首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Varnish microlamination (VML) dating is a correlative age determination technique that can be used to date and correlate various geomorphic features in deserts. In this study, we establish a generalized late Quaternary (i.e., 0–300 ka) varnish layering sequence for the drylands of western USA and tentatively correlate it with the SPECMAP oxygen isotope record. We then use this climatically correlated varnish layering sequence as a correlative dating tool to determine surface exposure ages for late Quaternary geomorphic features in the study region. VML dating of alluvial fan deposits in Death Valley of eastern California indicates that, during the mid to late Pleistocene, 5–15 ky long aggradation events occurred during either wet or dry climatic periods and that major climate shifts between glacial and interglacial conditions may be the pacemaker for alteration of major episodes of fan aggradation. During the Holocene interglacial time, however, 0.5–1 ky long brief episodes of fan deposition may be linked to short periods of relatively wet climate. VML dating of alluvial desert pavements in Death Valley and the Mojave Desert reveals that pavements can be developed rapidly (< 10 ky) during the Holocene (and probably late Pleistocene) in the arid lowlands (< 800 m msl) of these regions; but once formed, they may survive for 74–85 ky or even longer without being significantly disturbed by geomorphic processes operative at the pavement surface. Data from this study also support the currently accepted, “being born at the surface” model of desert pavement formation. VML dating of colluvial boulder deposits on the west slope of Yucca Mountain, southern Nevada, yields a minimum age of 46 ka for the emplacement of these deposits on the slope, suggesting that they were probably formed during the early phase of the last glaciation or before. These results, combined with those from our previous studies, demonstrate that VML dating has great potential to yield numerical age estimates for various late Quaternary geomorphic features in the western USA drylands.  相似文献   

2.
In arid mountain areas, the dating and correlation of alluvial depositional surfaces is often uncertain. Especially in regions where the geomorphology is not well known, surface modification by the development of soil and desert pavement may allow the correlation of geomorphic surfaces and estimation of at least their relative ages. Pleistocene wadi terraces and associated alluvial fans occur in Wadi Al-Bih, U.A.E. and Oman, for which correlations and age relationships are not known. Three age-related groups of fans and terraces have been identified and mapped on the basis of their morphostratigraphic relationships. Deposition of the oldest terrace sediments and associated fans followed a long period of sustained incision after Miocene uplift of the region. The younger two groups of terraces and fans are inset within the older group. To identify the gross effects of pavement development, comparisons have been made between terrace surface and subsurface particle-size distributions. The older terraces have finer surface sediments and a greater contrast between finer surface and subsurface sediments than the younger terraces. This reflects the degree of pavement development. Particle size on the fan surfaces is comparable with that on the equivalent terrace surfaces. Criteria for the classification of pavements were developed based on clast fracturing and angularity, size, sorting, packing, and surface texture, from which a simple index of pavement development has been derived. Other properties, rock varnish and weathering characteristics, were also recorded; but these proved to be less discriminatory than pavement characteristics. The pavement data have been augmented by observations on soils. Detailed studies of pavements on terraces (8 sites, 12 samples covering the three age groups) and fans (5 sites, 10 samples covering the three age groups) allow differentiation between age-groups. The three terraces show three different age-related pavement types, expressed by differences in the pavement development index. Weakly-developed pavements (little fracturing, sub-rounded clasts, some modification of the depositional fabric, incipient soil development, stage I CaCO3 accumulation) occur on the youngest terrace and fan surfaces. Moderately-developed pavements (clast fracturing, sub-angular clasts, moderate sorting and packing, deeper soil development, stage II CaCO3 accumulation) occur on the middle terrace and fan surfaces. Well-developed pavements (complete clast fracturing into small angular fragments, mature sorting and packing of the pavement surface, deep soil development with strong horizonation, stage III CaCO3 accumulation) occur on the highest terrace and oldest fan surfaces. There are minor differences between the youngest pavements on terraces and fans, which reflect initial sedimentological differences. These differences become less as the pavements develop. On the basis of comparative studies, the oldest terrace is estimated to date from sometime prior to ca. 100 ka BP, the second terrace and the most extensive fan surface from the Late Pleistocene, and the youngest terrace and fan phase from the Latest Pleistocene or Early Holocene.  相似文献   

3.
In desert environments with low water and salt contents, rapid thermal variations may be an important source of rock weathering. We have obtained temperature measurements of the surface of rocks in hyper-arid hot and cold desert environments at a rate of 1/s over several days. The values of temperature change over 1-second intervals were similar in hot and cold deserts despite a 30 °C difference in absolute rock surface temperature. The average percentage of the time dT/dt > 2 °C/min was ~ 8 ± 3%, > 4 °C/min was 1 ± 0.9%, and > 8 °C/min was 0.02 ± 0.03%. The maximum change over a 1-second interval was ~ 10 °C/min. When sampled to simulate data taken over intervals longer than 1 s, we found a reduction in time spent above the 2 °C/min temperature gradient threshold. For 1-minute samples, the time spent above any given threshold was about two orders of magnitude lower than the corresponding value for 1-second sampling. We suggest that a rough measure of efficacy of weathering as a function of frequency is the product of the percentage of time spent above a given threshold value multiplied by the damping depth for the corresponding frequency. This product has a broad maximum for periods between 3 and 10 s.  相似文献   

4.
Terrestrial Laser Scanning of grain roughness in a gravel-bed river   总被引:2,自引:1,他引:1  
This paper demonstrates the application of Terrestrial Laser Scanning (TLS) to determine the full population of grain roughness in gravel-bed rivers. The technique has the potential to completely replace the need for complex, time-consuming manual sampling methods. Using TLS, a total of 3.8 million data points (mean spacing 0.01 m) were retrieved from a gravel bar surface at Lambley on the River South Tyne, UK. Grain roughness was extracted through determination of twice the local standard deviation (2σz) of all the elevations in a 0.15 m radius moving window over the data cloud. 2σz values were then designated to each node on a 5 cm regular grid, allowing fine resolution DEMs to be produced, where the elevation is equivalent to the grain roughness height. Comparisons are made between TLS-derived grain roughness and grid-by-number sampling for eight 2 m2 patches on the bar surface. Strong relationships exist between percentiles from the population of 2σz heights with measured a-, b-, and c-axes, with the closest matches appearing for the c-axis. Although strong relationships exist between TLS-derived grain roughness (2σz), variations in the degree of burial, packing and imbrication, results in very different slope and intercept exponents. This highlights that conventional roughness measurement using gravel axis length should be used with caution as measured axes do not necessarily represent the actual extent to which the grain protrudes into the flow. The sampling error inherent in conventional sampling is also highlighted through undertaking Monte Carlo simulation on a population of 2000 clasts measured using the grid-by-number method and comparing this with the TLS-derived population of grain roughness heights. Underestimates of up to − 23% and overestimates of up to + 50% were found to occur when considering the D84, and − 20% and overestimates of up to + 36% were found to occur when considering the D50.  相似文献   

5.
Rates and processes of rock weathering, soil formation, and mountain erosion during the Quaternary were evaluated in an inland Antarctic cold desert. The fieldwork involved investigations of weathering features and soil profiles for different stages after deglaciation. Laboratory analyses addressed chemistry of rock coatings and soils, as well as 10Be and 26Al exposure ages of the bedrock. Less resistant gneiss bedrock exposed over 1 Ma shows stone pavements underlain by in situ produced silty soils thinner than 40 cm and rich in sulfates, which reflect the active layer thickness, the absence of cryoturbation, and the predominance of salt weathering. During the same exposure period, more resistant granite bedrock has undergone long-lasting cavernous weathering that produces rootless mushroom-like boulders with a strongly Fe-oxidized coating. The red coating protects the upper surface from weathering while very slow microcracking progresses by the growth of sulfates. Geomorphological evidence and cosmogenic exposure ages combine to provide contrasting average erosion rates. No erosion during the Quaternary is suggested by a striated roche moutonnée exposed more than 2 Ma ago. Differential erosion between granite and gneiss suggests a significant lowering rate of desert pavements in excess of 10 m Ma− 1. The landscape has been (on the whole) stable, but the erosion rate varies spatially according to microclimate, geology, and surface composition.  相似文献   

6.
Widespread till and moraines record excursions of middle-Pleistocene ice that flowed up-slope into several watersheds of the Valley and Ridge Province along the West Branch of the Susquehanna River. A unique landform assemblage was created by ice-damming and jökulhlaups emanating from high gradient mountain watersheds. This combination of topography formed by multiple eastward-plunging anticlinal ridges, and the upvalley advance of glaciers resulted in an ideal geomorphic condition for the formation of temporary ice-dammed lakes. Extensive low gradient (1°–2° slope) gravel surfaces dominate the mountain front geomorphology in this region and defy simple explanation. The geomorphic circumstances that occurred in tributaries to the West Branch Susquehanna River during middle Pleistocene glaciation are extremely rare and may be unique in the world. Failure of ice dams released sediment-rich water from lakes, entraining cobbles and boulders, and depositing them in elongated debris fans extending up to 9 km downstream from their mountain-front breakout points. Poorly developed imbrication is rare, but occasionally present in matrix-supported sediments resembling debris flow deposits. Clast weathering and soils are consistent with a middle Pleistocene age for the most recent flows, circa the 880-ka paleomagnetic date for glacial lake sediments north of the region on the West Branch Susquehanna River. Post-glacial stream incision has focused along the margins of fan surfaces, resulting in topographic inversion, leaving bouldery jökulhlaup surfaces up to 15 m above Holocene channels. Because of their coarse nature and high water tables, jökulhlaup surfaces are generally forested in contrast to agricultural land use in the valleys and, thus, are readily apparent from orbital imagery.  相似文献   

7.
Field experiments were conducted in Nellis Dunes Recreational Area (Clark County, Nevada, USA) to investigate emission of dust produced by off-road driving. Experiments were carried out with three types of vehicles: 4-wheelers (quads), dirt bikes (motorcycles) and dune buggies, on 17 soil types characteristic for a desert environment. Tests were done at various driving speeds, and emissions were measured for a large number of grain size fractions. This paper reports the results for two size fractions of emissions: PM10 (particles < 10 μm) and PM60 (particles < 60 μm). The latter was considered in this study to be sufficiently representative of the total suspendable fraction (TSP). Off-road driving was found to be a significant source of dust. However, the amounts varied greatly with the type of soil and the characteristics of the top layer. Models predicting emission of dust by off-road driving should thus consider a number of soil parameters and not just one key parameter. Vehicle type and driving speed are additional parameters that affect emission. In general, 4-wheelers produce more dust than dune buggies, and dune buggies, more than dirt bikes. Higher speeds also result in higher emissions. Dust emitted by off-road driving is less coarse than the parent sediment on the road surface. Off-road driving thus results in a progressive coarsening of the top layer. Exceptions to this are silty surfaces with no, or almost no, vegetation. For such surfaces no substantial differences were observed between the grain size distribution of road dust and emitted dust. Typical emission values for off-road driving on dry desert soils are: for sandy areas, 30–40 g km− 1 (PM10) and 150–250 g km− 1 (TSP); for silty areas, 100–200 g km− 1 (PM10) and 600–2000 g km− 1 (TSP); for drainages, 30–40 g km− 1 (PM10) and 100–400 g km− 1 (TSP); and for mixed terrain, 60–100 g km− 1 (PM10) and 300–800 g km− 1 (TSP). These values are for the types of vehicles tested in this study and do not refer to cars or trucks, which produce significantly more dust.  相似文献   

8.
Lake Lisan, the lake that filled the Jordan graben during the Last Glacial, left behind a well developed sequence of erosional and depositional shore terraces in the south east of the current Dead Sea. These terraces record a series of stillstands that were caused by small transgressions within an overall trend of falling lake levels. The terraces were observed in places where they had not been identified previously. The morphology of the terraces was investigated in six cross-sections using differential GPS altimetry. The levels of the terraces range between − 370 and − 148 m a.s.l. The high stand of Lake Lisan at − 148 m correlates well with the high level of − 150 m reported by Bowman and Gross [Bowman, D., Gross, T., 1992. The highest stand of Lake Lisan: ~ 150 meters below MSL. Israel Journal of Earth-Science 41, 233–237.] along the western coast of Lake Lisan. The lake terraces are horizontal, elongated and tectonically undisturbed, and have a sub-horizontal foreshore (tread) with an average slope of 8.2° and steep backshore cliff (riser) with an average slope of 17.7°. The six cross-sections show a good altitudinal correlation between their terraces. Moreover, the terraces appear in undisturbed continuity on the aerial photos. These morphological characteristics demonstrate that the retreat of the lake was a result of substantial climatic changes, not of tectonic subsidence.In-situ stromatolites were found on most of the terraces, reflecting a shallow water environment and emphasizing that these terraces are recessional. Well-developed desert varnish and Tafoni observed on blocks sitting on the terrace surfaces imply a long period of exposure and a low rate of post lacustrine erosion. The formation of Lisan terraces is constrained mainly by coastal slope, water depth and underlying lithology. The morphological analysis of these terraces allows identification of two kinds of pseudo-terraces, which were formed as a result of tread or riser destruction.U/Th and OSL dating allowed the dating of three events within the lake level curve more precisely. The high level of − 148 m occurred at 30.5 ± 0.22 ka BP, consistent with the Heinrich Event 3 and Dansgaard–Oeschger stadial 5, the coldest period in the NGRIP Greenland Ice Core record. The next lower terrace at − 154 m was formed at 22.9 ka BP ± 0.29 and corresponds to the stadial 2C, the final phase of the Last High Glacial. The correlation between the Lisan high stands and climatic stadials suggests that Northern-Hemispheric cold periods led to periods with a more positive water balance in the Near East. At ~ 10 ± 0.8 ka BP Lake Lisan experienced a sharp drop to − 200 m followed by a transgression between 9.5 to 7 ka BP.  相似文献   

9.
A traversing micro-erosion meter (TMEM) was used to measure micro-scale surface changes in a 45 cm2 area of an intertidal mudstone shore platform on Kaikoura Peninsula, New Zealand, with hourly readings taken over 5 days for two seasons, within 4 h either side of low tide. For all monitoring events, the relative height of a total of 120 co-ordinates were obtained, resulting in 4200 and 4800 measurements for the summer and winter seasons respectively. Within seasons, samples were grouped according to the presence of rain or no rain. Significant changes were found in the micro-topography with variations in temperature and among rain and no rain sample groups. For both seasons, in the absence of rain, there were positive linear relationships between rock surface temperatures and rock surface elevations, and regression analysis explained 42.3% and 46.5% of this variation for the summer (y = 0.098 + 0.004x; p-value = 0.007) and winter (y = 0.007 + 0.012x; p-value < 0.001) seasons respectively. It is suggested that incorporating weather readings alongside measurements of surface change could not only improve extrapolations of shore platform erosion from short-term studies, but also differentiate fluctuations in rock surfaces due to changes in rock surface temperatures from other processes involved in shore platform erosion.  相似文献   

10.
Spatial patterns of soil surface components (vegetation, rock fragments, crusts, bedrock outcrops, etc.) are a key factor determining hydrological functioning of hillslopes. A methodological approach to analyse the patterns of soil surface components at a detailed scale is proposed in this paper. The methods proposed are applied to two contrasting semi-arid Mediterranean hillslopes, and the influence of soil surface component patterns on the runoff response of the slopes was analysed. A soil surface components map was derived from a high resolution photo-mosaic obtained in the field by means of a digital camera. Rainfall simulation experimental data were used to characterise the hydrological behaviour of areas with a specific pattern of soil surface components by means of the parameters of the Horton equation. Plot runoff data were extrapolated at the hillslope scale based on the soil surface component maps and their hydrological characterisation. The results show that in both slopes runoff generation is concentrated up- and downslope, with a water accepting area in the centre of both slopes disrupting the hydrological connectivity at the slope scale. This reinfiltration patch at the centre of the slope is related to the type of soil surface component and its spatial pattern. Herbaceous vegetation and ‘on top rock fragments’ increase the infiltration capacity of soils at the centre of the slope. In contrast, embedded rock fragments, rock outcrops, as well as crusted surfaces located in the upper and lower slopes favour runoff generation in these areas. In addition, a general pattern of water contribution areas downslope is apparent on both slopes. The south-facing slope shows a higher hydrological connectivity and more runoff. 55% of the surface of the south-facing slope produces runoff at the end of a 1 hour rainfall event and 17.3% of the surface is covered by a runoff depth between 0.5 and 1 mm. While on the north-facing slope only 38% of the surface produces runoff under the same conditions. Longitudinal connectivity of runoff is higher at the south-facing slope where more runoff-generating surfaces appear and where the vegetation pattern favours the connectivity of bare areas.  相似文献   

11.
The “La Clapière” area (Tinée valley, Alpes Maritimes, France) is a typical large, complex, unstable rock slope affected by Deep Seated Gravitational Slope Deformations (DGSD) with tension cracks, scarps, and a 60 × 106 m3 rock slide at the slope foot that is currently active. The slope surface displacements since 10 ka were estimated from 10Be ages of slope gravitational features and from morpho-structural analyses. It appears that tensile cracks with a strike perpendicular to the main orientation of the slope were first triggered by the gravitational reactivation of pre-existing tectonic faults in the slope. A progressive shearing of the cracks then occurred until the failure of a large rock mass at the foot of the slope. By comparing apertures, variations and changes in direction between cracks of different ages, three phases of slope surface displacement were identified: 1) an initial slow slope deformation, spreading from the foot to the top, characterized by an average displacement rate of 4 mm yr− 1, from 10–5.6 ka BP; 2) an increase in the average displacement rate from 13 to 30 mm yr− 1 from the foot to the middle of the slope, until 3.6 ka BP; and 3) development of a large failure at the foot of the slope with fast displacement rates exceeding 80 mm yr− 1 for the last 50 years. The main finding of this study is that such a large fractured slope destabilization had a very slow displacement rate for thousands of years but was followed by a recent acceleration. The results obtained agree with several previous studies, indicating that in-situ monitoring of creep of a fractured rock slope may be useful for predicting the time and place of a rapid failure.  相似文献   

12.
Despite the important role played by microbiotic crusts in desert ecosystems, data concerning their recovery rates are scarce and are mainly based on estimates that fluctuate between several years to a few hundred years. In order to study the recovery rates of microbiotic crusts inhabiting sand dunes in the western Negev Desert, Israel, annual measurements of chlorophyll, protein, carbohydrates and moss counts were carried out during 1990–1995. Measurements were taken in two pairs of plots (1.5–6.3 m2) established in each north- and south-facing aspect from which the upper 10 cm surface from one plot of each pair was removed. Recovery of the crusts was fast with surface-removed plots showing a complete recovery of chlorophyll a within 6–7 years, of protein within 6–8 years and of carbohydrates within 8–9 years. Recovery of the mosses was slightly longer at 17–22 years. The data are higher than the lower estimates of recovery but much lower than the higher estimates proposed in the literature. The data also suggest that upon prohibition of goat and sheep grazing (and consequently trampling) a relatively rapid stabilization process may take place in the north-eastern Sinai dune field.  相似文献   

13.
Sediment supply provides a fundamental control on the morphology of river deltas, and humans have significantly modified these supplies for centuries. Here we examine the effects of almost a century of sediment supply reduction from the damming of the Elwha River in Washington on shoreline position and beach morphology of its wave-dominated delta. The mean rate of shoreline erosion during 1939–2006 is ~ 0.6 m/yr, which is equivalent to ~ 24,000 m3/yr of sediment divergence in the littoral cell, a rate approximately equal to 25–50% of the littoral-grade sediment trapped by the dams. Semi-annual surveys between 2004 and 2007 show that most erosion occurs during the winter with lower rates of change in the summer. Shoreline change and morphology also differ spatially. Negligible shoreline change has occurred updrift (west) of the river mouth, where the beach is mixed sand to cobble, cuspate, and reflective. The beach downdrift (east) of the river mouth has had significant and persistent erosion, but this beach differs in that it has a reflective foreshore with a dissipative low-tide terrace. Downdrift beach erosion results from foreshore retreat, which broadens the low-tide terrace with time, and the rate of this kind of erosion has increased significantly from ~ 0.8 m/yr during 1939–1990 to ~ 1.4 m/yr during 1990–2006. Erosion rates for the downdrift beach derived from the 2004–2007 topographic surveys vary between 0 and 13 m/yr, with an average of 3.8 m/yr. We note that the low-tide terrace is significantly coarser (mean grain size ~ 100 mm) than the foreshore (mean grain size ~ 30 mm), a pattern contrary to the typical observation of fining low-tide terraces in the region and worldwide. Because this cobble low-tide terrace is created by foreshore erosion, has been steady over intervals of at least years, is predicted to have negligible longshore transport compared to the foreshore portion of the beach, and is inconsistent with oral history of abundant shellfish collections from the low-tide beach, we suggest that it is an armored layer of cobble clasts that are not generally competent in the physical setting of the delta. Thus, the cobble low-tide terrace is very likely a geomorphological feature caused by coastal erosion of a coastal plain and delta, which in turn is related to the impacts of the dams on the Elwha River to sediment fluxes to the coast.  相似文献   

14.
Yintang Li  Yi Guo 《Geomorphology》2008,100(3-4):335-344
Aeolian dusty sand transport in the marginal region of a desert is described numerically from first suspension motion at the early entrainment stage to the unsteady state within a moderate range (1000 m long × 500 m high). A two-dimensional model is built for wind-blown dust flow, and the calculations are carried out using Fluent software. The simulation results describe an integrated picture of aeolian dusty sand transport including uplift, suspension, diffusion, deposition and its space–time concentration. According to the features of a sand–dust storm near the surface, a volume concentration expression of ejection grains is developed as a boundary condition in the simulation approach. The model is verified by comparing results with both experimental data from a wind tunnel and an analytic solution. Uniform dust sizes and R–R distributions are used in the simulation. Gas–solid two-phase flow patterns with these grains are obtained in the downwind space, including the turbulence intensity, gas phase stream functions and solid volume concentration distributions. The influence of wind velocities and grain sizes is analyzed. From the simulation results, spatial distributions of dust volume concentration in the early entrainment stage are described clearly. Different from coarse sands, there is a clear band of uniformly saturated dust concentration in the region directly above the surface.  相似文献   

15.
The arctic islands of the Lofoten-Vesterålen archipelago in northern Norway have a wide distribution of weathered land surfaces commonly located above 250 m with several apparent similarities. In order to investigate the characteristics of (deep) weathering in this region, northern Langøya and Hadseløya were chosen for in-depth analyses. Eight weathering profiles were excavated from various surfaces, and the stratigraphies were logged in detail. Material was collected throughout the weathering horizons, and all samples were subsequently analysed for clay mineralogy (< 63 μm fraction) and grain size distribution. The sampling strategy was complemented by samples from additional saprolites and other landforms such as moraines and rock glaciers. The XRD results indicate that the presence of secondary minerals, such as gibbsite (Al(OH)3) and kaolinite (Al2Si2O5(OH)4), are very common throughout the profiles. Gibbsite is an extreme end product of silicate weathering and usually associated with a warmer and more humid climate, as found in Scandinavia during the Tertiary. The grain size analyses (< 63 μm) show that the finer silt fractions (< 8 μm) tend to be high in the profiles (20–40%), with significant amounts of clay (5–15%) demonstrating that the regolith itself is susceptible to frost sorting mechanisms.10Be exposure dates from in situ quartz knobs on tors and boulders of local origin suggest > 40,000 years of subaerial conditions. Considering the steady surface erosion, this figure should be viewed as an absolute minimum age estimate. Mapping of the superficial sediments and geomorphological features of the study areas has revealed several common morphological features, which indicate dominance of glacial and periglacial processes in the areas lying below the lower boundary of blockfields (c. 250 m). The weathering mantles are not a periglacial end product, but rather a relict tertiary landform that were modulated by permafrost processes as well as biological processes at later stages. The regolith cover constrain the vertical extension of warm-based Quaternary ice sheets challenging the notion of a parabolic ice mass consuming every mountain top of Lofoten and Vesterålen.  相似文献   

16.
伊犁山地不同海拔土壤有机碳的分布   总被引:11,自引:0,他引:11  
以乌孙山北坡、科古琴山南坡为例,分析伊犁山地南北坡土壤有机碳的分布特征和影响因素。结果表明:①0-50 cm范围内,高寒草甸、草甸草原土壤有机碳含量较高,荒漠草原土壤有机碳含量最低。土壤有机碳含量均随土壤深度的增加而降低,高寒草甸随土壤深度的增加土壤有机碳下降幅度最大;②伊犁山地土壤腐殖化程度高,氮矿化能力强。大部分海拔的土壤碳氮比随土壤深度的增加而减少。河谷南坡碳氮比降低速率要大于河谷北坡。③土壤有机碳与全氮、全磷以及土壤含水率表现出良好的正相关性;与pH值表现出较好的负相关性,特别是20-50 cm处。植被类型分布和人类活动影响对土壤有机碳垂直变化影响显著。  相似文献   

17.
Matteo Tosi   《Geomorphology》2007,87(4):268-283
The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25–40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick. S. junceum (L.) colonizes not only fan/cone/taluses but also headwalls and cliffs and, for a 0.6 m thick soil, it stabilises these areas up to 45°. The effectiveness of this reinforcement, however, depends strongly on the frequency of soil and seasonal grass vegetation removal due to shallow landsliding before the entrance of the shrub species.  相似文献   

18.
China's Yellow River has experienced its dramatically decreasing trend for the flow discharge since the construction and operation of large reservoirs located upstream. This low flow regulation has triggered a severe aggradation of the Ulan Buh Desert channel of the Yellow River because the declining flow exhibits no capability to scour and carry away large amount input of desert sands from the Ulan Buh Desert. Twenty monitoring cross-sections documented the Ulan Buh Desert channel has experienced its increasing aggradational trend in conjunction with its lateral migration decreasing trend from 1966 to 2005, which is opposite to the normal pattern of aggradation with deepening or symmetrical infilling for a channel located downstream of a reservoir. The channel aggradation can also be identified two stages: slow aggradation and rapid aggradation. Slow aggradation is characterized by the channel bed elevation rising 9.5 cm on average between 1968 and 1985, which responded to the operation of the Liujiaxia reservoir. During this period, the flow discharge was similar to pre-dam flow conditions but the sediment transport reduced to half of its pre-dam value. Because of about 0.24 × 108 t of desert sands entering the channel from the Ulan Buh Desert annually, this dilute flow indicated not to scour the channel as expected, but contrarily to cause the channel aggraded. Rapid aggradation followed completion of the Longyangxia reservoir with the channel bed elevation rising by 73 cm on average between 1986 and 2005. In this period, the combined regulation of Liujiaxia and Longyangxia reservoirs has caused the flow discharge decreasing dramatically, which is more beneficial for accumulation of the desert sands (0.19 × 108 t yr− 1 on average) in the desert channel, and led to the channel aggradation rate accelerated rapidly.  相似文献   

19.
Saltation is a major mechanism for the transport of soil particles. In the present study, we carried out wind tunnel tests to examine the saltating trajectories of two types of natural sand collected from a beach (diameter, d = 300–500 μm and 200–300 μm respectively) as well as sand from the Taklimakan desert (d = 100–125 μm) in an atmospheric boundary layer. Consecutive images of saltating particles were recorded using a high-speed digital camera at a rate of 2000 fps with a spatial resolution of 1024 × 1024 pixels. The high temporal resolution of the acquired images enabled us to study the particle motion very close to the surface. The saltating particle trajectories were reconstructed from consecutive images, and the physical quantities characterizing the initial and final stages of the particle flight in the windward direction at friction velocities of about 10%–25% above the threshold friction velocity (u / ut = 1.11–1.26) were analyzed statistically. In addition, the transverse deviation of the saltating particles from the main streamwise direction was evaluated. The results shed new light on the complicated motions involved in sand saltation and should prove useful in the evaluation and formulation of theoretical models.  相似文献   

20.
Remnants of a high plateau have been identified on Nuussuaq and Disko, central West Greenland. We interpret the plateau as an erosion surface (the summit erosion surface) formed mainly by a fluvial system and graded close to its former base level and subsequently uplifted to its present elevation. It extends over 150 km east–west, being of low relative relief, broken along faults, tilted westwards in the west and eastwards in the east, and having a maximum elevation of ca. 2 km in central Nuussuaq and Disko. The summit erosion surface cuts across Precambrian basement rocks and Paleocene–Eocene lavas, constraining its age to being substantially younger than the last rift event in the Nuussuaq Basin, which took place during the late Maastrichtian and Danian. The geological record shows that the Nuussuaq Basin was subjected to subsidence of several kilometres during Paleocene–Eocene volcanism and was transgressed by the sea later during the Eocene. By comparing with results from apatite fission track analysis and vitrinite reflectance maturity data, it is suggested that formation of the erosion surface was probably triggered by an uplift and erosion event starting between 40 and 30 Ma. Surface formation was completed prior to an uplift event that started between 11 and 10 Ma and caused valley incision. This generation of valleys graded to the new base level and formed a lower erosion surface, at most 1 km below the summit erosion surface, thus indicating the magnitude of its uplift. Formation of this generation of valleys was interrupted by a third uplift event also with a magnitude of 1 km that lifted the landscape to near its present position. Correlation with the fission-track record suggests that this uplift event started between 7 and 2 Ma. Uplift must have been caused initially by tectonism. Isostatic compensation due to erosion and loading and unloading of ice sheets has added to the magnitude of uplift but have not significantly altered the configuration of the surface. It is concluded that the elevations of palaeosurfaces (surfaces not in accordance with present climate or tectonic conditions) on West Greenland's passive margin can be used to define the magnitude and lateral variations of Neogene uplift events. The striking similarity between the landforms in West Greenland and those on many other passive margins is also noted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号