首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于1970—2019年秦岭-淮河地区气象站点观测数据,以日均温稳定≥10℃持续日为主要指标,以1月平均气温为辅助指标,借助薄盘样条插值(TPS)及基于数字高程模型(DEM)的普通克里金插值法,探讨秦岭-淮河地区亚热带北界对全球气候变暖及变暖“停滞”现象的响应及变化。结果表明,1970—2019年秦岭-淮河地区日均温稳定≥10℃持续日及1月平均气温均呈不同程度的上升趋势,但二者高低值的分布年份并不相同;50年来亚热带北界在秦岭段出现了明显的向高海拔地区移动的趋势,其中,秦岭南坡共计抬升153.3 m,北坡抬升148.8 m。在变暖“停滞”期间,秦岭南、北坡亚热带北界所处海拔的变化具有较高的同步性,但在1980s至1990s期间差异性较大。1970—2019年亚热带北界在淮河段北移1.3个纬度以上,在115°E附近甚至达到3个纬度,与中国过去2000年亚热带北界曾到达的最北位置相仿;从年代际上来看,亚热带北界在1990s期间北移最明显,黄河流域下游部分区域已由暖温带逐渐转化为亚热带。  相似文献   

2.
The recent unprecedented warming found in different regions has aroused much attention in the past years. How temperature has really changed on the Tibetan Plateau (TP) remains unknown since very limited high-resolution temperature series can be found over this region, where large areas of snow and ice exist. Herein, we develop two Juniperus tibetica Kom. tree-ring width chronologies from different elevations. We found that the two tree-ring series only share high-frequency variability. Correlation, response function and partial correlation analysis indicate that prior year annual (January–December) minimum temperature is most responsible for the higher belt juniper radial growth, while more or less precipitation signal is contained by the tree-ring width chronology at the lower belt and is thus excluded from further analysis. The tree growth-climate model accounted for 40 % of the total variance in actual temperature during the common period 1957–2010. The detected temperature signal is further robustly verified by other results. Consequently, a six century long annual minimum temperature history was firstly recovered for the Yushu region, central TP. Interestingly, the rapid warming trend during the past five decades is identified as a significant cold phase in the context of the past 600 years. The recovered temperature series reflects low-frequency variability consistent with other temperature reconstructions over the whole TP region. Furthermore, the present recovered temperature series is associated with the Asian monsoon strength on decadal to multidecadal scales over the past 600 years.  相似文献   

3.
This paper presents new high-resolution proxies and paleoclimatic reconstructions for studying climate changes in China for the past 2000 years. Multi-proxy synthesized reconstructions show that temperature variation in China has exhibited significant 50–70-yr, 100–120-yr, and 200–250-yr cycles. Results also show that the amplitudes of decadal and centennial temperature variation were 1.3℃ and 0.7℃, respectively, with the latter significantly correlated with long-term changes in solar radiation, especially cold periods, which correspond approximately to sunspot minima. The most rapid warming in China occurred over AD 1870–2000, at a rate of 0.56°± 0.42℃(100 yr)~(-1); however, temperatures recorded in the 20 th century may not be unprecedented for the last 2000 years, as data show records for the periods AD 981–1100 and AD1201–70 are comparable to the present. The ensemble means of dryness/wetness spatial patterns in eastern China across all centennial warm periods illustrate a tripole pattern: dry south of 25°N, wet from 25°–30°N, and dry to the north of 30°N. However, for all centennial cold periods, this spatial pattern also exhibits a meridional distribution. The increase in precipitation over the monsoonal regions of China associated with the 20 th century warming can primarily be attributed to a mega El Nino–Southern Oscillation and the Atlantic Multidecadal Oscillation. In addition, a significant association between increasing numbers of locusts and dry/cold conditions is found in eastern China. Plague intensity also generally increases in concert with wetness in northern China, while more precipitation is likely to have a negative effect in southern China.  相似文献   

4.
Maximum Entropy Spectral Analysis of the annual mean surface temperature series for land masses and sea in the northern and southern hemispheres indicated long-term linear warming trends of (0.12 to 0.56) °C/century with superposed significant periods in the ranges T = 5–6 yr, 10–11 yr, 15 yr, 20 yr, 28–32 yr, and 55–80 yr. Extrapolation in future indicated for 2000–2030 a departure of (+0.4 °C) above the 1950–70 level. However, for the 1980s, the observed values are above the expected level, probably indicating large greenhouse effects due to human intervention. In that case, our predictions would be underestimates.  相似文献   

5.
Long-term trends of temperature variations across the southern Andes (37–55° S) are examined using a combination of instrumental and tree-ring records. A critical appraisal of surface air temperature from station records is presented for southern South America during the 20th century. For the interval 1930–1990, three major patterns in temperature trends are identified. Stations along the Pacific coast between 37 and 43° S are characterized by negative trends in mean annual temperature with a marked cooling period from 1950 to the mid-1970s. A clear warming trend is observed in the southern stations (south of 46°S), which intensifies at higher latitudes. No temperature trends are detected for the stations on the Atlantic coast north of 45° S. In contrast to higher latitudes in the Northern Hemisphere where annual changes in temperature are dominated by winter trends, both positive and negative trends in southern South America are due to mostly changes in summer (December to February) temperatures. Changes in the Pacific Decadal Oscillation (PDO) around 1976 are felt in summer temperatures at most stations in the Pacific domain, starting a period with increased temperature across the southern Andes and at higher latitudes.Tree-ring records from upper-treeline were used to reconstruct past temperature fluctuations for the two dominant patterns over the southern Andes. These reconstructions extend back to 1640 and are based on composite tree-ring chronologies that were processed to retain as much low-frequency variance as possible. The resulting reconstructions for the northern and southern sectors of the southern Andes explain 55% and 45% ofthe temperature variance over the interval 1930–1989, respectively. Cross-spectral analysis of actual and reconstructed temperatures over the common interval 1930–1989, indicates that most of the explained varianceis at periods >10 years in length. At periods >15 years, the squaredcoherency between actual and reconstructed temperatures ranges between 0.6 and 0.95 for both reconstructions. Consequently, these reconstructions are especially useful for studying multi-decennial temperature variations in the South American sector of the Southern Hemisphere over the past 360 years. As a result, it is possible to show that the temperatures during the 20thcentury have been anomalously warm across the southern Andes. The mean annual temperatures for the northern and southern sectors during the interval 1900–1990 are 0.53 °C and 0.86 °C above the1640–1899 means, respectively. These findings placed the current warming in a longer historical perspective, and add new support for the existence of unprecedented 20th century warming over much of the globe. The rate of temperature increase from 1850 to 1920 was the highest over the past 360 years, a common feature observed in several proxy records from higher latitudes in the Northern Hemisphere.Local temperature regimes are affected by changes in planetary circulation, with in turn are linked to global sea surface temperature (SST) anomalies. Therefore, we explored how temperature variations in the southern Andes since 1856 are related to large-scale SSTs on the South Pacific and South Atlantic Oceans. Spatial correlation patterns between the reconstructions and SSTs show that temperature variations in the northern sector of the southern Andes are strongly connected with SST anomalies in the tropical and subtropical Pacific. This spatial correlation pattern resembles the spatial signature of the PDO mode of SST variability over the South Pacific and is connected with the Pacific-South American (PSA) atmospheric pattern in the Southern Hemisphere. In contrast, temperature variations in the southern sector of the southern Andes are significantly correlated with SST anomalies over most of the South Atlantic, and in less degree, over the subtropical Pacific. This spatial correlation field regressed against SST resembles the `Global Warming' mode of SST variability, which in turn, is linked to the leading mode of circulation in the Southern Hemisphere. Certainly, part of the temperature signal present in the reconstructions can be expressed as a linear combination of four orthogonal modes of SST variability. Rotated empirical orthogonal function analysis, performed on SST across the South Pacific and South Atlantic Oceans, indicate that four discrete modes of SST variability explain a third, approximately, of total variance in temperature fluctuations across the southern Andes.  相似文献   

6.
采用中国地区137个探空站及地面160站资料,分析了1980—2009年中国东部上空温度变化特征。近30年来中国东部对流层上层至平流层中下层的降温幅度大于对流层中下层的增温幅度。东北地区上空温度季节变化幅度较大,东南地区上空温度季节变化幅度较小。中国东部中低空(近地面至500 hPa)温度在不同区域、不同季节对全球变暖的响应不同:35°N以北无降温,以南有降温;冬季均升温,夏季有降温。  相似文献   

7.
Temperature variations on the Tibetan Plateau during the last millennium are revealed by comparing a Qamdo tree-ring δ13C, the Dasuopu ice-core δ18O series, and a previous composite temperature reconstruction. Results show that an obvious warm period during 1200-1400 AD corresponds to the Medieval Warm Period (MWP) when summer temperature was 1.2℃ higher than the recent 1000 years average, and a cool phase from 1400 to 1700 AD, with summer temperature being 0.5℃lower than long-term average, can be correlated to the Little Ice Age (LIA). The 13th century was the warmest phase during the past 1000 years, while the coldest period occurred during 1000-1200 AD. The 20th century warming was characterized by rapid winter temperature rise while summer temperature at that time displayed a slight downward trend.  相似文献   

8.
研究汞的历史环境水平,对于认识人为汞的再排放和评估汞污染治理的有效性有重要意义。然而全球大气汞的监测站点和监测数据有限,因此需要利用代用资料来表征大气汞的长期变化。树木年轮是记录大气汞变化趋势的潜在优质档案。本研究建立了阿尔泰山南坡青河地区1821-2014年的树轮汞浓度变化序列,分析了气候对树轮汞浓度的影响,并从全球和区域角度探讨了汞浓度变化的原因。结果表明:1821—2014年青河地区平均树轮汞浓度为1.36±0.28 ng·g-1。相关分析显示树轮汞浓度变化与年平均最低气温(r=0.268, p<0.05, n=57)和平均水汽压(r=0.326, p<0.05, n=57)呈显著正相关,与平均2分钟风速呈显著负相关(r=-0.356, p<0.01, n=57),表明气候可能会影响树木年轮中汞的积累。1820s—1980s树轮汞浓度呈缓慢上升趋势,在此期间出现1850s—1860s中后期和1980s中后期两个峰值。1990s—2000s初期树轮汞浓度相对平稳。自2000s中后期,树轮汞浓度逐渐下降,可能与各国相继实施空气污染控制法规有关。  相似文献   

9.
The Beijing meteorological tower is located in an area of Beijing, China, which has developed from a suburban to an inner city setting over the past 30 years. The impacts of this urbanization process on both the vertical profile and diurnal cycles of air temperature are investigated using hourly data collected from a series of monitoring levels (up to 325 m high) on the Beijing meteorological tower since 1984. We find that the inter-decadal temperature has increased gradually, and that a more significant increase occurred during the 1980s and 1990s due to the effects of urbanization. A well-defined change in temperature stratification was also observed over this period. The height of the temperature inversion layer decreased from the 1980s to the 2000s. A well-defined nighttime temperature inversion developed below 50 m during the summer in the 1980s, but this near-surface inversion is not seen in data from the 1990s and 2000s. This change can be related to an increase in turbulent mixing caused by urban roughness and surface heat storage that disturbs the near-surface temperature inversion layer. In addition, the diurnal change in temperature in the city in summer shows a maximum increase from sunrise to the early afternoon, which is mainly caused by the nature variability and global warming in both the summer and winter. The urbanization mainly contributes to the temperature increase in the afternoon and nighttime. Moreover the urbanization dominates the increase in daily mean near-surface temperature.  相似文献   

10.
气候变暖对我国南方水稻可种植区的影响   总被引:6,自引:0,他引:6       下载免费PDF全文
利用我国南方稻区214站1961—2009年逐日气象资料,研究气候变化对南方水稻可种植区的影响。研究结果显示:气候变暖使南方稻区活动积温(日平均气温≥10℃)明显增加,49年增加了324.4℃?d。同时水稻生长季长度也明显延长,49年延长了17.9 d。双季稻可种植区北界明显北移,三季稻可种植区北界略有北移,20世纪60—80年代,双季稻可种植区仅限于长江以南地区,但21世纪初以来的10年双季稻可种植区北界移到长江以北,即向北推移近300 km,从而使新增双季稻可种植区扩展到四川东北部、贵州东部、重庆、湖北大部、安徽中部以及江苏南部。  相似文献   

11.
中国冬季气温变化的趋向性研究   总被引:14,自引:0,他引:14  
黄嘉佑  胡永云 《气象学报》2006,64(5):614-621
使用160个测站冬半年月平均气温资料,对中国最近几十年(1951/1952—2003/2004)的冬季气温变化趋向的气候特征进行分析。分析方法包括趋势分析、主分量分析。结果表明,中国冬季的前冬和后冬气温的变化存在明显的年际、年代际趋向性差异。趋向性差异在年际的变化方面的表现,中国南方地区冬季气温变化,最主要的特征是变化趋向的一致性,即前冬有变暖的趋向,后冬也有变暖的趋向,但是前冬变暖趋向不明显。而北方地区与南方地区有不同,表现在冬季气温变化,虽然也存在变暖趋向,但是前冬变暖的趋向比南方趋向明显。第2个气候变化特征,南方地区是前、后冬相反的变化趋向,即前冬暖(冷),后冬则冷(暖)。而北方地区这种特征表现不明显。趋向性差异在年代际的趋向性变化方面的表现更加明显。南方地区在1980年以前,前后冬的气温变化趋向都是下降的,但是后冬下降速度较前冬缓和,在1980年以后,前后冬的气温变化趋向都是上升的,但是后冬上升速度也较前冬缓和。而北方地区在1980年以前,前后冬的气温变化趋向同样都是下降的,但是后冬下降速度较前冬加快,而在1980年以后,前后冬的气温变化趋向都是上升的,但是后冬上升速度也较前冬加快。不同的前冬和后冬气温序列不同时段标准化距平的平均值也存在差异。南方地区1980年以前,大部分地区,气温均比常年偏低。但是后冬偏低程度较前冬缓和,而在1980年以后,气温均比常年偏高,后冬偏高的程度也较前冬缓和。而北方地区在1980年以前,冬半年气温均比常年偏低,后冬气温偏低的程度较前冬大。而在1980年以后,冬半年气温均比常年偏高,而且后冬偏高的程度较前冬大。  相似文献   

12.
Effects of global warming on radial growth were examined for the subalpine tree species Abies veitchii (1600–2200 m?a.s.l.), A. mariesii (2000–2500 m?a.s.l.) and Betula ermanii (1600–2500 m?a.s.l.) in central Japan, by using dendrochronological techniques. Chronologies of tree-ring widths were examined for the three species and of maximum latewood densities for the two Abies species at their upper and lower distribution limits (total 10 chronologies). We developed multiple regression models to reproduce these chronologies from the monthly mean temperature and sum of precipitation. Of the 10 chronologies, growth-climate relations could not be modeled for tree-ring width chronologies of the three species at their lower distribution limits because of low correlation. Annual mean temperature and annual sum of precipitation will increase about 3 °C and 100 mm, respectively, by 2100 in central Japan, according to 18 climatic change scenarios (6 general circulation models ×3 greenhouse gasses emission scenarios). We predicted tree-ring widths and maximum latewood densities by substituting 18 climatic change scenarios into the growth-climate models. Maximum latewood densities and tree-ring widths of A. mariesii at the upper and lower distribution limits increased by 2100. The rates of the increase tended to be greater for scenarios with more greenhouse gas emission. By contrast, maximum latewood densities of A. veitchii and tree-ring widths of B. ermanii were unchanged by 2100, irrespective of the three greenhouse gas emission scenarios. This study showed that radial growth of the three species responds differently to global warming and their responses are predictable by dendrochronological models.  相似文献   

13.
A simulation of climate change trends over North China in the past 50 years and future 30 years was performed with the actual greenhouse gas concentration and IPCC SRES B2 scenario concentration by IAP/LASG GOALS 4.0 (Global Ocean-Atmosphere-Land system coupled model), developed by the State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS). In order to validate the model, the modern climate during 1951-2000 was first simulated by the GOALS model with the actual greenhouse gas concentration, and the simulation results were compared with observed data. The simulation results basically reproduce the lower temperature from the 1960s to mid-1970s and the warming from the 1980s for the globe and Northern Hemisphere, and better the important cold (1950 1976) and warm (1977-2000) periods in the past 50 years over North China. The correlation coefficient is 0.34 between simulations and observations (significant at a more than 0.05 confidence level). The range of winter temperature departures for North China is between those for the eastern and western China's Mainland. Meanwhile, the summer precipitation trend turning around the 1980s is also successfully simulated. The climate change trends in the future 30 years were simulated with the CO2 concentration under IPCC SRES-B2 emission scenario. The results show that, in the future 30 years, winter temperature will keep a warming trend in North China and increase by about 2.5~C relative to climate mean (1960-1990). Meanwhile, summer precipitation will obviously increase in North China and decrease in South China, displaying a south-deficit-north-excessive pattern of precipitation.  相似文献   

14.
Based on an in-homogeneity adjusted dataset of the monthly mean temperature, minimum and maximum temperature, this paper analyzes the temporal characteristics of Urban Heat Island (UHI) intensity at Wuhan Station, and its impact on the long-term trend of surface air temperature change recorded during 1961–2015 by using an urban-rural method. Results show that UHI effect is obvious near Wuhan Station in the past 55 years, especially for minimum temperature. The strongest UHI intensity occurs in summer and the weakest in winter. For the period 1961–2004, UHI intensity undergoes a significant increase near the urban station, with the increase especially large for the period 1988–2004, but the last 10 years witness a significant decrease, with the decrease in minimum temperature being more significant than that of maximum temperature. The annual mean urban warming and its contribution to overall warming are 0.18?C/10yr and 48.8% respectively for the period 1961–2015, with a more significant and larger urbanization effect seen in Tmin than Tmax. Thus, a large proportion warming, about half of the overall increase in annual mean temperature, as observed at the urban station, can be attributed to the rapid urbanization in the past half a century.  相似文献   

15.
我国冬季气温年代际变化及其与大气环流异常变化的关系   总被引:37,自引:8,他引:29  
利用我国160个台站50年(1951~2000年)的月平均温度资料和NCEP/NCAR再分析资料,对我国从1951/1952~1999/2000共49个冬季(11月至次年3月平均)的气温进行经验正交函数(EOF)分解。第1模态表现为全国一致的增温或者降温,20世纪70年代中期以后,我国冬季气温增暖明显,发生了显著的年代际变化;第2模态则表现为南北温度的反相关系,20世纪80和90年代,我国北部地区,特别是东北和西北的温度增加,而我国南部则温度降低。采用频谱分析方法提取我国冬季气温的年代际变化信号更清楚地反映出这些变化。而且这两种模态从20世纪80年代开始的正位相叠加使得我国冬季持续偏暖,在降水场没有显著变化的情况下,加剧了华北地区的干旱程度。对气温的年代际变化与大气环流的回归分析表明,我国冬季气温年代际变化的第1模态与半球尺度上的北极涛动(AO)的变化有密切的关系,它在高度场上表现为一个准正压的南北环状模态;而第2模态则与中高纬大气环流中的一波结构联系密切,它在高度场上表现为一个准正压的太平洋和大西洋上反相的振荡模态。这就表明,我国冬季气温的年代际变化与大气环流中的基本气流及其扰动有密切的关联。作者还讨论了大气环流影响我国冬季气温年代际变化的可能机理,并指出进一步需要研究的问题。  相似文献   

16.
选择喜马拉雅山南北两侧有代表性的13个气象站1951—2010年的气温、降水资料,分析这些台站气候变化总体趋势、年代际变化及突变特征,结果表明:1961—2010年整个喜马拉雅山区的气温总体呈显著上升趋势,平均升温速率为0.38℃/10a。1970—1990年代升温在加速,2000年代升温速率则有所放缓。中段地区各站在2000年左右发生一次显著的升温突变,而西段和东段虽都出现升温突变,但出现的时间差异较大。1971—2010年喜马拉雅山区的降水在西段呈减少趋势,中段、东段大致呈现出微弱增加趋势,但总体变化趋势不明显。降水的年代际变化也表现为1970—1990年代略有增加,2000年代则有所减少。降水突变在西段以减少为主,在中段和东段以增加为主,但各站发生突变的年代很不一致。  相似文献   

17.
20世纪80~90年代我国气候增暖进程的统计事实   总被引:44,自引:8,他引:44       下载免费PDF全文
运用统计诊断方法分析了近50年来我国年平均及四季的气温变化特征,重点研究了20世纪90年代和80年代气温变化的主要差异及其增暖进程。结果表明,我国年平均气温是呈上升趋势的,但80年代以前年代际变化并不明显, 升温幅度不大。我国气候增暖始于20世纪80年代后期,90年代增暖加速,急剧增暖的主要原因是长江流域以南地区经历了由偏冷向偏暖的趋势转变。我国四季气温变化趋势在80~90年代增暖的进程中存在明显差异:其中冬季增暖开始时间最早、幅度最大、持续时间最长;90年代我国气候增暖急剧加速,其原因除了冬季气温持续攀升作用外,春、夏、秋季气温上升, 特别是春、夏季增暖幅度的加大增暖区域的显著扩展也起到很重要的作用。  相似文献   

18.
Improving the understanding of cropland change and its driving factors is a current focus for policy decision-makers in China. The datasets of cropland and cropland changes from the 1970s to the 2000s were used to explore whether climate change has produced spatio-temporal changes to cropland in northern China since the 1970s. Two representative indicators of heat and water resources, which are important determinants of crop growth and productivity, were considered to track climate change, including active accumulated temperatures ≥10 °C (AAT10) and the standardized precipitation evapotranspiration index (SPEI). Our results showed that rapid cropland change has occurred in northern China since the 1970s, and the area of cropland reclamation (10.23 million ha) was much greater than that of abandoned cropland (2.94 million ha). In the 2000s, the area of cropland with AAT10 higher than 3,000 °C·d increased, while the area of cropland with an SPEI greater than 0.25 decreased compared to the 1970s, 1980s and 1990s. It appears that climate warming has provided thermal conditions that have aided rapid cropland reclamation in northern China since the 1970s, and drier climatic conditions did not become a limiting factor for cropland reclamation, especially from the 1990s to the 2000s. Approximately 70 % of cropland reclamation areas were located in warmer but drier regions from the 1990s to the 2000s, and approximately 40 % of cropland abandonment occurred in warmer and wetter conditions that were suitable for agriculture during the periods from the 1970s to the 1980s and the 1990s to the 2000s. Our results suggest that climate change can be considered a driving factor of cropland change in the past several decades in northern China, in addition to socioeconomic factors.  相似文献   

19.
Recent climate change is substantially affecting the spatial pattern of geographical zones, and the temporal and spatial inconsistency of climatic warming and drying patterns contributes to the complexity of the shifting of temperature and aridity zones. Eastern Inner Mongolia, China, located in the interface region of different biomes and ecogeographic zones, has experienced dramatic drying and warming over the past several decades. In this study, the annual accumulated temperature above 10 °C (AAT10) and the aridity index, two key indicators in geographical regionalization, are used to assess warming and drying processes and track the movements of temperature and aridity zones from 1960 to 2008. The results show a significant warming at the regional level from 1960 to 2008 with an AAT10 increase rate of 7.89 °C·d/year (p?<?0.001) in Eastern Inner Mongolia, while the drying trend was not significant during this period. Spatial heterogeneity of warming and drying distributions was also evident. Analysis of warming and drying via piecewise regression revealed two separate, specific trends between the first 31 years (1960–1990) and the subsequent 18 years (1991–2008). Generally, mild warming and very slight wetting occurred prior to 1990, while after 1991 both warming and drying were significant and enhanced. Continuous warming drove a northward shift of temperature zones from the 1960s to 2000s, while aridity zones displayed enhanced temporal and spatial variability. Climate change effects on temperature and aridity zones imply that the patterns of cropping systems, macro-ecosystems, and human land use modes are potentially undergoing migration and modification due to climate change.  相似文献   

20.
近57年巴彦淖尔市平均最高最低气温及日较差变化   总被引:1,自引:0,他引:1  
利用1954年-2010年内蒙古巴彦淖尔市9个台站的月平均最高、最低气温观测资料,对巴彦淖尔市年、季平均最高、最低气温变化趋势的空间分布状况和时间变化特征进行了分析。结果表明,近57年来,巴彦淖尔市年平均最高气温的变化特征呈现北部增暖幅度明显大于南部,且近十年呈弱降温趋势;年平均最低气温与全国各地基本一致,呈明显的变暖趋势;无论是年还是季,平均最低气温的增暖幅度明显大于平均最高气温的增幅;年平均日较差多呈下降趋势,并在北部地区尤为明显,各季平均日较差亦均呈下降趋势,并以冬季的下降幅度为最大;年平均最高气温和最低气温的变化在年代际变化上基本呈现较为一致的变化,即57年来主要的变暖均是从20世纪80年代中期开始,均在90年代后期达到了近57年来的历史新高,最高气温近十年来又略有回落。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号