of IAP LASG (GAMIL) in retrospective prediction of the global precipitation annual modes for the 1980 2004 period. The annual modes are gauged by a three-parameter metrics: the long-term annual mean and two major modes of annual cycle (AC), namely, a solstitial mode and an equinoctial asymmetric mode. The results demonstrate that the GAMIL one-month lead prediction is basically able to capture the major patterns of the long-term annual mean as well as the first AC mode (the solstitial monsoon mode). The GAMIL has deficiencies in reproducing the second AC mode (the equinoctial asymmetric mode). The magnitude of the GAMIL prediction tends to be greater than the observed precipitation, especially in the sea areas including the Arabian Sea, the Bay of Bengal (BOB), and the western North Pacific (WNP). These biases may be due to underestimation of the convective activity predicted in the tropics, especially over the western Pacific warm pool (WPWP) and its neighboring areas. It is suggested that a more accurate parameterization of convection in the tropics, especially in the Maritime Continent, the WPWP and its neighboring areas, may be critical for reproducing the more realistic annual modes, since the enhancement of convective activity over the WPWP and its vicinity can induce suppressed convection over the WNP, the BOB, and the South Indian Ocean where the GAMIL produces falsely vigorous convections. More efforts are needed to improve the simulation not only in monsoon seasons but also in transitional seasons when the second AC mode takes place. Selection of the one-tier or coupled atmosphere-ocean system may also reduce the systematic error of the GAMIL prediction. These results offer some references for improvement of the GAMIL seasonal prediction skill.  相似文献   

7.
In this study, the effects of soil moisture on sand saltation and dust emission over the Horqin Sandy Land area are investigated, based on observations of three dust events in 2010. The minimum friction velocity initiating the motion of surface particles, namely, the threshold friction velocity, is estimated to be 0.34,0.40, and 0.50 m s-1under the very dry, dry, and wet soil conditions, respectively. In comparison with the observations during the dust events under the very dry and dry soil conditions, the dust emission flux during the wet event is smaller, but the saltation activities of sand particles(d 50 μm) are stronger. The size distributions of airborne dust particles(0.1 d 20 μm) show that concentrations of the finer dust particles(0.1 d 0.3 μm) have a secondary peak under dry soil conditions, while they are absent under wet soil conditions. This suggests that the surface soil particle size distribution can be changed by soil moisture. Under wet soil conditions, the particles appear to have a larger size, and hence more potential saltating particles are available. This explains the occurrence of stronger saltation processes observed under wet soil conditions.  相似文献   

8.
The structures and characteristics of the marine-atmospheric boundary layer over the South China Sea during the passage of strong Typhoon Hagupit are analyzed in detail in this paper. The typhoon was generated in the western Pacific Ocean, and it passed across the South China Sea, finally landfalling in the west of Guangdong Province. The shortest distance between the typhoon center and the observation station on Zhizi Island(10 m in height) is 8.5 km. The observation data capture the whole of processes that occurred in the regions of the typhoon eye, two squall regions of the eye wall, and weak wind regions,before and after the typhoon's passage. The results show that:(a) during the strong wind(average velocityˉu 10 m s-1) period, in the atmospheric boundary layer below 110 m, ˉu is almost independent of height,and vertical velocity ˉw is greater than 0, increasing with ˉu and reaching 2–4 m s-1in the squall regions;(b) the turbulent fluctuations(frequency 1/60 Hz) and gusty disturbances(frequency between 1/600 and1/60 Hz) are both strong and anisotropic, but the anisotropy of the turbulent fluctuations is less strong;(c) ˉu can be used as the basic parameter to parameterize all the characteristics of fluctuations; and(d) the vertical flux of horizontal momentum contributed by the average flow(ˉu ·ˉw) is one order of magnitude larger than those contributed by fluctuation fluxes(u w and v w), implying that strong wind may have seriously disturbed the sea surface through drag force and downward transport of eddy momentum and generated large breaking waves, leading to formation of a strongly coupled marine-atmospheric boundary layer. This results in ˉw 0 in the atmosphere, and some portion of the momentum in the sea may be fed back again to the atmosphere due to ˉu ·ˉw 0.  相似文献   

9.
The aerosol optical depth (AOD) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Satellite Aqua, along with the altitude-resolved aerosol subtypes product from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP), as well as surface PM 10 measurements, were utilized to investigate the dust activities common in springtime of northern China. Specifically, a dust storm episode that occurred over the North China Plain (NCP) during 17-21 March 2010 was identified. The PM 10 concentration at Beijing (39.8 °N, 116.47 °E) reached the peak value of 283 μgm -3 on 20 March 2010 from the background value of 15 μg m-3 measured on 17 March 2010, then dropped to 176 μgm-3 on 21 March 2010. Analysis of the CALIOP aerosol subtypes product showed that numerous large dust plumes floated over northern China, downwind of main desert source regions, and were lifted to altitudes as high as 3.5 km during this time period. The MODIS AOD data provided spatial distributions of dust load, broadly consistent with ground-level PM 10 , especially in cloud free areas. However, inconsistency between the MODIS AOD and surface PM 10 measurements under cloudy conditions did exist, further highlighting the unique capability of the CALIOP lidar. CALIOP can penetrate the cloud layer to give unambiguous and altitude-resolved dust measurements, albeit a relatively long revisit period (16 days) and narrower swath (90 m). A back trajectory simulation using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) model was performed, and it was found that the sand-dust storm originated from the Gobi Desert on 18 March 2010 travelled approxi-mately 1200-1500 km day-1 eastward and passed over the NCP on 19 March 2010, in good agreement with previous findings. In addition, the multi-sensor measurements integrated with the HYSPLIT model output formed a three-dimensional view of the transport pathway for this dust episode, indicating that this episode was largely associated with the desert source regions to the northwest of the NCP. The results imply the importance of integration of multi-sensor measurements for clarifying the overall structure of dust events over northern China.  相似文献   

10.
A nondivergent barotropic model (Model 1) and a barotropic primitive equation vortex model (Model 2) are linearized respectively in this paper. Then their perturbation wave spectrums are computed with a normal mode approach to study the instability problem on an appointed tropical cyclone (TC)-like vortex, thereby, the dynamic instability properties of spiral cloud bands of TCs are discussed. The results show that the unstable mode of both models exhibits a spiral band-like structure that propagates away from the vortex outside the radius of maximum winds. The discrete modal instability of the pure vortex Rossby wave can account for the generation of the eyewall and the inner spiral band. The unstable mode in Model 2 has three parts, i.e., eyewall, inner and outer spiral bands. This mode can be interpreted as a mixed vortex Rossby-inertia gravitational wave. The unbalanced property of the wave outside the stagnation radius of the vortex Rossby wave is one of the important reasons for the formation of the outer spiral band in TCs. Accordingly, the outer spiral band can be identified to possess properties of an inertial-gravitational wave. When the formation of unstable inner and outer spiral bands is studied, a barotropic vortex model shall be used. In this model, the most unstable perturbation bears the attributes of either the vortex Rossby wave or the inertial-gravitational wave, depending on the vortex radius. So such perturbations shall be viewed as an unbalanced and unstable mixed wave of these two kinds of waves.  相似文献   

11.
A new present weather identifier(PWI) based on occlusion and scattering techniques is presented in the study. The present weather parameters are detectable by the meteorological optical range(MOR) approximately up to 50 km and by droplets with diameters ranging from 0.125 mm to 22 mm with velocities up to 16 m s-1. The MOR error is less than 8% for the MOR within 10 km and less than 15% for farther distances. Moreover, the size errors derived from various positions of the light sheet by the particles were checked within ± 0.1 mm ± 5%. The comparison shows that the MOR, in a sudden shower event, is surprisingly consistent with those of the sentry visibility sensors(SVS) with a correlation coefficient up to 98%. For the rain amounts derived from the size and velocity of the droplets, the daily sums by the PWI agree within 10% of those by the Total Rain Weighing Sensor(TRwS205) and the rain gauge. Combined with other sensors such as temperature, humidity, and wind, the PWI can serve as a present weather sensor to distinguish several weather types such as fog, haze, mist, rain, hail, and drizzle.  相似文献   

12.
Initial errors and model errors are the source of prediction errors. In this study, the authors compute the conditional nonlinear optimal perturbation (CNOP)-type initial errors and nonlinear forcing singular vector (NFSV)- type tendency errors of the Zebiak-Cane model with respect to El Nifio events and analyze their combined effect on the prediction errors for E1 Nino events. The CNOP- type initial error (NFSV-type tendency error) represents the initial errors (model errors) that have the largest effect on prediction uncertainties for E1 Nifio events under the perfect model (perfect initial conditions) scenario. How- ever, when the CNOP-type initial errors and the NFSV- type tendency errors are simultaneously considered in the model, the prediction errors caused by them are not am- plified as the authors expected. Specifically, the predic- tion errors caused by the combined mode of CNOP-type initial errors and NFSV-type tendency errors are a little larger than those caused by the NFSV-type tendency er- rors. This fact emphasizes a need to investigate the opti- mal combined mode of initial errors and tendency errors that cause the largest prediction error for E1 Nifio events.  相似文献   

13.
A case of hailstorm process occurring on 24 June 2006 in northwestern China was studied using satellite retrieval methodology. The particle effective radius (re) in the cloud tops was calculated by the reflectance in the 3.7μm channel, and cloud-top microphysical properties were vividly represented using the RGB visual multispectral classification scheme. The microphysical zones of clouds and the processes of hail formation and development are inferred using the relations of cloud-top temperature (T) versus re for the tops of convective clouds. The results show that particle effective radius was smaller near the cloud base of hailstorm. There was a deep zone of diffusional droplet growth at the low level where the particles grew slowly with height, and there existed an evident area of small ice particles in the cloud top, suggesting the existence of a strong updraft in the clouds. The low glaciated temperature indicated a great depth from the cloud base to the glaciation height, which provided a deep layer of supercooled water for hail growth.  相似文献   

14.
Based on monthly mean surface air temperature (SAT) from 71 stations in northern China and NCEP/ NCAR and NOAA-CIRES (Cooperative Institute for Research in Environmental Sciences) twentieth century reanalysis data, the dominant modes of winter SAT over northem China were explored. The results showed that there are two modes that account for a majority of the total variance over northern China. The first mode is unanimously colder (warmer) over the whole of northern China. The second mode is characterized by a dipole structure that is colder (warmer) over Northwest China (NWC) and warmer (colder) over Northeast China (NEC), accounting for a fairly large proportion of the total variance. The two components constituting the second mode, the individual variations of winter SAT over NWC and NEC and their respective preceding factors, were further investigated. It was found that the autumn SAT anomalies are closely linked to persistent snow cover anomalies over Eurasia, showing the delayed effects on winter climate over northern China. Specifically, the previous autumn SAT anomalies over the Lake Baikal (LB; 50-60°N, 85-120°E) and Mongolian Plateau (MP; 42-52°N, 80-120°E) regions play an important role in adjusting the variations of winter SAT over NWC and NEC, respectively. The previous autumn SAT anomaly over the MP region may exert an influence on the winter SAT over NEC through modulating the strength and location of the East Asian major trough. The previous autumn SAT over the LB region may modulate winter westerlies at the middle and high latitudes of Asia and accordingly affects the invasion of cold air and associated winter SAT over NWC.  相似文献   

15.
Diurnal temperature range (DTR) is an im- portant measure in studies of climate change and variability. The changes of DTR in different regions are affected by many different factors. In this study, the degree of correlation between the DTR and atmospheric precipitable water (PW) over China is explored using newly homogenized surface weather and sounding observations. The results show that PW changes broadly reflect the geographic patterns of DTR long-term trends over most of China during the period 1970-2012, with significant anticorrelations of trend patterns between the DTR and PW, especially over those regions with higher magnitude DTR trends. PW can largely explain about 40% or more (re 0.40) of the DTR changes, with a d(PW)/d(DTR) slope of -2% to -10% K^-1 over most of northwestern and southeastern China, despite certain seasonal dependencies. For China as whole, the significant anticorrelations between the DTR and PW anomalies range from -0.42 to -0.75, with a d(PW)/d(DTR) slope of-6% to -11% K^-1. This implies that long-term DTR changes are likely to be associated with opposite PW changes, approximately following the Clausius-Clapeyron equation. Furthermore, the relationship is more significant in the warm season than in the cold season. Thus, it is possible that PW can be considered as one potential factor when exploring long-term DTR changes over China. It should be noted that the present study has a largely statistical focus and that the underlying physical processes should therefore be examined in future work.  相似文献   

16.
The first version of the Brazilian Oceano- graphic Modeling and Observation Network (REMO) ocean data assimilation system into the Hybrid Coordi- nate Ocean Model (HYCOM) (RODAS H) has recently been constructed for research and operational purposes. The system is based on a multivariate Ensemble Optimal Interpolation (EnOI) scheme and considers the high fre- quency variability of the model error co-variance matrix. The EnOl can assimilate sea surface temperature (SST), satellite along-track and gridded sea level anomalies (SLA), and vertical profiles of temperature (T) and salinity (S) from Argo. The first observing system experiment was carried out over the Atlantic Ocean (78°S-50°N, 100°W-20°E) with HYCOM forced with atmospheric reanalysis from 1 January to 30 June 2010. Five integra- tions were performed, including the control run without assimilation. In the other four, different observations were assimilated: SST only (A SST); Argo T-S profiles only (AArgo); along-track SLA only (A_SLA); and all data employed in the previous runs (A_All). The A_SST, A_Argo, and A_SLA runs were very effective in improv- ing the representation of the assimilated variables, but they had relatively little impact on the variables that were not assimilated. In particular, only the assimilation of S was able to reduce the deviation of S with respect to ob- servations. Overall, the A_All run produced a good analy- sis by reducing the deviation of SST, T, and S with respect to the control run by 39%, 18%, and 30%, respectively, and by increasing the correlation of SLA by 81%.  相似文献   

17.
In this study, the high-accuracy multisource integrated Chinese land cover (MICLCover) dataset was used in version 4 of the Community Land Model (CLM4) to assess how the new land cover information affected land surface simulation over China. Compared to the default land cover dataset in CLM4, the MICL data indicated lower values for bare soil (14.6% reduction), nee- dleleaf tree (3.6%), and broadleaf tree (1.9%); higher values for shrub cover (1.8% increase), grassland (9.9%), cropland (5.0%), glaciers (0.5%), lakes (1.6%), and wetland (1.1%); and unchanged for urban areas. Two comparative CLM4 simulations were conducted for the 33-yr period from 1972 to 2004, one using the MICL dataset and the other using the default dataset. The results revealed that the MICL data produced a 0.3% lower mean annual surface albedo over China than the original data. The largest contributor to the reduced value was semiarid regions (2.1% reduction). The MICL-data albedo value agreed more closely with observations (MODIS broad- band black-sky albedo products) over arid and semiarid regions than for the original data to some extent. The simulated average sensible heat flux over China increased by only 0.1 W m 2 owing to the reduced values in arid and semiarid regions, as opposed to increases in humid and semihumid regions, while an increased latent heat flux of I W m-2 was reflected in almost identical changes over the whole region. In addition, the mean annual runoff simulated by CLM4 using MICL data decreased by 6.8 mm yr-1, primarily due to large simulated decreases in humid regions.  相似文献   

18.
The first decadal leading mode of East Asian summer rainfall (EASR) is characterized by rainfall anomalies along the East Asian subtropical rain belt. This study focuses on the second decadal leading mode (2DLM), accounting for 17.3% of rainfall decadal vari- ance, as distinct from the other two neighboring modes of EAMR, based on the state-of-the-art in-situ rainfall data. This mode is characterized by a South-China-wet-Huaihe- River-dry pattern, and is dominated by a quasi-30-yr pe- riod. Further analysis reveals the 2DLM corresponds to an enhanced lower-level monsoon jet, an eastward extension of the western North Pacific subtropical high, and a weakened East Asian upper-level westerly jet flow. The Tibetan Plateau surface temperature and Pacific Decadal Oscillation (PDO) are closely linked with the 2DLM. The regressed SST pattern indicates the PDO-like pattern of sea surface temperature anomalies may have a telecon- nection relationship with the 2DLM of EASR.  相似文献   

19.
Using a regional climate model MM5 nested to an atmospheric global climate model CCM3, a series of simulations and sensitivity experiments have been performed to investigate the relative LGM climate response to changes of land-sea distribution, vegetation, and large-scale circulation background over China. Model results show that compared with the present climate, the fluctuations of sea-land distribution in eastern Asia during the LGM result in the temperature decrease in winter and increase in summer. It has significant impact on the temperature and precipitation in the east coastal region of China. The impact on precipitation in the east coastal region of China is the most significant one, with 25%-50% decrease in the total precipitation change during the LGM. On the other hand, the changes in sea-land distribution have less influence on the climate of inland and western part of China. During the LGM, significant changes in vegetation result in temperature alternating with winter increase and summer decrease, but differences in the annual mean temperature are minor. During the LGM, the global climate, i.e., the large-scale circulation background has changed significantly. These changes have significant influences on temperature and precipitation over China. They result in considerable temperature decreases in this area, and direct the primary patterns and characteristics of temperature changes. Results display that, northeastern China has the greatest temperature decrease, and the temperature decrease in the Tibetan Plateau is larger than in the eastern part of China located at the same latitude. Moreover, the change of large-scale circulation background also controls the pattern of precipitation change. Results also show that, most of the changes in precipitation over western and northeastern parts of China are the consequences of changing large-scale circulation background, of which 50%-75% of precipitation changes over northern and eastern China are the results of changes in large-scale circulation backgrou  相似文献   

20.
Climatological patterns in wind fluctuations on time scales of 1-10 h are analyzed at a meteorological mast at the Yangmeishan wind farm, Yunnan Province, China, using a 2-yr time series of 10-min wind speed ob- servations. For analyzing the spectral properties of non- stationary wind fluctuations in mountain terrain, the Hil- bert-Huang transform (HHT) is applied to investigate climatological patterns between wind variability and sev- eral variables including time of year, time of day, wind direction, and pressure tendency. Compared with that for offshore sites, the wind variability at Yangmeishan wind farm has a more distinct diurnal cycle, but the seasonal discrepancies and the differences according to directions are not distinct, and the synoptic influences on wind vari- ability are weaker. There is enhanced variability in spring and winter compared with summer and autumn. For flow from the main direction sector, the maximum wind vari- ability is observed in spring. And the severe wind fluctua- tions are more common when the pressure tendency is rising.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号