首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Eoarchean Nulliak supracrustal rocks in the Saglek Block of northeastern Labrador, Canada, contain some of the world's oldest carbonate rocks. This work attempted to reveal the origin of the carbonate rocks and estimate the surface environmental conditions of the early Earth based on their occurrence and geochemistry. They occur together with mafic and ultramafic rocks in Pangertok Inlet and St. John's Harbour South, whereas they are interlayered with pelitic rock layers with quartzofeldspathic mineral assemblages in St. John's Harbour East and Big Island. The geological occurrence suggests that the formers were formed around hydrothermal fields, whereas the latters were deposited near a continental margin. Some carbonate rocks have high SiO2, Al2O3, and Zr contents, indicating that the silicification and involvement of detrital materials influenced their composition; thus, pure carbonate rocks were selected using a combined filter of the SiO2, TiO2, Al2O3, Zr, and Ba contents. The selected carbonate rocks have positive La, Eu, Gd, Y, U, Pb, and Sr anomalies, negative Nb, Zr, and Hf anomalies, and relatively small enrichment in heavy rare earth elements (HREEs). The La and Y anomalies suggest that they originated from chemical sediments precipitated from seawater. On the other hand, the small HREE-enrichment suggests that REEs were mainly dissolved as REE-carbonate complexes in seawater or that the riverine influxes were dominated by the detritus of Eoarchean continental crusts, presumably composed of HREE-depleted TTG. The U anomaly suggests that uranium was more dissolved than Th as U-bearing carbonate complexes in seawater. The Nulliak carbonate rocks also show a positive correlation between Y and Eu anomaly values, suggesting that the precipitation of iron-oxyhydroxide causing the Y anomaly was more significant near the hydrothermal fields than the continental margin, consistent with an alkaline hydrothermal model.  相似文献   

2.
Metamorphic rocks experience change in the mode of deformation from ductile flow to brittle failure during their exhumation. We investigated the spatial variation of phengite K–Ar ages of pelitic schist of the Sambagawa metamorphic rocks (sensu lato) from the Saruta River area, central Shikoku, to evaluate if those ages are disturbed by faults or not. As a result, we found that these ages change by ca 5 my across the two boundaries between the lower‐garnet and albite–biotite, and the albite–biotite and upper‐garnet zones. These spatial changes in phengite K–Ar ages were perhaps caused by truncation of the metamorphic layers by large‐scale normal faulting at D2 phase under the brittle‐ductile transition conditions (ca 300°C) during exhumation, because an actinolite rock was formed along a fault near the former boundary. Assuming that the horizontal metamorphic layers and a previously estimated exhumation rate of 1 km/my before the D2 phase, the change of 5 my in phengite K–Ar ages is converted to a displacement of about 10 km along the north‐dipping, low‐angle normal fault documented in the previous study. Phengite 40Ar–39Ar ages (ca 85 to 78 Ma) in the actinolite rock could be reasonably comparable to the phengite K–Ar ages of the surrounding non‐faulted pelitic schist, because the K–Ar ages of pelitic schist could have been also reset at temperatures close to the brittle–ductile transition conditions far below the closure temperature for thermal retention of argon in phengite (about 500–600°C).  相似文献   

3.
The Ogasawara Islands mainly comprise Eocene volcanic strata formed when the Izu–Ogasawara–Mariana Arc began. We present the first detailed volcanic geology, petrography and geochemistry of the Mukojima Island Group, northernmost of the Ogasawara Islands, and show that the volcanic stratigraphy consists of arc tholeiitic rocks, ultra‐depleted boninite‐series rocks, and less‐depleted boninitic andesites, which are correlatable to the Maruberiwan, Asahiyama and Mikazukiyama Formations on the Chichijima Island Group to the south. On Chichijima, a short hiatus is identified between the Maruberiwan (boninite, bronzite andesite, and dacite) and Asahiyama Formation (quartz dacite and rhyolite). In contrast, these lithologies are interbedded on Nakodojima of the Mukojima Island Group. The stratigraphically lower portion of Mukojima is mainly composed of pillow lava, which is overlain by reworked volcaniclastic rocks in the middle, whereas the upper portion is dominated by pyroclastic rocks. This suggests that volcanic activity now preserved in the Mukojima Island Group records growth of one or more volcanoes, beginning with quiet extrusion of lava under relatively deep water followed by volcaniclastic deposition. These then changed into moderately explosive eruptions that took place in shallow water or above sea level. This is consistent with the uplift of the entire Ogasawara Ridge during the Eocene. Boninites from the Mukojima Island Group are divided into three types on the basis of geochemistry. Type 1 boninites have high SiO2 (>57.0 wt.%) and Zr/Ti (>0.022) and are the most abundant type in both Mukojima and Chichijima Island Groups. Type 2 boninites have low SiO2 (<57.1 wt.%) and Zr/Ti (<0.014). Type 3 boninites have 57.6–60.7 wt.% SiO2 and are characterized by high CaO/Al2O3 (0.9–1.1). Both type 2 and 3 boninites are common on Mukojima but are rare in the Chichijima Island Group.  相似文献   

4.
Complex rocks, consisting of different lithologic breccias and sediments in the Tungho area of the southern Coastal Range, eastern Taiwan, were formed by magmas and magma–sediment mingling. Based on field occurrences, petrography, and mineral and rock compositions, three components including mafic magma, felsic magma, and sediments can be identified. The black breccias and white breccias were consolidated from mafic and felsic magma, respectively. Isotopic composition shows these two magmas may be from the same source. Compared to the white breccias, the black breccias show clast-supported structures, higher An values in plagioclase, higher contents of MgO, CaO, and Fe2O3 and lower SiO2, greater enrichment in the light rare earth elements (LREE), and depletion in the heavy rare earth elements (HREE). The white breccias show matrix-supported blocks and mingling with tuffaceous sediments to form peperite. Physical and chemical evidence shows that the characteristics of these two components (mafic and felsic magmas) are still apparent in the mingled zone. According to their petrography, mafic and felsic magmas did not have much time for mingling. White intrusive structures and black flow structures show that mingling occurred before they solidified. Finally, the occurrence of mingling between magmas and sediments suggests that the mingling has taken place at the surface and not in the magma chamber.  相似文献   

5.
The stratigraphical sequences composed of chert and basalt were found in the Daxinshan area of Simao and the Manbie area of Jinghong, southwestern Yunnan. The Middle Permian to ealiest Late Permian radiolarians, such as Follicucullus and Pseudoalbaillella, have been identified from the chert. The chert from the Manbie area of Jinghong is characterized by high SiO2content (over 92%), large ratios of MnO/TiO2 (2.15) and low ratios of Al/(Al+Fe+Mn) (≤0.1) and Ce/Ce*(0.4), which indicate that the chert was deposited in pelagic basin. The chert from the Daxinshan area of Simao, however, is characterized by low SiO2 content, low ratios of MnO/TiO2 (0.27) and high ratios of Al/(Al+Fe+Mn) (0.49) and Ce/Ce*(0.88), which imply that the chert was deposited in continental margin basin. The basalts from the both areas belong to tholeiite series, and the chemical compositions of their major, rare earth and trace elements show the characteristics of MORB. These results evidence that there are volcanic rocks and chert sequences representing pelagic basin and oceanic basin near continent. These sequences and the formerly reported island-arc volcanic rock sequences imply that the Daxinshan Formation in the Lancangjiang belt represents a sedimentary assemblage formed in active continental margin basin.  相似文献   

6.
The zone of serpentinite melange in the Kamchatsky Mys Peninsula was found to contain high-magnesium ultramafic volcanic rocks, viz., plagioclase picrite (oceanite) with a MgO concentration of 22.5–25.8%. We evaluated the petrochemical and geochemical characteristics of these rocks, as well as their mineral compositions. The olivine phenocrysts make up 50–60% of the rock volume; their composition (mostly 87–89 mol % Fo) and the composition of melt inclusions in them indicate their origin from a picritic melt with an additional cumulative enrichment in olivine. The geochemical parameters (Zr/Y = 3.1, Th/Yb = 0.14–0.18, Nb/Yb = 2.39–2.66, La(N)/Sm(N) = 1.0–1.1, La(N)/Yb(N) = 1.24–1.42) indicate an oceanic genesis of these rocks affected by a mantle plume.  相似文献   

7.
Talat  Ahmad  Kabita C.  Longjam  Baishali  Fouzdar  Mike J.  Bickle  Hazel J.  Chapman 《Island Arc》2009,18(1):155-174
The Sakoli Mobile Belt comprises bimodal volcanic rocks that include metabasalt, rhyolite, tuffs, and epiclastic rocks with metapelites, quartzite, arkose, conglomerate, and banded iron formation (BIF). Mafic volcanic rocks are tholeiitic to quartz‐tholeiitic with normative quartz and hypersthene. SiO2 shows a large compositional gap between the basic and acidic volcanics, depicting their bimodal nature. Both the volcanics have distinct geochemical trends but display some similarity in terms of enriched light rare earth element–large ion lithophile element characteristics with positive anomalies for U, Pb, and Th and distinct negative anomalies for Nb, P, and Ti. These characteristics are typical of continental rift volcanism. Both the volcanic rocks show strong negative Sr and Eu anomalies indicating fractionation of plagioclases and K‐feldspars, respectively. The high Fe/Mg ratios for the basic rocks indicate their evolved nature. Whole rock Sm–Nd isochrons for the acidic volcanic rocks indicate an age of crystallization for these volcanic rocks at about 1675 ± 180 Ma (initial 143Nd/144Nd = 0.51017 ± 0.00017, mean square weighted deviate [MSWD] = 1.6). The εNdt (t = 2000 Ma) varies between ?0.19 and +2.22 for the basic volcanic rock and between ?2.85 and ?4.29 for the acidic volcanic rocks. Depleted mantle model ages vary from 2000 to 2275 Ma for the basic and from 2426 to 2777 Ma for the acidic volcanic rocks, respectively. These model ages indicate that protoliths for the acidic volcanic rocks probably had a much longer crustal residence time. Predominantly basaltic magma erupted during the deposition of the Dhabetekri Formation and part of it pooled at crustal or shallower subcrustal levels that probably triggered partial melting to generate the acidic magma. The influence of basic magma on the genesis of acidic magma is indicated by the higher Ni and Cr abundance at the observed silica levels of the acidic magma. A subsequent pulse of basic magma, which became crustally contaminated, erupted as minor component along with the dominantly acidic volcanics during the deposition of the Bhiwapur Formation.  相似文献   

8.
Many sheets of alkalic dolerites found in the Cretaceous formations in the Nemuro peninsula can be divided into the following two types. Differentiated sheets, more than 100 m in thickness. Gravitational differentiationin situ is distinguished, producing rock types such as picritic dolerite, dolerite, monzonite and syenite. Undifferentiated sheets, less than 30 m in thickness. Differentiationin situ is not observed, and dolerite is the only rock type. Distinguished pillow structures are commonly observed. Petrochemistry of these rocks indicates that K.O contents are high, especially in the middle and later stages, predominating over Na2O and that MgO content is rather high as compared with iron oxides. These features place the suite in a characteristic position clearly distinguished from the other alkalic rock suites in Japan. Fourteen trace elements were determined spectroscopically and their distribution during the differentiation is discussed. The parent magma of the Nemuro rocks is estimated to be shonkinitic in composition, rather rich in potash. Its possible genesis by the partial melting of the phlogopite-peridotite in the upper mantle under the continent is discussed.  相似文献   

9.
Feng  Guo  Weiming  Fan  Yuejun  Wang  Chaowen  Li 《Island Arc》2005,14(2):69-90
Abstract Early Cretaceous high‐K calc‐alkaline volcanism occurring in the Laiyang Basin north of the Sulu high‐pressure to ultrahigh‐pressure (HP‐UHP) Metamorphic Belt, eastern China, comprises a wide spectrum of rock types, ranging from trachybasalts to trachydacites. The basaltic–andesitic rocks erupted at 107–105 Ma, spanning an SiO2 range of 50.1–59.6% and an MgO range of 2.6–7.2%, and are characterized by large ion lithophile element (LILE; e.g. Ba and K) and light rare earth element (LREE) enrichment, high field strength element (HFSE) depletion and highly radiogenic Sr but non‐radiogenic Nd isotopic compositions (87Sr/86Sr(i) = 0.70750–0.70931; ?Nd(t) = ?17.9 ? ?15.6). The geochemical similarities between these rocks and the earlier Sulu Belt lamprophyres suggest that both types of mafic rocks were derived from similar mantle sources with LILE and LREE enrichment. Thus, the Wulian–Qingdao–Yantai Fault that separates the two terranes at the surface should not be considered as a lithospheric boundary between the North China and Yangtze blocks. The felsic lavas erupted at 93–91 Ma, spanning an SiO2 range of 61.6–67.0% and an MgO range of 1.1–2.6%, and show a trace element geochemistry similar to the basaltic rocks, but with higher radiogenic Sr and even lower Nd isotopic compositions (87Sr/86Sr(i) = 0.70957–0.71109; ?Nd(t) = ?19.1 ? ?17.5), similar to I‐type granitoids in the Sulu Belt. A crustal origin was proposed to explain their compositions (which are comparable to those of experimental slab melts), the >10 Ma eruption interval and the compositional gaps in some elements (e.g. P, Ti and Sr) between them and the older basaltic–andesitic rocks. These melts were derived from predominant metaigneous protoliths containing mafic accumulative counterparts of the basaltic–andesitic and/or lamprophyric magmas. The extensive extrusion of Early Cretaceous high‐K calc‐alkaline rocks in the Laiyang Basin favored an extensional regime in response to the progressive attenuation of the thickened lithosphere and orogenic collapse, as reflected in the development of the basin from a foreland basin (before the end of the Jurassic period) to a fault basin (since the Early Cretaceous period).  相似文献   

10.
The Jurassic Muskox and Jericho kimberlites (Northern Slave Province, Nunavut, Canada) contain a variety of facies exhibiting different geometries, contact relationships, internal organisation, country rock abundance and olivine shapes, although many have similar matrix/groundmass mineralogies and textures. Five facies are examined that either have characteristics consistent with coherent rocks in general (i.e. intrusive and extrusive non-fragmental rocks) or are mineralogically and texturally similar to kimberlite described as coherent (or apparent coherent). Three facies are interpreted as coherent on the basis of: (1) geological setting, (2) apparent-porphyritic texture, (3) sharp contacts with fragmental kimberlite, (4) relative abundance of elongate and unbroken olivine crystals and (5) paucity of country rock xenoliths, while the remaining two facies are interpreted as fragmental on the basis of: (1) the gradational contacts with demonstrably fragmental kimberlite, (2) relative abundance and range of sizes of country rock lithic clasts and (3) numerous broken olivine crystals. Comparisons are made with coherent and apparent-coherent kimberlite from the literature. Our three coherent facies are similar to literature reported coherent kimberlite dykes hosted in country rock (CKd) in terms of internal organisation, low abundance of country rock xenoliths, and apparent-porphyritic texture. Conversely, our two fragmental facies share attributes with previously described pipe-filling coherent and apparent-coherent kimberlite (CKpf) in terms of geometry, internal organisation and abundance of country rock xenoliths. We conclude that CKd and most CKpf, although similar in matrix/groundmass mineralogy and texture, can be distinguished on the basis of internal organisation, country rock lithic clast abundance, texture (e.g. apparent-porphyritic texture) and possibly olivine crystal shapes and suggest that fragmental kimberlite is more common than reported.  相似文献   

11.
Since the mid-1980s,Tanyaokou large Zn-Cu-Fe sulfides deposit,located at the southwest end of Langshan-Zhaertaishan-Bayan Obo Mesoproterozoic metallogenic belt in the west section of the northern margin of the North China Platform[1?9](Fig.1),has been confirmed to be submarine volcanic exhalative-sedimentary metamorphosed deposit hosted in the miogeosynclinal mud-carbonaceous formation of the Langshan Group(LG)[1],or submarine volcanic exha-lative-deposition-altered deposit[2]or stratabo…  相似文献   

12.
Jadeite quartzite,essentially a two-phase rock made up of jadeite and quartz,is one of the most important UHP lithologies occurring in the Dabie Mountain ultrahigh pressure metamorphic belt and forms layers in biotite-plagioclase gneiss.High pressurehigh temperature studies on natural albite from the country rock gneiss were undertaken to reveal the—in parts—complex mineralogical changes that occur in the jadeite quartzite during prograde metamorphism.Experiments were conducted at 800–1200°C,in the pressure range of 2.0–3.5 GPa.One of the most intriguing results shows that the low pressure boundary of the jadeite+coesite stability field is located between about 3.2 GPa at 1000°C and 3.4 GPa at 1200°C,thus about(0.2–0.3)±0.1GPa higher than the quartz-coesite transition curve,given the uncertainty in the present study.Minor amounts of sodium and aluminum entering the structure of quartz and the intimate intergrowth texture of the run products may contribute to the observed pressure shift.Combined petrological and mineralogical studies on the run products and the natural rocks yield the following prograde reaction sequence to have occurred:The protolith of the jadeite-quartzite from Dabie Mountain is an albitized siltstone/greywacke characterized by an albite+quartz assemblage.During prograde metamorphism albite breaks down to form jadeite+quartz and thus at this stage two types of quartz can be distinguished whereas type-I-quartz already existed in the protolith,type-II-quartz represents a newly formed reaction product of albite.During further P-T-increase the pure type-I-quartz was transformed to coesite,whereas type-II-quartz(together with jadeite)was still present as a stable phase because of its impurities of Na and Al.At a later stage during further subduction,type-II-quartz also decomposes to form coesite.These studies represent an important puzzlement for a better understanding of the evolution of jadeite-quartzite from the Dabie Mountain during continental crust subduction and thus contribute to a more complete knowledge of the formation of the Dabie Mountain UHP orogenic belt in general.  相似文献   

13.
The elastic and density properties of rocks of the Shamakha-Ismailly seismogenic blocks are studied by the ultrasonic pulse method in quasi-hydrostatic high pressure apparatuses. An attempt is made to more accurately determine the upper crustal lithology of these blocks. The observed values of the elastic and density characteristics of the rocks at high pressures suggest that the upper layers in the Ismailly and Shamakha blocks can consist of sedimentary carbonate rocks such as marls, sandstones, mudstones, and limestones. The middle layers apparently consist of volcaniclastic rocks: lithoclastic tuffs, andesites, etc. The lower layer (basement) in both blocks is likely composed of basic rocks such as basalts, trachybasalts, etc. According to the values of elastic wave velocities and densities, gabbroid rocks may compose the fourth layer of the Buinuz intrusion, identified from seismic data.  相似文献   

14.
Abstract The Wakino Subgroup is a lower stratigraphic unit of the Lower Cretaceous Kanmon Group. Previous studies on provenance of Wakino sediments have mainly concentrated on either petrography of major framework grains or bulk rock geochemistry of shales. This study addresses the provenance of the Wakino sandstones by integrating the petrographic, bulk rock geochemistry, and mineral chemistry approaches. The proportions of framework grains of the Wakino sandstones suggest derivation from either a single geologically heterogeneous source terrane or multiple source areas. Major source lithologies are granitic rocks and high‐grade metamorphic rocks but notable amounts of detritus were also derived from felsic, intermediate and mafic volcanic rocks, older sedimentary rocks, and ophiolitic rocks. The heavy mineral assemblage include, in order of decreasing abundance: opaque minerals (ilmenite and magnetite with minor rutile), zircon, garnet, chromian spinel, aluminum silicate mineral (probably andalusite), rutile, epidote, tourmaline and pyroxene. Zircon morphology suggests its derivation from granitic rocks. Chemistry of chromian spinel indicates that the chromian spinel grains were derived from the ultramafic cumulate member of an ophiolite suite. Garnet and ilmenite chemistry suggests their derivation from metamorphic rocks of the epidote‐amphibolite to upper amphibolite facies though other source rocks cannot be discounted entirely. Major and trace element data for the Wakino sediments suggest their derivation from igneous and/or metamorphic rocks of felsic composition. The major element compositions suggest that the type of tectonic environment was of an active continental margin. The trace element data indicate that the sediments were derived from crustal rocks with a minor contribution from mantle‐derived rocks. The trace element data further suggest that recycled sedimentary rocks are not major contributors of detritus. It appears that the granitic and metamorphic rocks of the Precambrian Ryongnam Massif in South Korea were the major contributors of detritus to the Wakino basin. A minor but significant amount of detritus was derived from the basement rocks of the Akiyoshi and Sangun Terrane. The chromian spinel appears to have been derived from a missing terrane though the ultramafic rocks in the Ogcheon Belt cannot be discounted.  相似文献   

15.
Petrographic analysis and chemical analysis of major and trace elements including rare earth elements of the Neoproterozoic sandstones from the Chandarpur Group and the Tiratgarh Formation have been carried out to determine their provenance, tectonic setting and weathering conditions. All sandstone samples are highly enriched in quartz but very poor in feldspar and lithic fragments. Petrographically and geochemically these sandstones are classified as subarkose, sublitharenite and arenite. The Chemical Index of Alteration (CIA mean 68) and Th/U ratios (mean 4.2) for these sandstones suggest their moderate weathering nature. Generally, all sandstone samples are strongly depleted in major elements (except SiO2), trace elements (except Zr) and REE in comparison with Post Archean Australian Shale (PAAS) and Upper Continental Crust (UCC). Their mineralogy and mean of elemental ratios suitable for determination of provenance and tectonic setting, e.g. Al2O3/SiO2 (0.02), K2O/Na2O (10), Eu/Eu* (0.67), (La/Lu)n (10.4), La/Sc (3), Th/Sc (1.2), La/Co (0.22), Th/Co (0.08), and Cr/Th (7.2), support a felsic source and a passive margin tectonic setting for these sandstones. Also these key elemental ratios do not show much variation over a range of SiO2. Thus we attest their significance in determining source rock characteristics of quartz rich sandstones. Chondrite‐normalized REE patterns with LREE enrichment and a strong negative Eu anomaly are also attributed to felsic source rock characteristics for these sandstones. The source rocks identified are granite and gneiss of the Bastar craton. Minor amounts may have been derived from older supracrustals of the Bastar craton. However, the major element data of the Paleoproterozoic Sakoli schists when compared with those of the Neoproterozoic sandstones indicate that the schists were derived from a mafic source and deposited in an active continental margin tectonic setting. There is, however, little difference in CIA values between the Paleoproterozoic Sakoli schists and Neoproterozoic sandstones, indicating prevailing of similar (moderate‐intense) weathering conditions throughout the Proterozoic in the Bastar craton. Our study also suggests a change in the provenance and tectonic setting of deposition of sediments from dominantly a mafic source and an active continental margin in the Paleoproterozoic to dominantly granite and gneiss (felsic source) and a passive continental margin in the Neoproterozoic in the Bastar craton.  相似文献   

16.
The oxygen isotope compositions and metamorphic mineral assemblages of hydrothermally altered rocks from the Del Puerto ophiolite and overlying volcaniclastic sedimentary rocks at the base of the Great Valley sequence indicate that their alteration occurred in a submarine hydrothermal system. Whole rock δ18O compositions decrease progressively down section (with increasing metamorphic grade): +22.4‰ (SMOW) to +13.8 for zeolite-bearing volcaniclastic sedimentary rocks overlying the ophiolite; +19.6 to +11.6 for pumpellyite-bearing metavolcanic rocks in the upper part of the ophiolite's volcanic member; +12.3 to +8.1 for epidote-bearing metavolcanic rocks in the lower part of the volcanic member; +8.5 to +5.7 for greenschist facies rocks from the ophiolite's plutonic member; +7.6 to +5.8 for amphibolite facies or unmetamorphosed rocks from the plutonic member.

Modelling of fluid-rock interaction in the Del Puerto ophiolite indicates that the observed pattern of upward enrichment in whole rock δ18O can be best explained by isotopic exchange with discharging18O-shifted seawater at fluid/rock mass ratios near 2 and temperatures below 500°C.18O-depleted plutonic rocks necessarily produced during hydrothermal circulation were later removed as a result of tectonism. Submarine weathering and later burial metamorphism at the base of the Great Valley sequence cannot by itself have produced the zonation of hydrothermal minerals and the corresponding variations in oxygen isotope compositions. The pervasive zeolite and prehnite-pumpellyite facies mineral assemblages found in the Del Puerto ophiolite may reflect its origin near an island arc rather than deep ocean spreading center.  相似文献   


17.
18.
Source rock lithology and immediate modifying processes, such as chemical weathering and mechanical erosion, are primary controls on fluvial sediment supply. Sand composition and Chemical Index of Alteration (CIA) of parent rocks, soil and fluvial sand of the Savuto River watershed, Calabria (Italy), were used to evaluate the modifications of source rocks through different sections of the basin, characterized by different geomorphic processes, in a sub‐humid Mediterranean climate. The headwaters, with gentle topography, produce a coarse‐grained sediment load derived from deeply weathered gneiss, having sand of quartzofeldspathic composition, compositionally very different from in situ degraded bedrock. Maximum estimated CIA values suggest that source rock has been affected significantly by weathering, and it testifies to a climatic threshold on the destruction of the bedrock. The mid‐course has steeper slopes and a deeply incised valley; bedrock consists of mica‐schist and phyllite with a very thin regolith, which provides large cobble to very coarse sand sediments to the main channel. Slope instability, with an areal incidence of over 40 per cent, largely supplies detritus to the main channel. Sand‐sized detritus of soil and fluvial sand is lithic. Estimated CIA value testifies to a significant weathering of the bedrock too, even if in this part of the drainage basin steeper slopes allow erosion to exceed chemical weathering. The lower course has a braided pattern and sediment load is coarse to medium–fine grained. The river cuts across Palaeozoic crystalline rocks and Miocene siliciclastic deposits. Sand‐sized detritus, contributed from these rocks and homogenized by transport processes, has been found in the quartzolithic distal samples. Field and laboratory evidence indicates that landscape development was the result of extensive weathering during the last postglacial temperature maximum in the headwaters, and of mass‐failure and fluvial erosional processes in the mid‐ and low course. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Two late Mesozoic granitoids in the Luanchuan area of the East Qinling orogen are considered; ore-bearing rocks are granite porphyries and granodiorite, with K2O > Na2O, appearing in the form of stocks. The Laojunshan rocks contains dominantly monzonitic granite, with K2O  Na2O, in the form of a batholith. Both the ore-bearing rocks and the Laojunshan rocks are highly siliceous and shoshonitic, high-K calc-alkaline, similar to some I-type granites. Light rare earth elements (LREEs) are enriched in both rock suites, although the Luanchuan ore-bearing granitoids have higher concentrations, with (La/Yb)N ratios twice that of the barren Laojunshan granite suite. Ore-bearing rocks have, therefore, undergone greater fractionation of heavy rare earth elements. All Laojunshan rocks have negative Eu anomalies, indicating plagioclase fractionation. δEu values are different in both rock suites, the values in the ore-bearing granites, ranging from 0.52 to 1.04, which are much higher than that of Laojunshan batholith, ranging from 0.4 to 0.65. (La/Sm)N values of ore-bearing granites are 5.32–8.28, while that of Laojunshan batholith are 3.75–5.77, confirming the observation that the ore-bearing granites have undergone a higher degree of strong differentiation than that of Lanjunshan batholith.Major and trace element data, and REE data, combined with isotope data from previous work and the close relationships between the tectonic settings of the barren and ore-bearing rocks indicate that both groups of rocks were derived from the lower crust. At ∼157 Ma, with the tectonic regime in transition from a syn-collisional to a post-collisional setting, highly fractionated granites ascended from their storage area via faults; at ∼145 Ma, ore-bearing plutons, which are triggered by slab melts, formed at the junctions of fault planes trending WNW-ESE and NE-SW. At ∼115 Ma, the tectonic regime changed from compression to extension; in this environment, the barren Laojunshan batholith was emplaced, representing the end of the collisional event.  相似文献   

20.
Dredged rocks from an area of about 15 km2 within the inner floor and on the adjacent walls of the Rift Valley were collected. Based on petrographic and chemical data, four types of basaltic rocks were recognized: (1) picritic basalts with olivine xenocrysts, TiO2 < 0.6%, K2O < 0.1%, (2) olivine basalts with olivine megacrysts, TiO2 = 0.8–1.5%,K2O = 0.1–0.2%, (3) highly phyric and moderately phyric plagioclase basalts with megacrystic plagioclase, TiO2 < 1.3%, K2O < 0.3%, and (4) pyroxene basalts with pyroxene > plagioclase, TiO2 = 0.8–1%,K2O = 0.2–0.4%. The Cr and Ni having high partition coefficients show different variation trends for each type of rock and their values decrease continuously as crystallization proceeds within each type of basalt. It is speculated that two different magmas have given rise to the above-mentioned rocks. One has yielded the picritic basalts and subsequently the olivine basalts after a separation of the olivine cumulates; the other gave rise to the plagioclase basalts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号