首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present new 40Ar-39 Ar plagioclase crystallization ages from the dykes exposed at the northern slope of the Satpura Mountain range near Betul-Jabalpur-Pachmarhi area,~800 km NE of the Western Ghats escarpment.Among the two plateau ages,the first age of 66.56±0.42 Ma from a dyke near Mohpani village represents its crystallization age which is either slightly older or contemporaneous with the nearby Mandla lava flows(63-65 Ma).We suggest that the Mohpani dyke might be one of the feeders for the surrounding lava flows as these lavas are significantly younger than the majority of the main Deccan lavas of the Western Ghats(66.38-65.54 Ma).The second age of 56.95±1.08 Ma comes from a younger dyke near Olini village which cuts across the lava flows of the area.The age correlates well with the Mandla lavas which are chemically similar to the uppermost Poladpur,Ambenali and Mahabaleshwar Formation lavas of SW Deccan.Our study shows that the dyke activities occurred in two phases,with the second one representing the terminal stage.  相似文献   

2.
《International Geology Review》2012,54(15):1873-1883
Mt Sanqingshan, a global Geopark and world natural heritage site located in Jiangxi Province, China, is famous for its eroded granite peaks. The uplift and denudation history of the area has been reconstructed using fission track methods for the first time. Apatite fission track ages (AFTAs) cluster into three groups at ca. 25 Ma, 45–55 Ma, and 70 Ma. These ages can be related to ancient multilevel denudation planes at about 900, 1200, and 1500 m above sea level, respectively. The apatite data also reveal four cooling stages for the Mt Sanqingshan region, from ca. 90 to 65–60 Ma, 65–60 to 45 Ma, 45 to 20–15 Ma, and 20–15 Ma to the present, with cooling rates of 1.96°C, 1.18°C, 0.37°C, and 3.78°C per million years, respectively, and an average cooling rate of 1.80°C per million years. Calculated uplift rates are 0.055, 0.034, 0.011, and 0.11 mm year?1 in the four stages, yielding uplifts of 4140, 570, 290, and 1940 m, respectively. The uplift rate of the last stage was significantly faster than that of the other three preceding stages, reflecting rejuvenation of Mt Sanqingshan, as a result of new tectonism. The average uplift rate at Mt Sanqingshan is 0.053 mm year?1, and the average denudation rate is 0.048 mm year?1, resulting in 3550 m of uplift and 2540 m of denudation relative to eustatic sea level. The 1010 m difference is very close to the average elevation of about 1000 m at present. A comparison of uplift–denudation histories for Mt Sanqingshan and Mt Huangshan shows that fission track results can be useful for defining geomorphological development stages.  相似文献   

3.
This study provides an integrated interpretation for the Mesozoic-Cenozoic tectonothermal evolutionary history of the Permian strata in the Qishan area of the southwestern Weibei Uplift, Ordos Basin. Apatite fission-track and apatite/zircon(U-Th)/He thermochronometry, bitumen reflectance, thermal conductivity of rocks, paleotemperature recovery, and basin modeling were used to restore the Meso-Cenozoic tectonothermal history of the Permian Strata. The Triassic AFT data have a pooled age of ~180±7 Ma with one age peak and P(χ2)=86%. The average value of corrected apatite(U-Th)/He age of two Permian sandstones is ~168±4 Ma and a zircon(U-Th)/He age from the Cambrian strata is ~231±14 Ma. Bitumen reflectance and maximum paleotemperature of two Ordovician mudstones are 1.81%, 1.57% and ~210°C, ~196°C respectively. After undergoing a rapid subsidence and increasing temperature in Triassic influenced by intrusive rocks in some areas, the Permian strata experienced four cooling-uplift stages after the time when the maximum paleotemperature reached in late Jurassic:(1) A cooling stage(~163 Ma to ~140 Ma) with temperatures ranging from ~132°C to ~53°C and a cooling rate of ~3°C/Ma, an erosion thickness of ~1900 m and an uplift rate of ~82 m/Ma;(2) A cooling stage(~140 Ma to ~52 Ma) with temperatures ranging from ~53°C to ~47°C and a cooling rate less than ~0.1°C/Ma, an erosion thickness of ~300 m and an uplift rate of ~3 m/Ma;(3)(~52 Ma to ~8 Ma) with ~47°C to ~43°C and ~0.1°C/Ma, an erosion thickness of ~500 m and an uplift rate of ~11 m/Ma;(3)(~8 Ma to present) with ~43°C to ~20°C and ~3°C/Ma, an erosion thickness of ~650 m and an uplift rate of ~81 m/Ma. The tectonothermal evolutionary history of the Qishan area in Triassic was influenced by the interaction of the Qinling Orogeny and the Weibei Uplift, and the south Qishan area had the earliest uplift-cooling time compared to other parts within the Weibei Uplift. The early Eocene at ~52 Ma and the late Miocene at ~8 Ma, as two significant turning points after which both the rate of uplift and the rate of temperature changed rapidly, were two key time for the uplift-cooling history of the Permian strata in the Qishan area of the southwestern Weibei Uplift, Ordos Basin.  相似文献   

4.
Thermochronological dating was used to study the thermal evolution of the Mesozoic plutons and uplift history of the Yanshan orogenic belt. The results show that the cooling history of the plutons is complicated, corresponding to the inhomogeneous uplift process of the Yanshan orogenic belt. The Panshan granite cooled fast during 226.48-204.95 Ma at a rate of 10.22℃/Ma after its emplacement at a depth of about 10 km, and its fast uplift occurred in about 96-35 Ma at an average rate of 0.115 mm/a. The Wulingshan pluton cooled fast during 132-127.23 Ma at a rate of 94.34℃/Ma, and its rapid uplift occurred in 86-45 Ma at an average rate of 0.186 mm/a. The Yunmengshan granite cooled fast during 143-120.99 Ma at a rate of 19.51℃/Ma, and its rapid uplift occurred in 106-103.95 Ma and 20-0.0 Ma at a rate of 1.06 mm/a and 0.15 mm/a respectively. The Sihetang granite-gneiss uplifted rapidly since 13 Ma at an average rate of 0.256 mm/a. The Badaling granite uplifted rapidly since 6 Ma at an average rate of 0.5  相似文献   

5.
The topographic evolution of the “passive” margins of the North Atlantic during the last 65 Myr is the subject of extensive debate due to inherent limitations of the geological, geomorphological and geophysical methods used for studies of uplift and subsidence. We have compiled a database of sign, time and amplitude (where possible) of topographic changes in the North Atlantic region during the Cenozoic (65–0 Ma). Our compilation is based on published results from reflection seismic studies, AFT (apatite fission track) studies, VR (vitrinite reflectance) trends, maximum burial, sediment supply studies, mass balance calculations and extrapolation of seismic profiles to onshore geomorphological features. The integration of about 200 published results reveal a clear pattern of topographic changes in the North Atlantic region during the Cenozoic: (1) The first major phase of Cenozoic regional uplift occurred in the late Palaeocene–early Eocene (ca 60–50 Ma), probably related to the break-up of the North Atlantic between Europe and Greenland, as indicated by the northward propagation of uplift. It was preceded by middle Palaeocene uplift and over-deepening of some basins of the North Sea and the surrounding areas. (2) A regional increase in subsidence in the offshore marginal areas of Norway, the northern North Sea, the northern British Isles and west Greenland took place in the Eocene (ca 57–35 Ma). (3) The Oligocene and Miocene (35–5 Ma) were characterized by regional tectonic quiescence, with only localised uplift, probably related to changes in plate dynamics. (4) The second major phase of regional uplift that affected all marginal areas of the North Atlantic occurred in the Plio-Pleistocene (5–0 Ma). Its amplitude was enhanced by erosion-driven glacio-isostatic compensation. Despite inconclusive evidence, this phase is likely to be ongoing at present.  相似文献   

6.
The mid-Norwegian margin has a complex history and has experienced several phases of changing horizontal and vertical stresses on regional and local scale during the Cenozoic time. In addition to regional stresses related to the opening of the North Atlantic (i.e. ridge push), local variations in stress history may be important for development, distribution and reactivation of structures in the Vøring area in Cenozoic time. Presence and stability of flexural hinge zones between areas of relative uplift and subsidence have played an important role for focusing shallow horizontal stresses within the basins. Emplacement of lower crustal bodies during break-up will, whatever the nature of these bodies, have substantial isostatic effects, and modelling show that this could cause many hundred meters of temporal uplift above the lower crustal bodies, locally exceeding 1300 m of surface uplift. Effects of intra plate stress (IPS) are modelled along three 2D transects across the Vøring Basin. Modelling shows that IPS may have given substantial vertical motions in certain areas of the mid-Norwegian shelf, both with extensional IPS at the time of break-up, and later with compressive IPS during Tertiary time. The modelling assumes a strongly reduced effective elastic thickness (EET) due to lithospheric heating at break-up and later increasing EET as the lithosphere cooled towards present time. Our modelling takes into account the tectonic and isostatic effects of loading faulting and lithospheric thinning throughout the geological history, including several phases of extension prior to the Cenozoic compression. This approach emphasizes the importance of the deformation history of the lithosphere compared to other studies that only take into account the effects of Cenozoic processes of compression and loading on the sedimentary units. We do not state that isostatic uplift or intra plate stress are the most important causes for Cenozoic uplift and compressional deformation in this area, but point to the fact that these factors locally may have played an important role in focusing deformation caused by an interplay of different mechanisms.  相似文献   

7.
Zircon and apatite fission track data provide constraints on the exhumation history, fault activity, and thermal evolution of the South-Central Chilean active continental margin (36°S–42°S), which we use to assess the tectonic and geomorphic response of the margin to the Andean subduction regime. Several domains with different exhumation histories are identified. The Coastal Cordillera is characterized by uniform and coherent exhumation between Late Triassic (~200 Ma) and late Miocene times, with surprisingly slow average rates of 0.03–0.04 mm/a. Thermal anomalies, related to Late Cretaceous and early Miocene magmatism, have regionally modified fission track age patterns. The Upper Cretaceous thermal overprint is of previously unrecognized significance and extent in the Coastal Cordillera south of 39°S. With the exception of a local but distinct Pliocene to Recent exhumation period in the high-relief Cordillera Nahuelbuta segment between 37°S and 38°S, Cenozoic overall exhumation in the Coastal Cordillera was very slow. The sedimentary record shows that uplift and subsidence here was episodic, with low amplitudes and durations. This rules out large-scale, long-term, Cenozoic accretion, trench-parallel tilting, and tectonic erosion processes in the forearc. The Main Andean Cordillera shows markedly greater long-term exhumation rates than the Coastal Cordillera and, at ~39°S, a steep exhumation gradient. To the south, long-term average Pliocene to Recent exhumation rates of ~1 to ~2 mm/a in the Liquiñe area (39°45′S) are almost an order of magnitude more rapid than average Paleogene to Recent exhumation near Lonquimay (38°30′S) and farther north. While no imprint of the intra-arc Liquiñe-Ofqui Fault Zone on the exhumation pattern is evident, long-term exhumation rates decrease from the crest of the Andes toward the western foothills. Exhumation gradients correlate with climatic gradients, suggesting a causal link to the variable intensity of late Miocene to Pleistocene glacial erosion.  相似文献   

8.
Apatite fission track analysis is used as a tectonic tool to unravel the evolution of the Sierra de Guadarrama, an mountain range in central Spain, and the far-field effects of the Alpine plate tectonics, expressed by reactivation of NE-SW trending lineaments in the Hercynian basement. 18 basement samples were analysed, and 4 sediments of Mesozoic and Tertiary age. Thermal histories were modelled for most samples and conversion to resultant amounts of denudation and rock uplift was possible for the Tertiary history, because of constraints on the paleo-topography and -elevation in Upper Cretaceous to Paleocene times. Accelerated cooling (up to 100 °C in 5 Ma) occurred around 100 Ma in the entire Sierra de Guadarrama. In the northern part, this cooling was preceded by reheating of Lower Triassic sediments up to 110 °C, suggesting sedimentation of about 3 km of, now eroded, Upper Triassic to Jurassic. The period of greatest erosion occurred in the Pliocene and Quaternary and affected almost the entire Sierra de Guadarrama. It was preceded by a Middle-Miocene cooling event that correlates with the beginning of the neo-tectonic setting of central Spain. The greatest Tertiary rock uplift occurred in the central part of the Sierra de Guadarrama: 5.9 ± 11.6 km. The Pliocene to recent event constitutes most of the Tertiary denudation. It is accommodated by active NE-SW trending reverse faults, and attended by about 3.2 km of denudation. These data fit as far-field effects in the plate tectonic setting of ongoing NW-SE oriented convergence between the European and African plate.  相似文献   

9.
阿尔金山新生代隆升历史一直倍受关注,大量热年代学数据显示,渐新世(40~30 Ma)以来发生阶段性隆升,而新生代初期隆升的热年代学记录极少。柴达木盆地西北地区(柴西北地区)新生界碎屑锆石裂变径迹年龄研究表明,其物源区单一且在新生代早期古新世中晚始新世(65~50 Ma)发生快速隆升剥露,为该区提供陆源碎屑。前人通过物源分析发现,柴西北时期的碎屑物主要来源于阿尔金山。同时,该区路乐河组下干柴沟组沉积地层残余厚度及沉积相特征表明,此时(65~50 Ma)阿尔金山存在一次短暂抬升,但幅度较小,与盆地高差不大,使柴西地区地形东高西低、北高南低。结合前人研究成果,本研究锆石裂变径迹热年代学数据以及沉积学指标所记录的阿尔金山东段65~50 Ma构造隆升事件,是对新生代印度欧亚板块碰撞的最初响应,也为青藏高原新生代隆升具有南北同步性提供了新的证据。  相似文献   

10.
青藏高原南缘处于重力不均衡状态,由北向南可依次分为高原近重力均衡区、喜马拉雅山正均衡异常区和山前盆地负均衡异常区,正、负异常呈现壮观的镜像分布。本文选取喜马拉雅中东部的均衡重力异常数据,结合地貌高程、地壳厚度、降雨量、冰川及山前沉积等的分布状况,探讨地貌分异与均衡重力异常分布的相互关系。由上述资料获得3条跨越喜马拉雅山的综合剖面,结果显示喜马拉雅中东部正均衡重力异常的分布与冰川、河流等代表的地表剥蚀作用存在明显的空间耦合关系,而与降雨量无直接联系,山前盆地负均衡重力异常与沉积厚度的分布也存在很好的耦合。利用数值模型计算得到了喜马拉雅地区的均衡调整时间域在1 Ma左右的时间尺度内。通过与地貌响应时间域相对比,以及对地表剥蚀厚度的估计,认为山脉地区的正均衡异常主要由地壳厚度补偿不足引起(侧重Airy假说),而山前盆地的负均衡异常主要由低密度沉积层的分布引起(侧重Pratt假说),由于地貌响应时间快于均衡调整时间,在大约5~2 Ma以来,地壳的均衡调整始终延迟于山脉的持续剥蚀和山前的持续沉积,使得岩石圈朝着"反均衡"方向演变,最终形成了喜马拉雅现今壮观的镜像均衡重力异常分布。  相似文献   

11.
Tectono-magmatic evolution of the west coast of india   总被引:1,自引:0,他引:1  
The west and east coasts of India (WCI & ECI) have distinct histories of their own. The WCI originated subsequent to ECI, which has the imprint of two hotspots - Marion and Reunion, evolved through several stages of rifting, magmatism and isostatic movements. Important among them are: felsic magmatism associated with doming (93 Ma); mafic magmatism related to rifting (88 Ma); origin of the Western Ghats of India and the east facing scarp of Madagascar (all the three related to separation of Madagascar from India); mafic (Deccan) volcanism in the north-western parts of India (67 Ma); rifting of Seychelles micro-continent and lava cover from the north-western parts of India along the Carlsberg ridge (62 Ma/A 27); isostatic subsidence relating to loading of Deccan basalts; subsidence of Bombay offshore region due to reactivation of SONATA rift; separation of Laccadive-Chagos ridge from the southern part of Mascarene plateau because of shifting of the Central Indian Ridge (40 Ma); buckling of South India and tilting of the Peninsula northward due to collision and subduction. These events make the WCI unique and endowed with a great deal of dynamism.  相似文献   

12.
In the Beishan rift in the eastern Tianshan orogen, Xinjiang Province, a N-S-trending dyke swarm is present in the Pobei area. The swarm cuts through the 270–290 Ma mafic-ultramafic intrusions associated with Ni-Cu sulphide mineralization. These mafic-ultramafic intrusions are typically found along E-W major faults in the Tianshan orogenic belts. We report SHRIMP U-Pb dating of zircons from a dyke of alkaline composition, which yielded a mean age of 252±9 Ma. Alkaline dykes of the same age are found in the Altay region of Siberia. This age is younger than the 270–290 Ma intraplate magmatic events that produced the mafic-ultramafic intrusions in the region, but in general agreement with the 250–260 Ma Permian plume event that gave rise to the Siberian traps and the Emeishan flood basalts in SW China. We suggest that there is a link between the Emeishan event and the dyke swarm in the Beishan rift and that the intraplate magmatism at 270–290 Ma reflects an early stage of mantle plume activity. The N-S trending dyke swarm in the Beishan rift may represent a later stage in the evolution of mantle plume activity in the NW and SW of China. We also speculate that in Beishan rift and possibly elsewhere in the Tianshan region, the dykes fed basaltic volcanism, whose products have since been eroded due to the strong uplift of the Tianshan orogen as a result of the India-Eurasia collision in the Cenozoic.  相似文献   

13.
ABSTRACT

The rapid uplift of the Tibetan plateau, the intense movement of the Ailao Shan-Red River Shear Zone (ARSZ), and the related climate change during the Cenozoic Indo-Asian collision have been widely studied; however, their timings varied considerably due to different data and methods used. As these events have been documented in the Red River sediment that came from the eastern Tibetan plateau and the Red River region and eventually deposited in the offshore Yinggehai and Qiongdongnan basins, here these events can be explored by calculating and analysing the Red River sediment budget, especially in the Qiongdongnan basin based on dense seismic profiles and wells. Results show that the Red River sediment mainly accumulated in the Yinggehai basin and the west part of the Qiongdongnan basin, and there are three sedimentary accumulation peaks in the Red River sediment budget during ~29.5–21, ~15.5–10.5, and ~5.5–0 Ma. By further comparing with previous studies on the timings of these events, it is inferred that the first sedimentary peak, prior to the onset of the monsoon intensification (~22 Ma), was probably driven by an intense left-lateral movement of the ARSZ in ~29.5–21 Ma. The second peak (~15.5–10.5 Ma), however, reflects a rapid uplift of the Tibetan plateau after the cessation of the left-lateral strike slip of the ARSZ. The third peak (~5.5–0 Ma) is most likely linked with a right-lateral movement of the ARSZ and the related climate change. Overall, the Red River sediment budget from the offshore Yinggehai and Qiongdongnan basins provides an important constraint on the timings of these tectonic events as well as the related climate change during the Cenozoic Indo-Asian collision.  相似文献   

14.
Zircon U–Pb ages of the Mesoproterozoic dyke swarms (Lakhna dyke swarm) at the interface between the Eastern Ghats Mobile Belt and Bastar Craton of the Indian Peninsula are reported here to decipher the tectonic evolution of the region. The dyke swarm, which is dominantly N–S in orientation, has intruded the Bastar Craton at ca. 1450 Ma. The dykes vary in composition from dolerite to trachyte and rhyolite and have been emplaced in a continental anorogenic setting. The above age puts a lower time constraint on the sedimentary sequences of the Purana basin (Khariar basin) that have been deposited unconformably over the Bastar Craton. The shale member of the Khariar basin shows evidence of synsedimentary shearing suggesting that the sedimentation probably continued up to 517 Ma, the age of shearing and overthrusting of the granulite nappes of the Eastern Ghats Mobile Belt on the Craton. Further, the compression accompanying thrusting of the nappes, uplifted the Purana basins during inversion.  相似文献   

15.
In northern Qinghai-Tibet plateau there are developed Cenozoic volcanic rocks. They constitute a trachybasalt-shoshonite-latite-trachydacite assemblage. According to the forming ages, three Cenozoic volcanic rock lithozones can be distinguished in the northern part of the plateau. Cenozoic volcanic rocks and muscovite/two-mica granites forming the three belts in pairs represent the northern and southern margins of the plateau in different periods. In fact, the tectonic setting of the northern part of the Qinghai-Tibet plateau is significantly different from that of the southern part—Himalayas. The southern part has experienced subduction and continent-continent collision. There are developed the Cenozoic S-type granites (muscovite/ two-mica granites) there. But the northern part is characterized by Cenozoic basaltic magmatism which obviously comes from the upper mantle. Slight doming of the upper mantle is recognized underneath the northern part of the plateau, which is the result of resistance of the Tarim plate to the north direction-sense movement of the Tibetan plate. And at the same time, the uplift machanism shows that the formation of the Qinghai-Tibet plateau involved three orogenic stages (35−23 Ma, 23−10 Ma and <2 Ma) of uplift in the vertical direction and extension in the horizontal direction with the Gangdise-Qiangtang orogenic belt as its core.  相似文献   

16.
The Beni Bousera peridotite massif and its metamorphic surrounding rocks have been analyzed by the fission track (FT) method. The aim was to determine the cooling and uplift history of these mantle and associated crustal rocks after the last major metamorphic event that dates back to the Lower Miocene–Upper Oligocene time (~22–24 Ma). The zircon FT analyses give an average cooling—i.e., below 320 °C—age of ~19.5 Ma. In addition, the apatite FT data give an average cooling—i.e., below 110 °C—age of ~15.5 Ma. Taking into account the thermal properties of the different thermochronological systems used in this work, we have estimated a rate of cooling close to 50 °C/Ma. This cooling rate constrains a denudation rate of about ~2 mm year?1 from 20 to 15 Ma. These results are similar to those determined in the Ronda peridotite massif of the Betic Cordilleras documenting that some ultrabasic massifs of the internal zones of the two segments of the Gibraltar Arc have a similar evolution. However, Burdigalian sediments occur along the Betic segment (Alozaina area, western Betic segment) unconformably overlying peridotite. At this site, ultramafic rock was exposed to weathering at ages ranging from 20.43 to 15.97 Ma. Since the Beni Bousera peridotite was still at depth until 15.5 Ma, we infer that no simple age projection from massif to massif is possible along the Gibraltar Arc. Moreover, the confined fission track lengths data reveal that a light warming (~100 °C) has reheated the massif during the Late Miocene before the Pliocene–Quaternary tectonic uplift.  相似文献   

17.
The post-Mesoproterozoic tectonometamorphic history of the Musgrave Province, central Australia, has previously been solely attributed to intracontinental compressional deformation during the 580 -520 Ma Petermann Orogeny. However, our new structurally controlled multi-mineral geochronology results,from two north-trending transects, indicate protracted reactivation of the Australian continental interior over ca. 715 million years. The earliest events are identified in the hinterland of the orogen along the western transect. The first tectonothermal event, at ca. 715 Ma, is indicated by40 Ar/39 Ar muscovite and U e Pb titanite ages. Another previously unrecognised tectonometamorphic event is dated at ca. 630 Ma by Ue Pb analyses of metamorphic zircon rims. This event was followed by continuous cooling and exhumation of the hinterland and core of the orogen along numerous faults, including the Woodroffe Thrust,from ca. 625 Ma to 565 Ma as indicated by muscovite, biotite, and hornblende40 Ar/39 Ar cooling ages. We therefore propose that the Petermann Orogeny commenced as early as ca. 630 Ma. Along the eastern transect,40 Ar/39 Ar muscovite and zircon(Ue Th)/He data indicate exhumation of the foreland fold and thrust system to shallow crustal levels between ca. 550 Ma and 520 Ma, while the core of the orogen was undergoing exhumation to mid-crustal levels and cooling below 600-660℃. Subsequent cooling to 150 -220℃ of the core of the orogen occurred between ca. 480 Ma and 400 Ma(zircon [Ue Th]/He data)during reactivation of the Woodroffe Thrust, coincident with the 450 -300 Ma Alice Springs Orogeny.Exhumation of the footwall of the Woodroffe Thrust to shallow depths occurred at ca. 200 Ma. More recent tectonic activity is also evident as on the 21 May, 2016(Sydney date), a magnitude 6.1 earthquake occurred, and the resolved focal mechanism indicates that compressive stress and exhumation along the Woodroffe Thrust is continuing to the present day. Overall, these results demonstrate repeated amagmatic reactivation of the continental interior of Australia for ca. 715 million years, including at least 600 million years of reactivation along the Woodroffe Thrust alone. Estimated cooling rates agree with previously reported rates and suggest slow cooling of 0.9 -7.0℃/Ma in the core of the Petermann Orogen between ca. 570 Ma and 400 Ma. The long-lived, amagmatic, intracontinental reactivation of central Australia is a remarkable example of stress transmission, strain localization and cratonization-hindering processes that highlights the complexity of Continental Tectonics with regards to the rigid-plate paradigm of Plate Tectonics.  相似文献   

18.
The Cenozoic volcanism of western Saudi Arabia extends from southern Yemen to Jordan northward. They cover an area of nearly 180,000 km2. The rocks are dominated by alkali olivine basalts and olivine basalts. Al-Wahbah crater, a part of Harrat Kishb, represents a model occurrence to study the gneisses of these rocks. New mineral chemistry and isotopic data are presented. It aims to follow the isotopic, mineralogical, and thermobarometry variations among these volcanics. Amphiboles of the studied volcanics belong to the monoclinic calcic group. The chemistry of the amphibole crystals shows two ranges of pressure. They are 3.6–5.6 and 0.38–0.78 kbar. The Aliv values of the amphiboles are in the range of 1.202 and 1.407, indicating corresponding temperature condition of 820–920 and 620–720 °C, respectively. The feldspar of the studied samples has the composition of plagioclase, though some grains have sanidine composition. They are formed in temperature range of 975 and 400 °C. The coexisting amphiboles and plagioclases indicate two sets of pressure and temperature. They are 540–575 °C (3.5–4 kbar) and 510–525 °C (~2 kbar), respectively. Rb–Sr isochron of the whole rock yields an age of 0.867 ± 0.160 Ma with initial Sr87/Sr86 of 0.702 ± 0.00086. The low initial ratio of Sr87/Sr86 together with positive values of εNd today implies that the studied volcanics have mantle source. Meanwhile, the present isotopic data suggest extraction of juvenile magma from asthenosphere source. The present study shows that the Al-Wahbah crater rocks belong to Cenozoic basalts and indicate EM-I-like signature.  相似文献   

19.
青海贵德盆地晚新生代沉积演化与青藏高原北部隆升   总被引:12,自引:0,他引:12  
青海贵德盆地发育巨厚的新生代地层,并含较丰富的重要哺乳动物化石,对确定盆地及周边相似地层的年代和研究高原隆升过程具有重要的科学意义。本文结合哺乳动物采用典型剖面精确古地磁测年为基础的时间框架,对近11 Ma BP以来盆地沉积相进行了分析,划分出19个沉积岩相和湖泊、三角洲、辫状河流、水下扇三角洲和水上洪积扇5个沉积环境,以及8个沉积演化阶段。通过盆地沉积对构造隆升的响应探讨表明:>11~7.65Ma BP为高原构造稳定期,7.65~3.6Ma BP高原具阶段性逐步隆升构造特征,3.6~>2.6 Ma BP为高原整体快速隆升,2.6Ma BP左右高原大规模挤压断陷,1.8 Ma BP左右高原大规模整体快速隆升并使贵德盆地古湖被切穿排干,黄河在此诞生。  相似文献   

20.
The Sierra de Pie de Palo located between 67°30′–68°30′ W and 31°00′–32°00′ S in the Argentine Western Sierras Pampeanas in Argentina is a distinct basement range, which lacks thermochronological data deciphering its exhumation and uplift history below 200 °C. Integrated cooling histories constrained by apatite fission-track data as well as (U–Th)/He measurements of zircon and apatite reveal that the structural evolution of this mountain range commenced during the Late Paleozoic and was mainly controlled by tectonically triggered erosion. Following further erosional controlled exhumation in a more or less extensional regime during the Mesozoic, the modern topography was generated by denudation in the Paleogene during the early stage of the Andean deformation, whereupon deformation propagated towards the west since the Late Mesozoic to Paleogene. This evolution is characterised by a total of 3.7–4.2 km vertical rock uplift and by 1.7–2.2 km exhumation with a rate of 0.03–0.04 mm/a within the Sierra de Pie de Palo since ca. 60 Ma. Onset of uplift of peak level is also referred to that time resulting in a less Pliocene amount of uplift than previously assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号