首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
气体水合物的聚积很大程度上取决于孔隙水中气体溶解度的空间变化。在海底气体水合物稳定带内,在向海底表面方向上,随着温度的下降,水中甲烷的溶解度明显降低。气体水合物可以从向上渗出的甲烷饱和水中沉淀,也可以从与上升流和生物化学甲烷刘生产速率区域有关的扩散晕内的散播气体和分凝孔隙水中聚积。水合物更易在孔隙水相对淡的及孔隙较大的沉淀物中形成。温不合物稳定带是碳氢化合物气体从沉积物迁移进入海水的地球化学障。无  相似文献   

2.
随着深海调查研究的不断深入,发现大洋基性和超基性岩与水相互作用可发生蛇纹岩化作用产生无机成因甲烷等烃类气体,可能在大洋区海底形成水合物。为评估大洋蛇纹岩化无机成因甲烷水合物生成热力学条件及水合物稳定带分布特征,本文利用实测的原位温度、水深等条件,结合甲烷水合物-水-游离气三相平衡温压条件,计算了马里亚纳弧前蛇纹岩泥火山、北大西洋Fram海峡超慢速扩张脊和Lost City慢速扩张脊3个不同地质构造环境的蛇纹岩化发育的大洋区海底环境甲烷水合物稳定带底界,并对其水合物发育潜力进行了评估。研究表明马里亚纳弧前蛇纹岩泥火山和北大西洋Fram海峡超慢速扩张脊满足天然气水合物发育的热力学条件,可能发育有甲烷水合物,相应的水合物稳定带底界深度分别约为858~2 515和153~232 mbsf。大西洋Lost City喷口附近发育甲烷水合物可能性较小。  相似文献   

3.
1引言海底天然气水合物温压稳定带 (下称水合物带 )这个术语被用来说明某地质剖面的一部分 ,将现有条件下能够存有天然气水合物的海底与上面的水体界定开。事实上 ,由于现有条件复杂多变 ,所以很难精确地估计该带的厚度。这些变化主要指气体成分、水体盐度、海底温度、地热及水压梯度。通常是用深度 (压力 )、温度图来确定该带底部 ,其数值在地热曲线和纯水或海水为均衡状态的甲烷水合物稳定曲线的交会点上。的确 ,甲烷是海底天然气水合物中主要的烃类成分 ,其浓度要百倍于其它的碳氢化合物气体 ,在其它因素相同的情况下 ,水合物带的厚度随…  相似文献   

4.
Wenyue  Xu  吕万军 《海洋地质》2001,(4):21-40
我们运用一个新的分析公式,解出了动量,质量和能量联立方程。这个方程控制着海洋沉积物中天然气水合物的聚集和演化,而且可以推导出水合物稳定区的顶底位置,水合物实际产生区的顶底位置,沉积物中水合物聚集速率的时间,以及在扩散和平流两端元系统中聚集速度与深度的关系。得出的主要结论如下:(1)天然气水合物在海洋沉积物中实际出现的底界通常并不与天在气水合物稳定带底一致,比稳定带底要浅。同样,有确切的物理解释来说明天然气水合物稳定带底界一致,比稳定底界要浅。同样,有确切的物理解释来说明天然气水合物稳定带顶界(通常在海底)和天然气水合物生成带顶界的不一致。(2)如果似海底反射界面(BSR)标志着游离气带的顶界,那么在某些地背景下BSR实际上应当发生在比稳定带底更深的地方。(3)甲烷天然气水合物温压稳定域内存在的甲烷甲对于天然气水合物的生成是不够的。只有甲烷溶解在流体中的质量分数超过甲烷在海水中甲烷的溶解度,或者甲烷通量超过了对应于甲烷扩散运移率的临界值时天然气水合物才能生成。可以利用这些临界通量综合地球物理或地球化学资料限定生物成因和热成因的甲烷最小产生率。(4)对于大多数扩散-分散系数值,以扩散为主的天然气水合物体系是以在稳定带底界附近的天然气水合物薄层为特征的,以扩散为主的天然气水合物体系是以在稳定带底附近的天然气水合物薄层为特征的。以平流为主的系统有厚的天然气水合物层,而且对于高的流体通量,在层底比在沉积序列浅层有更大规模的聚集。基于以上结果以及在某些以扩散为主的体系中生成最小的天然气水合物区也需要很高的甲烷通量,我们推测所有的自然界的天然气水合物系统,甚至那么如被动边缘的相对低通量的环境都可能以平流占主导地位。  相似文献   

5.
为深入了解深部上升流体供应甲烷的海底沉积环境中天然气水合物的形成和聚集过程,综合沉积作用、深部上升甲烷流体的对流和扩散作用、甲烷溶解度控制水合物形成等物理过程,建立了天然气水合物形成过程的数学模型,研究水合物在空间和时间尺度上的形成过程。模型通过3个无量纲参数(沉积压实引起的孔隙流体对流与扩散的比率Pe_1、深部流体向上对流传输与扩散的比率Pe_2、深部上升流体的甲烷含量C_(m,ext)~l),形象地描述了天然气水合物在海底沉积中的聚集过程。数值模拟研究表明,天然气水合物首先在稳定带内上部某一位置形成,随后由于沉积作用向下延伸而在稳定带底部形成水合物;水合物演化时间与Pe_1、Pe_2及C_(m,ext)~l呈负相关;水合物含量与Pe1、C_(m,ext)~l负相关,而与Pe_2正相关。甲烷溶解度曲线对水合物形成和分布有重要影响,但深部上升流体的甲烷含量、上升流体的通量决定了整个水合物系统甲烷量的输入和输出,是海底天然气水合物形成的主要控制因素。  相似文献   

6.
利用低温高压反应舱模拟海底水合物生成环境,采用原位拉曼光谱技术在线测定含水合物CH_4—H_2O体系中溶解甲烷的拉曼光谱,基于相关理论模型建立了溶解甲烷的拉曼光谱工作曲线(相关系数为0.999 77),定量分析了水合物形成后体系温度、压力对溶解甲烷浓度的影响。结果表明,拉曼光谱技术可准确测定溶解甲烷的浓度,实测溶解甲烷浓度值与理论计算值相吻合,相对误差小于5%。当体系中水合物形成后,温度对溶解甲烷的影响占主导作用,压力影响相对较弱,溶解甲烷浓度随温度升高显著增大,随压力升高而减小;而在气-液两相的情况下,温度与压力对体系内溶解甲烷浓度的影响正好相反。这很好地阐明了在天然气水合物稳定域内、外溶解甲烷浓度的变化特征。  相似文献   

7.
在高压和低温的稳定条件下 ,某些气体可以与水结合在一起形成固体———天然气水合物。在许多有甲烷供给的海洋沉积物中存在形成水合物的条件。大陆边缘的地震反射剖面表明在海底上部几百米的沉积物中通常存在天然气水合物 ,其下伏更深的地带则含游离气。若大量甲烷储集在这些储集层中 ,溢出的天然气可能在气候变化期间扮演重要角色。事实上海洋沉积物中的天然气水合物储层可能是地球上最大的化石燃料储集层。在此 ,我们报告了作为气水合物和游离气储集在大西洋西部布莱克海脊沉积层系内的原地甲烷丰度的直接测量。我们的结果表明作为固体气…  相似文献   

8.
尽管海底有丰富的气体水合物 ,但我们对其生成过程还知之甚少。实验室的研究通常通过冰和气体混合物或液态水和自由气体剧烈搅动的混合物予以合成 ,但这些尚不能代表海洋环境条件。的确 ,许多地区海洋沉积物中的气体供应不能满足生成游离气的需要 ,当然也有例外。通常认为水合物由水溶液产生 ,这种假设依据的是热动力均衡计算(Miller,1974;Handa,1990) ,但问题是水合物晶体能否在溶解气体含量不足以形成游离气相时成核。因此 ,水合物怎样成核和水合物怎样由水溶液生成是了解水合物怎样在自然条件下形成的关键。国际上…  相似文献   

9.
<正>天然气水合物是由天然气中小分子气体(甲烷、乙烷等)在一定的温度、压力条件下和水作用生成的一类笼型结构的冰状晶体。形成天然气水合物的主要气体成分为甲烷,甲烷气体体积超过99.9%的天然气水合物通常称为甲烷水合物,它是一种典型的Ⅰ型水合物,广泛分布于海底以下0~1500m深的沉积带或陆地上的永久冻土带中,是自然界中甲烷存在的一种重要方式。迄今在世界各地海洋及大陆冻土带中已探明的天然气水合物  相似文献   

10.
海底水合物区甲烷的溶解度   总被引:10,自引:0,他引:10  
海底水合物区有特定的温压条件限制,甲烷含量丰富超过局部的溶解度(Kvenvolden,1988)。即使全球的大部分海相环境具备水合物形成的温压条件,但是水合物主要存在于有机碳产出高或能为水合物的形成提供足够甲烷的承载流体存在的大陆边缘地区。甲烷溶解度  相似文献   

11.
海底水合物区有特定的温压条件限制,甲烷含量丰富超过局部的溶解度(Kvenvolden,1988)。即使全球的大部分海相环境具备水合物形成的温压条件,但是水合物主要存在于有机碳产出高或能为水合物的形成提供足够甲烷的承载流体存在的大陆  相似文献   

12.
气体水合物是一种笼状的包含甲烷气分子的晶状化合物 ,最常见的晶体结构是46个水分子包围8个甲烷分子。在特殊的热力学条件下 ,陆上永冻层之下和近海地区特别是水深500m以下的沉积层都能形成大量气体水合物。大洋钻探在深海环境的海底浅部已发现水合物。随着石油勘探向深海区的迅速发展 ,要研究被动大陆边缘就必须对天然气水合物的重要性进行评价。本文的主要目的是 :首先认为天然气水合物是一种可能的烃类资源 ,第二是讨论海洋勘探中天然气水合物的潜在影响及其利用潜力。1气体水合物资源气体水合物被科学界认为是下一个世纪主要的…  相似文献   

13.
气体水合物储集层中原地甲烷含量的直接测定GeraldR.Dickens等某些气体能与水结合形成在高压和低温条件下稳定的固体—气体水合物。许多有甲烷来源的海洋沉积物中存在着适合气体水合物形成的条件。大陆边缘的地震反射剖面表明,在海底沉积物上部几百米中,...  相似文献   

14.
目前世界上许多国家对海洋天然气水合物开展了调查和试开采,但是对水合物开发与海底甲烷渗漏之间的关系缺乏了解。本文依托我国第二次天然气水合物钻探航次(GMGS2),对GMGS2-16钻孔开展了两次钻后甲烷渗漏调查。第一次使用水下机器人(ROV)在该孔开钻之前、钻探过程中及完钻67天内进行了4次海底观察,其中开钻之前未发现海底甲烷渗漏,而在完钻后的两次海底观察中,发现大量气泡从废弃井口冒出。第二次使用船载多波束在该孔完钻18个月后开展水体调查,发现水体中存在火焰状的高回波强度,表明水体中存在气体羽状流,指示海底发生了甲烷渗漏。地震剖面显示该站位水合物赋存层下伏游离气,甲烷渗漏可能是由于钻探打通了海底与该游离气层,形成了甲烷气体运移的优势通道,造成海底甲烷渗漏。多波束水体数据显示甲烷气泡从海底溢出,在海面以下约650m处消失,表明甲烷气体在通过水体的过程中被完全溶解,因此,钻探导致的甲烷渗漏对大气的影响较小。未来随着井壁的坍塌以及水合物在井内的形成,气体运移的优势通道将会完全关闭,甲烷渗漏终止。  相似文献   

15.
从20世纪70年代开始 ,发现在海洋底质中保存着大量的甲烷水合物。我们注意到 ,气水合物是冻结了的甲烷与水的混合物 ,在相对较高的压力和低温条件下由甲烷分子进入水分子的“笼架”中并冻结成固态物质。气水合物保存在超过500m的深处 ,分布于大陆坡沉积岩孔隙和海底隆起之中 ,气体是通过地壳中的断裂和裂隙进入其中的。甲烷的来源主要是生物成因的 ,是沉积岩中的有机质分解而产生的气体。实验表明 ,原始状态甲烷水合物的特点是具有高机械强度 :当温度为260K时其超过普通冰的10倍。但向海面上升时 ,压力减少 ,气水合物变得不稳…  相似文献   

16.
南海北部陆缘天然气水合物初探   总被引:97,自引:8,他引:89  
根据天然气水合物存在的温度-压力条件,研究了南海北部的地球物理资料,发现有些地方在地震剖面上出现的海底反射BSR,而在另一些地方海底第一沉积的层速度偏高,比一般海洋沉积高0.2-0.64km/s。将这些地方海底第一层沉积界面处的温度-压力参数投于甲烷形成天然气水合物的温度-压力图上,发现它们的出现于水合物存在之区域中。  相似文献   

17.
我们在非平衡条件下研究了天然气水合物的再形成与置换动力学机制。研究表明天然气水合物的再形成受到水-气体系状态和初始温度的影响很大,意味着在分子层面上水溶液结构发生了变化。运用再形成的方法,我们将甲烷水合物的纯净样品从冰晶和溶解溶液中合成出来。如果精准控制压力舱内的压力和温度,在较短时间内,二氧化碳水合物就可以从固态甲烷水合物中置换得到。  相似文献   

18.
天然气水合物目前已经成为世界范围的一个研究热点,而我国的天然气水合物研究起步则相对较晚,通过阅读国内外有关文献,总结了天然气水合物在海底的分布特征,聚集和形成机制,产状及其形成机理,甲烷羽的形成过程,天然气水合物在沉积物中的聚集位置通常有两种情况:一是较浅的沉积物(海底以下几米)中,受控于泥底辟,泥火山,断层等;二是较深的沉积物(海底以下几十米,甚至更深)中,受控于流体,当断层延伸至海底时,通常在水合物聚集处的上部发现甲烷羽,天然气以溶解气,游离气或分子扩散的形式运移,在温,压适宜的沉积物中,即水合物稳定带内聚集并形成水合物,水合物的形成过程是:最初形成晶体,呈分散状分布于沉积物中,之后逐渐聚集,生长成结核状,层状,最后形成块状,在细粒的浅层沉积物中,通常以较慢的速度生长,形成分散状的水合物;而在粗粒沉积物中,水合物通常呈填隙状,并且这种产状可能位于较深层位中,我国南海在温度,压力,构造条件,天然气来源等方面都能满足天然气水合物的形成条件,并且在南海也发现了一些水合物存在的标志,如似海底反射层(BSR)以及孔隙水中氯离子浓度的降低。因此,天然气水合物在我国南海海域可能有很好的前景。  相似文献   

19.
西沙海槽潜在天然气水合物成因及形成地质模式   总被引:10,自引:0,他引:10  
西沙海槽具备良好的热解成因气及断层通道、深部异常压力等运移条件,分析海底表层沉积物所含甲烷气来源可以很好地指示潜在天然气水合物成因.西沙海槽海底表层沉积物所含甲烷气以热解成因气为主,可能混有少量生物成因气.表层沉积物所含甲烷气为断层渗逸-自由扩散作用双重运移结果,主要有3种来源:(1)直接来自于下部断层通道中气态烃的释放;(2)来自于动态变化的水合物分解,再由渗滤作用或沿浅部微小断层向上运移;(3)来自于原地少量的生物气.不同地区有不同的气体来源,这是海底表层沉积物甲烷高值区与下部断层相关性较大而与BSR区域并非完全一致的原因.甲烷气来源及运聚条件综合分析表明,潜在天然气水合物以热解成因为主,为断层-渗滤综合地质模式.  相似文献   

20.
为了探讨甲烷通量或SMT对自生碳酸盐岩埋深和水合物饱和度的影响,综述了第六届国际水合物论文集中的相关论文得出如下结论:海底发生富含甲烷的孔隙水渗漏和甲烷气的排出,有利于海底自生碳酸盐岩的沉积;甲烷通量和海底侵蚀可能控制了自生碳酸盐岩和SMT的埋深,然而,甲烷通量或SMT埋深是否控制沉积物中水合物的饱和度目前尚无定论。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号