首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Coronal Faraday rotation of the linearly polarized carrier signals of the HELIOS spacecraft was recorded during the regularly occurring solar occultations over almost a complete solar cycle from 1975 to 1984. These measurements are used to determine the average strength and radial variation of the coronal magnetic field at solar minimum at solar distances from 3–10 solar radii, i.e., the range over which the complex fields at the coronal base are transformed into the interplanetary spiral. The mean coronal magnetic field in 1975–1976 was found to decrease with radial distance according to r , where = 2.7 ± 0.2. The mean field magnitude was 1.0 ± 0.5 × 10 –5 tesla at a nominal solar distance of 5 solar radii. Possibly higher magnetic field strengths were indicated at solar maximum, but a lack of data prevented a statistical determination of the mean coronal field during this epoch.  相似文献   

2.
From the gyroresonance brightness temperature spectrum of a sunspot, one can determine the magnetic field strength by using the property that microwave brightness is limited above a frequency given by an integer-multiple of the gyrofrequency. In this paper, we use this idea to find the radial distribution of magnetic field at the coronal base of a sunspot in the active region, NOAA 4741. The gyroresonance brightness temperature spectra of this sunspot are obtained from multi-frequency interferometric observations made at the Owens Valley Radio Observatory at 24 frequencies in the range of 4.0–12.4 GHz with spatial resolution 2.2″–6.8″. The main results of present study are summarized as follows: first, by comparison of the coronal magnetic flux deduced from our microwave observation with the photospheric magnetic flux measured by KPNO magnetograms, we show that theo-mode emission must arise predominantly from the second harmonic of the gyrofrequency, while thex-mode arises from the third harmonic. Second, the radial distribution of magnetic fieldsB(r) at the coronal base of this spot (say, 2000–4000 km above the photosphere) can be adequately fitted by $$B(r) = 1420(1 \pm 0.080)\exp \left[ { - \left( {\frac{r}{{11.05''(1 \pm 0.014)}}} \right)^2 } \right]G,$$ wherer is the radial distance from the spot center at coronal base. Third, it is found that coronal magnetic fields originate mostly from the photospheric umbral region. Fourth, although the derived vertical variation of magnetic fields can be approximated roughly by a dipole model with dipole moment 1.6 × 1030 erg G?1 buried at 11000 km below the photosphere, the radial field distribution at coronal heights is found to be more confined than predicted by the dipole model.  相似文献   

3.
H. Aurass 《Solar physics》2014,289(12):4517-4531
The hard X-ray time profiles of most solar eruptive events begin with an impulsive phase that may be followed by a late gradual phase. In a recent article (Aurass et al. in Astron. Astrophys. 555, A40, 2013), we analyzed the impulsive phase of the solar eruptive event on November 3, 2003 in radio and X-ray emission. We found evidence of magnetic breakout reconnection using the radio diagnostic of the common effect of the flare current sheet and, at heights of ±0.4 R, of a coronal breakout current sheet (a source site that we called X). In this article we investigate the radio emission during the late gradual phase of this event. The work is based on 40?–?400 MHz dynamic spectra (Radio Spectrograph, Observatorium Tremsdorf, Leibniz Institut für Astrophysik Potsdam, AIP) combined with radio images obtained by the French Nançay Multifrequency Radio Heliograph (NRH) of the Observatoire de Paris-Meudon. Additionally, we use Ramaty High Energy Solar Spectroscopic Imager (RHESSI) hard X-ray (HXR) flux records, and Solar and Heliospheric Observatory (SOHO) Large Angle and Spectrometric Coronagraph (LASCO) and Extreme ultraviolet Imaging Telescope (EIT) images. The analysis shows that the late gradual phase is subdivided into two distinct stages. Stage 1 (lasting five minutes in this case) is restricted to reoccurring radio emission at source site X. We observe plasma emission and an azimuthally moving source (from X toward the NE; speed≈1200 km?s?1) at levels radially ordered against the undisturbed coronal density gradient. These radio sources mark the lower boundary of an overdense region with a huge azimuthal extent. By the end of its motion, the source decays and reappears at point X. This is the onset of stage 2 traced here during its first 13 minutes. By this time, NRH sources observed at frequencies≤236.6 MHz radially lift off with a speed of ≈?400 km?s?1 (one third of the front speed of the coronal mass ejection (CME)) as one slowly decaying broadband source. This speed is still observable in SOHO/LASCO C3 difference frames in the wake of the CME four hours later. In stage 2, the radio sources at higher frequencies appear directly above the active region with growing intensity. We interpret the observations as the transit of the lower boundary of the CME body through the height range of the coronal breakout current sheet. The relaxing global coronal field reconnects with the magnetic surroundings of the current sheets that still connect the CME in its wake with the Sun. The accelerated particles locally excite plasma emission, but can also escape toward the active region, the CME, and the large-scale solar magnetic field. The breakout relaxation process may be a source of reconnection- and acceleration rate modulations. In this view, the late gradual phase is a certain stage of the coronal breakout relaxation after the release of the CME. This article is, to our best knowledge, the first observational report of the coronal breakout recovery. Our interpretation of the radio observations agrees with some predictions of magnetic breakout simulations (e.g. Lynch et al. in Astrophys. J. 683, 1192, 2008). Again, combined spectral and imaging radio observations give a unique access to dynamic coronal processes that are invisible in other spectral ranges.  相似文献   

4.
Power spectra of vector components of interplanetary magnetic field fluctuations near 4–5 a.u. during quiet intervals show a frequency dependence very close to fs over the frequency range 4 × 10?5 to 9 × 10?3 Hz (corresponding to periods of 7 h-2 min). While the spectra are generally very close to power law in frequency, variations in slope among the spectra exceed those expected from random errors and may represent true temporal variations. Mean slopes corrected for systematic error are s = ? 1.50±0.02 (Pioneer 10, mean heliocentric distance 5.3 a.u.) and s = ? 1.52±0.02 (Pioneer 11, mean heliocentric distance 3.9 a.u.) and are consistent with several determinations of spectral slope for magnetic fluctuations near 1 a.u. Radial evolution of the perturbations is investigated by choosing data samples in which Pioneer 10 and 11 and the sun are nearly colinear. The dependence on heliocentric distance of σc2, the composite vector variance, and of σc/Bmag, where Bmag is the mean magnitude of the magnetic field, show that the radial variation of fluctuation amplitude is highly variable in time with a dependence on heliocentric distance typically in the range R?1 to R?1.5. These observations are compared with theoretical models of outward propagating Alfven waves of solar origin and of MHD turbulence. The mean slopes agree well with that expected for turbulence. The significant variability observed in spectral slopes and in the radial dependence of fluctuation amplitude in data selected specifically for conditions of relative magnetic quiet is noteworthy and urges caution in modeling heliospheric magnetic microstructure in studies of galactic cosmic ray modulation.  相似文献   

5.
Open star clusters from the MWSC (Milky Way Star Clusters) catalogue have been used to determine the Galactic rotation parameters. The circular rotation velocity of the solar neighborhood around the Galactic center has been found from data on more than 2000 clusters of various ages to be V 0 = 236 ± 6 km s?1 for the adopted Galactocentric distance of the Sun R 0 = 8.3 ± 0.2 kpc. The derived angular velocity parameters are Ω 0 = 28.48 ± 0.36 km s?1 kpc?1, Ω0 = ?3.50 ± 0.08 km s?1 kpc?2, and Ω0 = 0.331 ± 0.037 km s?1 kpc?3. The influence of the spiral density wave has been detected only in the sample of clusters younger than 50 Myr. For these clusters the amplitudes of the tangential and radial velocity perturbations are f θ = 5.6 ± 1.6 km s?1 and f R = 7.7 ± 1.4 km s?1, respectively; the perturbation wavelengths are λ θ = 2.6 ± 0.5 kpc (i θ = ?11? ± 2?) and λ R = 2.1 ± 0.5 kpc (i R = ?9? ± 2?) for the adopted four-armed model (m = 4). The Sun’s phase in the spiral density wave is (χ)θ = ?62? ± 9? and (χ)R = ?85? ± 10? from the residual tangential and radial velocities, respectively.  相似文献   

6.
A portion of an east limb flare-prominence observed in Hα by NOAA/Boulder and NASA/ MSFC patrol facilities on 30 April 1974 is analyzed. Following a rapid (~2 min) achievement of a maximum mass ejection velocity of about 375 km s?1, the ascending prominence reached a height of, at least, 2 × 105 km. We use a one-dimensional, time-dependent hydrodynamic theory (Nakagawa et al., 1975) to compute the total mass (~2 × 1011 g) and energy (~4 × 1026erg) ejected during this part of this event. Theoretical aspects of the coronal response are discussed. We conclude that a moderate temperature and density pulse (factors of ten and two, respectively), for a duration of only 3 min, is sufficient for an acceptable simulation of the Hα observations and the likely coronal response to the ascending prominence and flare-related ejections. No attempt was made to simulate the additionally-important spray and surge features which probably contributed a higher level of mass and energy efflux.  相似文献   

7.
The discrepancy of the low predicted versus the observed coronal particle densities is investigated by considering radial magnetic forces acting at the base of the corona in the one fluid model equations with anomalous thermal conductivity for the quiet solar wind. If the short range retarding magnetic force is taken to fall asr ?5,r being the heliocentric distance, then in order to obtain satisfactory agreement between the predicted and observed (about 3×108 cm?3 at 1R ) coronal densities, the strength of the retarding magnetic force at 1R should be 1.2 times that of the gravitational force.  相似文献   

8.
Based on a second-order approximation of nonlinear force-free magnetic field solutions in terms of uniformly twisted field lines derived in Paper I, we develop here a numeric code that is capable to forward-fit such analytical solutions to arbitrary magnetogram (or vector magnetograph) data combined with (stereoscopically triangulated) coronal loop 3D coordinates. We test the code here by forward-fitting to six potential field and six nonpotential field cases simulated with our analytical model, as well as by forward-fitting to an exactly force-free solution of the Low and Lou (Astrophys. J. 352, 343, 1990) model. The forward-fitting tests demonstrate: i) a satisfactory convergence behavior (with typical misalignment angles of μ≈1°?–?10°), ii) relatively fast computation times (from seconds to a few minutes), and iii) the high fidelity of retrieved force-free α-parameters (α fit/α model≈0.9?–?1.0 for simulations and α fit/α model≈0.7±0.3 for the Low and Lou model). The salient feature of this numeric code is the relatively fast computation of a quasi-force-free magnetic field, which closely matches the geometry of coronal loops in active regions, and complements the existing nonlinear force-free field (NLFFF) codes based on photospheric magnetograms without coronal constraints.  相似文献   

9.
Recently, the estimation of coronal magnetic field using new methods, such as standoff distance method or density compression ratio method has been reported. In the present work, we utilized the density compression ratio of CME-driven shocks for 10 events at 29 different locations in the upper solar corona (10–26R ) and determined the coronal magnetic field for two different adiabatic indices (γ=4/3 and 5/3). In addition, radial dependence of shock parameters in the corona is studied. It is found that the magnetic field estimated in the above range agree with the general trend. In addition, we obtained a radial profile of magnetic field [B(R)=623R ?1.4] in the entire upper corona (3–30R ) by combining the magnetic field estimated by Kim et al. (Astrophys. J. 746:118, 2012) in the range 3–15R and that estimated in the present study in the range (10–26R ). The power-law indices are nearly in agreement with recent results of CME-driven shocks reported in the literature. The results are discussed with the comparison of newly reported coronal magnetic field values obtained by different techniques and found that the power-law relation closely follow the literature values.  相似文献   

10.
We examine the propagation of Alfvén waves in the solar atmosphere. The principal theoretical virtues of this work are: (i) The full wave equation is solved without recourse to the small-wavelength eikonal approximation (ii) The background solar atmosphere is realistic, consisting of an HSRA/VAL representation of the photosphere and chromosphere, a 200 km thick transition region, a model for the upper transition region below a coronal hole (provided by R. Munro), and the Munro-Jackson model of a polar coronal hole. The principal results are:
  1. If the wave source is taken to be near the top of the convection zone, where n H = 5.2 × 1016 cm?3, and if B = 10.5 G, then the wave Poynting flux exhibits a series of strong resonant peaks at periods downwards from 1.6 hr. The resonant frequencies are in the ratios of the zeroes of J 0, but depend on B , and on the density and scale height at the wave source. The longest period peaks may be the most important, because they are nearest to the supergranular periods and to the observed periods near 1 AU, and because they are the broadest in frequency.
  2. The Poynting flux in the resonant peaks can be large enough, i.e. P ≈ 104–105 erg cm?2s?1, to strongly affect the solar wind.
  3. ¦δv¦ and ¦δB¦ also display resonant peaks.
  4. In the chromosphere and low corona, ¦δv ≈ 7–25 kms?1 and ¦δB¦ ≈0.3–1.0 G if P ≈104-105 erg cm?2s?1.
  5. The dependences of ¦δv¦ and ¦δB¦ on height are reduced by finite wavelength effects, except near the wave source where they are enhanced.
  6. Near the base, ¦δB¦ ≈ 350–1200 G if P ~- 104–105. This means that nonlinear effects may be important, and that some density and vertical velocity fluctuations may be associated with the Alfvén waves.
  7. Below the low corona most wave energy is kinetic, except near the base where it becomes mostly magnetic at the resonances.
  8. ?0 < δv 2 > v A or < δB 2 > v A/4π are not good estimators of the energy flux.
  9. The Alfvén wave pressure tensor will be important in the transition region only if the magnetic field diverges rapidly. But the Alfvén wave pressure can be important in the coronal hole.
  相似文献   

11.
Pioneer VI was launched into a circumsolar orbit on December 16, 1965, and was occulted by the sun in the latter half of November, 1968. During the occultation period, the 2292-MHz S-band telemetry carrier underwent Faraday rotation due to the interaction of this signal with the plasma and magnetic field in the solar corona. The NASA/JPL 210-ft diameter antenna of the Deep Space Network near Barstow, California, was used for the measurement. The antenna feed was modified for automatic polarization tracking for this experiment. The measurement results are interpreted with a theoretical model of the solar corona. This model consists of a modified Allen-Baumbach electron density and a coronal magnetic field calculated both from Mount Wilson magnetograph observations using a source surface model and field extrapolations from the Explorer 33 satellite magnetometer. The observations and the calculated rotation show general agreement with respect to magnitude, sense, and timing, suggesting the source-surface model and field extrapolations from 1 AU are a valid technique to obtain the magnetic field in the corona from 4 to 12 solar radii. Variations present can easily be ascribed to density enhancements known to be present in the corona. Longitudinal variations of the density in the corona cannot be obtained from coronagraph observations, and thus a purely radial variation was assumed. An improved fit to the Faraday rotation data is obtained with an equatorial electron density $$N = 10^8 \left( {\frac{{6000}}{{R^{10} }} + \frac{{0.002}}{{R^2 }}} \right)...{\text{ cm}}^{{\text{ - 3}}} {\text{ (4 < }}R < 12){\text{ }}...$$ where R is in solar radii. The work of W. V. T. Rusch and J. E. Ohlson was supported in part by research sponsored by the Joint Services Electronics Program through the Air Force Office of Scientific Research under Grant AF-AFOSR 69-1622A at the University of Southern California. The work done by K. H. Schatten was in part supported by the National Academy of Science on a National Research Council postdoctoral fellowship. The work of J. M. Wilcox was supported in part by the Office of Naval Research under Contract Nonr 3656(26), by the National Aeronautics and Space Administration under Grant NGR 05-003-230, and by the National Science Foundation under Grant GA-1319 at the University of California at Berkeley.  相似文献   

12.
13.
Observations of the outer solar corona obtained by the High Altitude Observatory's coronagraph aboard Skylab reveal the presence of dark, ray-like structures in the corona. A systematic identification of these voids, which exist for periods of about 24 hr, is presented and their existence as a coronal phenomenon, as opposed to a subtle photographic effect, verified. Photometric analysis indicates that these features represent reductions in the coronal radiance on the order of 5% - or about 2–3 × 10?10 B at 3 R . The use of a previously determined model of the electron component of the corona permits specification of the electron density in the voids over the range 2.5–4.5 R . In spite of the inevitable uncertainties regarding their longitudinal extent, we estimate that their electron density is comparable to, or less than, that in coronal holes at similar heights. Projection of the phenomena onto synoptic surface maps indicates a close relationship with filaments and neutral lines; a potentially significant temporal correlation between the void formation and that of the underlying prominence is noted. The spatial and temporal resolution of the data set places stringent restrictions on any model which may be used to infer the physical processes of formation or decay of voids; several possibilities are suggested which involve either changes in the coronal base temperature or the magnetic flux.  相似文献   

14.
We consider the modulation of nonthermal gyrosynchrotron emission from solar flares by the ballooning and radial oscillations of coronal loops. The damping mechanisms for fast magnetoacoustic modes are analyzed. We suggest a method for diagnosing the plasma of flare loops that allows their main parameters to be estimated from peculiarities of the microwave pulsations. Based on observational data obtained with the Nobeyama Radioheliograph (17 GHz) and using a technique developed for the event of May 8, 1998, we determined the particle density n≈3.7×1010 cm?3, the temperature T≈4×107 K, and the magnetic field strength B≈220 G in the region of flare energy release. A wavelet analysis for the solar flare of August 28, 1999, has revealed two main types of microwave oscillations with periods P1≈7, 14 s and P2≈2.4 s, which we attribute to the ballooning and radial oscillations of compact and extended flare loops, respectively. An analysis of the time profile for microwave emission shows evidence of coronal loop interaction. We determined flare plasma parameters for the compact (T≈5.3×107 K, n≈4.8≈1010 cm?3, B≈280 G) and extended (T≈2.1≈107 K, n≈1.2≈1010 cm?3, B≈160 G) loops. The results of the soft X-ray observations are consistent with the adopted model.  相似文献   

15.
Polar coronal holes (PCHs) trace the magnetic variability of the Sun throughout the solar cycle. Their size and evolution have been studied as proxies for the global magnetic field. We present measurements of the PCH areas from 1996 through 2010, derived from an updated perimeter-tracing method and two synoptic-map methods. The perimeter-tracing method detects PCH boundaries along the solar limb, using full-disk images from the SOlar and Heliospheric Observatory/Extreme ultraviolet Imaging Telescope (SOHO/EIT). One synoptic-map method uses the line-of-sight magnetic field from the SOHO/Michelson Doppler Imager (MDI) to determine the unipolarity boundaries near the poles. The other method applies thresholding techniques to synoptic maps created from EUV image data from EIT. The results from all three methods suggest that the solar maxima and minima of the two hemispheres are out of phase. The maximum PCH area, averaged over the methods in each hemisphere, is approximately 6 % during both solar minima spanned by the data (between Solar Cycles 22/23 and 23/24). The northern PCH area began a declining trend in 2010, suggesting a downturn toward the maximum of Solar Cycle 24 in that hemisphere, while the southern hole remained large throughout 2010.  相似文献   

16.
A model is presented which describes the 3-dimensional non-radial solar wind expansion between the Sun and the Earth in a specified magnetic field configuration subject to synoptically observed plasma properties at the coronal base. In this paper, the field is taken to be potential in the inner corona based upon the Mt. Wilson magnetograph observations and radial beyond a certain chosen surface. For plasma boundary conditions at the Sun, we use deconvoluted density profiles obtained from synopticK-coronameter brightness observations. The temperature is taken to be 2 × 106 K at the base of closed field lines and 1.6 x 106K at the base of open field lines. For a sample calculation, we employ data taken during the period of the 12 November 1966 eclipse. Although qualitative agreement with observations at 1 AU is obtained, important discrepancies emerge which are not apparent from spherically symmetric models or those models which do not incorporate actual observations in the lower corona. These discrepancies appear to be due to two primary difficulties - the rapid geometric divergence of the open field lines in the inner corona as well as the breakdown in the validity of the Spitzer heat conduction formula even closer to the Sun than predicted by radial flow models. These two effects combine to produce conductively dominated solutions and lower velocities, densities, and field strengths at the Earth than those observed. The traditional difficulty in solar wind theory in that unrealistically small densities must be assumed at the coronal base in order to obtain observed densities at 1 AU is more than compensated for here by the rapid divergence of field lines in the inner corona. For these base conditions, the value ofβ(ratio of gas pressure to magnetic pressure) is shown to be significantly greater than one over most of the lower corona - suggesting that, for the coronal boundary conditions used here, the use of a potential or force-free magnetic field configuration may not be justified. The calculations of this paper point to the directions where future research on solar-interplanetary modelling should receive priority:
  1. better models for the coronal magnetic field structure
  2. improved understanding of the thermal conductivity relevant for the solar wind plasma.
  相似文献   

17.
18.
Two-dimensional maps of radio brightness temperature and polarization, computed assuming thermal emission with free-free and gyroresonance absorption, are compared with observations of active region 2502, performed at Westerbork at λ = 6.16 cm during a period of 3 days in June 1980. The computation is done assuming a homogeneous model in the whole field of view (5′ × 5′) and a force-free extrapolation of the photospheric magnetic field observed at MSFC with a resolution of 2″.34. The mean results are the following:
  1. A very good agreement is found above the large leading sunspot of the group, assuming a potential extrapolation of the magnetic field and a constant conductive flux in the transition region ranging from 2 × 106 to 107 erg cm?2s?1.
  2. A strong radio source, associated with a new-born moving sunspot, cannot be ascribed to thermal emission. It is suggested that this source may be due to synchrotron radiation by mildly relativistic electrons accelerated by resistive instabilities occurring in the evolving magnetic configuration. An order-of-magnitude computation of the expected number of accelerated particles seems to confirm this hypothesis.
  相似文献   

19.
An analysis of the residual-velocity field of OB associations within 3 kpc of the Sun has revealed periodic variations in the radial residual velocities along the Galactic radius vector with a typical scale length of λ = 2.0 ± 0.2 kpc and a mean amplitude of f R = 7 ± 1 km s?1. The fact that the radial residual velocities of almost all OB associations in rich stellar-gas complexes are directed toward the Galactic center suggests that the solar neighborhood under consideration is within the corotation radius. The azimuthal-velocity field exhibits a distinct periodic pattern in the 0°<l<180° region, where the mean azimuthal-velocity amplitude is f θ = 6 ± 2 km s?1. There is no periodic pattern of the azimuthal-velocity field in the 180°<l<360° region. The locations of the Cygnus arm, as well as the Perseus arm, inferred from an analysis of the radial-and azimuthal-velocity fields coincide. The periodic patterns of the residual-velocity fields of Cepheids and OB associations share many common features.  相似文献   

20.
We consider stars with radial velocities, proper motions, and distance estimates from the RAVE4 catalogue. Based on a sample of more than 145 000 stars at distances r < 0.5 kpc, we have found the following kinematic parameters: \({\left( {U,{\kern 1pt} V,{\kern 1pt} W} \right)_ \odot }\) = (9.12, 20.80, 7.66) ± (0.10, 0.10, 0.08) km s?1, Ω0 = 28.71 ± 0.63 km s?1 kpc?1, and Ω0 = ?4.28 ± 0.11 km s?1 kpc?2. This gives the linear rotation velocity V 0 = 230 ± 12 km s?1 (for the adopted R 0 = 8.0 ± 0.4 kpc) and the Oort constants A = 17.12 ± 0.45 km s?1 kpc?1 and B = ?11.60 ± 0.77 km s?1 kpc?1. The 2D velocity distributions in the UV, UW, and VW planes have been constructed using a local sample, r < 0.25 kpc, consisting of ~47 000 stars. A difference of the UV velocity distribution from the previously known ones constructed from a smaller amount of data has been revealed. It lies in the fact that our distribution has an extremely enhanced branch near the Wolf 630 peak. A previously unknown peak at (U, V) = (?96, ?10) km s?1 and a separate new feature in the Wolf 630 stream, with the coordinates of its center being (U, V) = (30, ?40) km s?1, have been detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号