首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 295 毫秒
1.
Novel coincident 3-D radar, lidar and optical image measurements of dynamical structures in polar mesosphere summer echoes (PMSE) and noctilucent clouds (NLC) are presented. Common volume mesospheric measurements were made over central Alaska using the new Poker Flat Incoherent Scatter Radar (PFISR), a co-located Rayleigh lidar and remote, two-station digital image observations, enabling the first detailed investigation of the horizontal and vertical structures of NLC and PMSE. Coincident measurements were made of an unusual NLC display recorded on 10–11 August 2007, characterized by a broad luminous band that contained several prominent wave forms. Concurrent lidar and image measurements established the presence of NLC within the radar volume from ~09:00 UT (01:00 LT), when the solar depression angle was 10.4°, until dawn. Strong but intermittent PMSE were detected by PFISR, with distinct patchy structures that exhibited a similar southward motion as the NLC. Detailed comparison of the 3-D PMSE structures and the NLC lidar and image data have revealed striking similarities when account was taken of the NLC layer altitude, suggesting a direct link between their small-scale spatial signatures (within the current resolution of the radar measurements). At the same time, the lidar detected a sustained increase in the backscatter signal, while the imagers revealed the development of copious short horizontal wavelength (4.9 km) billow waves. We conclude that strong wind shears associated with the Kelvin–Helmholtz billow instabilities played a key role in the development of a neutral turbulence layer in close proximity to the NLC layer resulting in the strong but intermittent PMSE detected at 450 MHz on this occasion.  相似文献   

2.
We report observations of a noctilucent cloud (NLC) over central Alaska by a ground-based lidar and camera on the night of 9–10 August 2005. The lidar at Poker Flat Research Range (PFRR), Chatanika (65°N, 147°W) measured a maximum integrated backscatter coefficient of 2.4×10?6 sr?1 with a peak backscatter coefficient of 2.6×10?9 m?1 sr?1 corresponding to an aerosol backscatter ratio of 120 at an altitude of 82.1 km. The camera at Donnelly Dome, 168 km southeast of PFRR, recorded an extensive NLC display across the sky with distinct filamentary features corresponding to wave structures measured by the lidar. The occurrence of the maximum integrated backscatter coefficient corresponded to the passage of a bright cloud band to the southwest over PFRR. The camera observations indicate that the cloud band had a horizontal width of 50 km and a length of 150 km. The horizontal scale of the cloud band was confirmed by medium-frequency radar wind measurements that reported mesopause region winds of 30 m/s to the southwest during the period when the cloud band passed over PFRR. Comparison of these measurements with current NLC microphysical models suggests a lower bound on the water vapor mixing ratio at 83 km of 7–9 ppmv and a cloud ice mass of 1.5–1.8×103 kg. Satellite measurements show that this NLC display occurred during a burst of cloud activity that began on 5 August and lasted for 10 days. This cloud appeared 10 days after a launch of the space shuttle. We discuss the appearance of NLCs in August over several years at this lower polar latitude site in terms of planetary wave activity and space shuttle launches.  相似文献   

3.
Thermal diffusivity of snow is an important thermodynamic property associated with key hydrological phenomena such as snow melt and heat and water vapor exchange with the atmosphere. Direct determination of snow thermal diffusivity requires coupled point measurements of thermal conductivity and density, which continually change due to snow metamorphism. Traditional methods for determining these two quantities are generally limited by temporal resolution. In this study we present a method to determine the thermal diffusivity of snow with high temporal resolution using snow temperature profile measurements. High resolution (between 2.5 and 10 cm at 1 min) temperature measurements from the seasonal snow pack at the Plaine-Morte glacier in Switzerland are used as initial conditions and Neumann (heat flux) boundary conditions to numerically solve the one-dimensional heat equation and iteratively optimize for thermal diffusivity. The implementation of Neumann boundary conditions and a t-test, ensuring statistical significance between solutions of varied thermal diffusivity, are important to help constrain thermal diffusivity such that spurious high and low values as seen with Dirichlet (temperature) boundary conditions are reduced. The results show that time resolved thermal diffusivity can be determined from temperature measurements of seasonal snow and support density-based empirical parameterizations for thermal conductivity.  相似文献   

4.
Foggy air and clear air have appreciably different electrical conductivities. The conductivity gradient at horizontal droplet boundaries causes droplet charging, as a result of vertical current flow in the global atmospheric electrical circuit. The charging is poorly known, as both the current flow through atmospheric water droplet layers and the air conductivity are poorly characterised experimentally. Surface measurements during three days of continuous fog using new instrument techniques show that a shallow (of order 100 m deep) fog layer still permits the vertical conduction current to pass. Further, the conductivity in the fog is estimated to be approximately 20% lower than in clear air. Assuming a fog transition thickness of one metre, this implies a vertical conductivity gradient of order 10 fS m?2 at the boundary. The actual vertical conductivity gradient at a cloud boundary would probably be greater, due to the presence of larger droplets in clouds compared to fog, and cleaner, more conductive clear air aloft.  相似文献   

5.
A high-resolution spectrometer (0.0014 nm at 313 nm) has been developed at the University of L’Aquila (Italy) for atmospheric spectroscopic studies. The layout, optics and software for the instrument control are described. Measurements of the mercury low-pressure lamp lines from 200 to 600 nm show the high performances of the spectrometer. Laboratory measurements of OH and NO2 spectrums demonstrate that the system could be used for cross-section measurements and to detect these species in the atmosphere. The first atmospheric application of the system was the observation of direct solar and sky spectrums that shows a filling-in of the sky lines due to rotational Raman scattering. The measurements have been done with clear and cloudy sky and in both there was a strong dependence of the filling-in from the solar zenith angle whereas no dependence from the wavelengths was evident at low solar zenith angles (less than 85°).  相似文献   

6.
In-situ measurements of number density, size distribution, and mass loading of near-surface aerosols were carried out at Kharagpur, a site on the eastern part of Indo-Gangetic Plains during the winter month of December 2004. The data have been used to investigate wintertime characteristics of aerosols and their effects on the occurrence of haze. The aerosol number density is found to be of the order of 109 m?3 and mass loading is ~265±70 μg m?3 (5–8 times that reported from south Indian sites). The diurnal patterns and day-to-day variations in aerosol number density and mass loading are closely associated with atmospheric boundary layer height. During haze events, the number density of submicron particles is found to be 2–5 times higher than that during non-hazy period. This could be attributed to the enhanced concentration of anthropogenic aerosols, low atmospheric boundary layer height/ventilation coefficient and airflow convergence.  相似文献   

7.
A combined Raman–Rayleigh lidar has been designed at Chung-Li, Taiwan for the simultaneous measurement of water-vapor mixing ratio, temperature and extinction-to-backscatter ratio of aerosol in the lower troposphere. The technique of Raman–Rayleigh lidar can retrieve correct temperature profile in the lower troposphere where the measurements are underestimated due to the aerosol loading. Two typical cases are discussed under different humidity (dry/wet) conditions. The water vapor and temperature profile have shown a good agreement with radiosonde. Simultaneous measurement of Raman–Rayleigh lidar also illustrates the physical nature of the aerosol and is useful in understanding the effects of humidity on aerosol swelling.  相似文献   

8.
Tommeliten is a prominent methane seep area in the Central North Sea. Previous surveys revealed shallow gas-bearing sediments and methane gas ebullition into the water column. In this study, the in situ methane flux at Tommeliten is re-assessed and the potential methane transport to the atmosphere is discussed, with regards to the hydrographic setting and gas bubble modeling. We have compiled previous data, acquired new video and acoustic evidence of gas bubble release, and have measured the methane concentration, and its C-isotopic composition in the water column. Parametric subbottom sonar data reveal the three-dimensional extent of shallow gas and morphologic features relevant for gas migration. Five methane ebullition areas are identified and the main seepage area appears to be 21 times larger than previously estimated. Our video, hydroacoustic, subbottom, and chemical data suggest that ~1.5×106 mol CH4/yr (~26 tons CH4/yr) of methane gas is being released from the seepage area of Tommeliten. Methane concentration profiles in the vicinity of the gas seeps show values of up to 268 nM (~100 times background) close to the seafloor. A decrease in δ13C-CH4 values at 40 m water depth indicates an unknown additional biogenic methane source within the well oxygenated thermocline between 30 and 40 m water depth. Numerical modeling of the methane bubbles due to their migration and dissolution was performed to estimate the bubble-derived vertical methane transport, the fate of this methane in the water column, and finally the flux to the atmosphere. Modeling indicates that less than ~4% of the gas initially released at the seafloor is transported via bubbles into the mixed layer and, ultimately, to the atmosphere. However, because of the strong seasonality of mixing in the North Sea, this flux is expected to increase as mixing increases, and almost all of the methane released at the seafloor could be transferred into the atmosphere in the stormy fall and winter time.  相似文献   

9.
This paper documents the effect of the annular solar eclipse of 15 January 2010 on the lower atmospheric boundary layer dynamics over a complex terrain environment at Gadanki (13.5°N, 79.2°E,) using a suite of instruments namely automatic weather station, mini boundary layer mast (15 m), Doppler SODAR, GPS radiosonde and ozonesonde observations. The net heating rates are estimated using radiative transfer algorithm before, during and after the eclipse. Effect on soil temperature is seen clearly up to 20 cm depth and at all the levels up to 15 m. Decrease in the thermal plume level, a dip in the surface layer and a strong vertical downdrafts (subsidence) are noticed during the peak eclipse. Upper layer winds did not show any variation during the eclipse. It is also found to have pronounced effect on all the surface meteorological parameters for a two-day period.  相似文献   

10.
Simultaneous and complete temperature profiles from near ground to about 100 km are essential for studying the dynamical coupling between different atmospheric layers. They are acquired by combining three different lidar techniques at Wuhan, China (30.5°N, 114.4°E). The atmospheric temperatures from about 3 to 25 km are calculated from the nitrogen molecule density profiles obtained from the N2 vibrational Raman backscatter, while the atmospheric temperatures between 30 and ∼75 km are calculated by the standard Rayleigh scattering method. The temperatures in the 80–100 km altitude region are derived from the Fe Boltzmann technique. The temperature profiles measured by our lidar systems exhibit good agreement when compared with the radiosonde and satellite data, as well as the model. A Lomb–Scargle spectral analysis of the normalized temperature perturbations in the altitude range from 4 to 60 km shows that the spectral slopes of the vertical wave number spectra tended to −3 for large vertical wave numbers. This is consistent with the model predictions of saturated gravity wave spectra.  相似文献   

11.
In the frame of the third CAWSES tidal campaign in June–August 2007, lidar and satellite data were collected and compared with numerical models. Continuous nocturnal middle atmospheric temperature measurements performed with a Rayleigh lidar located at La Reunion Island (20.8°S–55.5°E) were obtained for three subsequent nights. The results clearly show the presence of tidal components with a downward phase propagation. Comparisons with SABER satellite data show good agreement on tidal amplitude; however, some differences on the structures are reported probably due to the zonal nature of the retrieval provided by the SABER data. The observed tidal components are compared with two different numerical models such as the 2D global scale wave model and the 3D-GCM LMDz-REPROBUS. Both models reveal good agreement with temperature lidar patterns, while simulated tidal amplitudes are smaller by a factor of around 2–2.5 K.  相似文献   

12.
The total solar eclipse of 29 March, 2006 which was visible at Ibadan (7.55°N, 4.56°E), south-western Nigeria was utilized to document atmospheric surface-layer effects of the eclipse for the first time in Nigeria. The meteorological parameters measured are global radiation, net radiation, wind speed (at different heights), atmospheric pressure and soil temperature (5, 10 and 30 cm), moisture and heat flux and rainfall. The results revealed remarkable dynamic atmospheric effects. The observations showed that the incoming solar radiation, net radiation and air temperature were significantly affected.There was an upsurge of wind speed just before the first contact of the eclipse followed by a very sharp decrease in wind speed due to the cooling and stabilization of the atmospheric boundary layer. The atmospheric pressure lags the eclipse maximum by 1 h 30 min, while the soil temperature at 5 and 10 cm remain constant during the maximum phase of the eclipse.  相似文献   

13.
Temporal mass variations in the continental hydrosphere and in the atmosphere lead to changes in the gravitational potential field that are associated with load-induced deformation of the Earth’s crust. Therefore, models that compute continental water storage and atmospheric pressure can be validated by measured load deformation time series. In this study, water mass variations as computed by the WaterGAP Global Hydrology Model (WGHM) and surface pressure as provided by the reanalysis product of the National Centers for Environmental Prediction describe the hydrological and atmospheric pressure loading, respectively. GPS observations from 14 years at 208 stations world-wide were reprocessed to estimate admittance factors for the associated load deformation time series in order to determine how well the model-based deformation fits to real data. We found that such site-specific scaling factors can be identified separately for water mass and air pressure loading. Regarding water storage variation as computed by WGHM, weighted global mean admittances are 0.74 ± 0.09, 0.66 ± 0.10, 0.90 ± 0.06 for the north, east and vertical component, respectively. For the dominant vertical component, there is a rather good fit to the observed displacements, and, averaged over all sites, WGHM is found to slightly overestimate temporal variations of water storage. For Europe and North America, with a dense GPS network, site-specific admittances show a good spatial coherence. Regarding regional over- or underestimation of WGHM water storage variations, they agree well with GRACE gravity field data. Globally averaged admittance estimates of pre-computed atmospheric loading displacements provided by the Goddard Geodetic VLBI Group were determined to be 0.88 ± 0.04, 0.97 ± 0.08, 1.13 ± 0.01 for the north, east and vertical, respectively. Here, a relatively large discrepancy for the dominant vertical component indicates an underestimation of corresponding loading predictions.  相似文献   

14.
This paper describes the operational principles, design and field testing of a new, compact, Faraday filter-based spectrometer to measure the D2 (589.158 nm) to D1 (589.756 nm) intensity ratio of the sodium nightglow. This work was motivated by the observations of Slanger et al. (2005) who reported an annual variation in D2/D1 with values ranging from 1.2 to 1.8. Their proposed explanation, a modified Chapman mechanism, requires that the intensity ratio is related to the concentration ratio of atomic oxygen [O] to molecular oxygen [O2]. Our method of measuring D2/D1 utilizes narrowband Na vapor Faraday filters, which can yield observations on the fractional contributions of the two chemical pathways of the modified Chapman mechanism. Since delineation of the two chemical pathways requires a spectral resolution of 0.0002 nm, this is not possible with any other existing instrument.  相似文献   

15.
Two silicate-rich dust layers were found in the Dome Fuji ice core in East Antarctica, at Marine Isotope Stages 12 and 13. Morphologies, textures, and chemical compositions of constituent particles reveal that they are high-temperature melting products and are of extraterrestrial origin. Because similar layers were found ~ 2000 km east of Dome Fuji, at EPICA (European Project for Ice Coring in Antarctica)-Dome C, particles must have rained down over a wide area 434 and 481 ka. The strewn fields occurred over an area of at least 3 × 106 km2. Chemical compositions of constituent phases and oxygen isotopic composition of olivines suggest that the upper dust layer was produced by a high-temperature interaction between silicate-rich melt and water vapor due to an impact explosion or an aerial burst of a chondritic meteoroid on the inland East Antarctic ice sheet. An estimated total mass of the impactor, on the basis of particle flux and distribution area, is at least 3 × 109 kg. A possible parent material of the lower dust layer is a fragment of friable primitive asteroid or comet. A hypervelocity impact of asteroidal/cometary material on the upper atmosphere and an explosion might have produced aggregates of sub-μm to μm-sized spherules. Total mass of the parent material of the lower layer must exceed 1 × 109 kg. The two extraterrestrial horizons, each a few millimeters in thickness, represent regional or global meteoritic events not identified previously in the Southern Hemisphere.  相似文献   

16.
A large wave event was observed in the three upper-mesospheric (80–105 km) airglow emissions of O(1S), Na and OH by the Boston University all-sky imager, at the Arecibo Observatory, during the night of 3 May 2003. The airglow structures appeared to be due to a large upward propagating internal gravity wave, which subsequently became unstable near the 95 km height level and produced large-scale vertical motions and mixing. Simultaneous density and temperature lidar measurements indicated the presence of a large temperature inversion of 80 K valley-to-peak between 88 and 96 km during the time of the event. Near-simultaneous temperature profiles, made by the TIMED SABER instrument, provided evidence that the horizontal extent of the inversion was localized to within 500 km of Arecibo during the wave event. As the gravity wave dissipated, an internal bore was generated, apparently due to the deposition of momentum and energy into the region by the original wave. Although mesospheric gravity wave breaking has been reported previously (Swenson and Mende, 21(1994); Hecht et al., 102(1997); Yamada et al., 28(2001), for example), this was the first time that the phenomenon has been associated with the generation of an internal mesospheric bore. The event suggested that the breaking of a large mesospheric gravity wave can lead to the generation of an internal bore, as suggested by Dewan and Picard 106(2001). Such behavior is of particular interest since little is known of their origins.  相似文献   

17.
An airborne downward-pointing water vapor lidar provides two-dimensional, simultaneous curtains of atmospheric backscatter and humidity along the flight track with high accuracy and spatial resolution. In order to improve the knowledge on the coupling between clouds, circulation and climate in the trade wind region, the DLR (Deutsches Zentrum für Luft- und Raumfahrt) water vapor lidar was operated on board the German research aircraft HALO during the NARVAL (Next Generation Aircraft Remote Sensing for Validation Studies) field experiment in December 2013. Out of the wealth of about 30 flight hours or 25,000 km of data over the Tropical Atlantic Ocean east of Barbados, three ~ 2-h-long, representative segments from different flights were selected. Analyses of Meteosat Second Generation images and dropsondes complement this case study. All observations indicate a high heterogeneity of the humidity in the lowest 4 km of the tropical troposphere, as well as of the depth of the cloud (1–2 km thick) and sub-cloud layer (~ 1 km thick). At the winter trade inversion with its strong humidity jump of up to 9 g/kg in water vapor mixing ratio, the mixing ratio variance can attain 9 (g/kg)2, while below it typically ranges between 1 and 3 (g/kg)2. Layer depths and partial water vapor columns within the layers vary by up to a factor of 2. This affects the total tropospheric water vapor column, amounting on average to 28 kg/m2, by up to 10 kg/m2 or 36%. The dominant scale of the variability is given by the extent of regions with higher-than-average humidity and lies between 300 and 600 km. The variability mainly stems from the alternation between dry regions and moisture lifted by convection. Occasionally, up to 100-km large dry regions are observed. In between, convection pushes the trade inversion upward, sharpening the vertical moisture gradient that is colocated with the trade inversion. In most of the water vapor profiles, this gradient is stronger than the one located at the top of the sub-cloud layer. Lidar observations in concert with models accurately reproducing the observed variability are expected to help evaluate the role these findings play for climate.  相似文献   

18.
We have determined the post-perovskite phase transition boundary in MgSiO3 in a wide temperature range from 1640 to 4380 K at 119–171 GPa on the basis of synchrotron X-ray diffraction measurements in-situ at high-pressure and -temperature in a laser-heated diamond-anvil cell (LHDAC). The results show a considerably high positive Clapeyron slope of + 13.3 ± 1.0 MPa/K and a transition temperature of about 3520 ± 70 K at the core–mantle boundary (CMB) pressure. The thermal structure in D″ layer can be tightly constrained from precisely determined post-perovskite phase transition boundary and the depths of paired seismic discontinuities. These suggest that temperature at the CMB may be around 3700 K, somewhat lower than previously thought. A minimum bound on the global heat flow from the core is estimated to be 6.6 ± 0.5 TW.  相似文献   

19.
A new model is proposed for passive degassing from sub-volcanic magma chambers. The water content in stably stratified shallow magma chamber will be equated to its solubility at the upper boundary by convection. Water from a lower layer high in water content can enrich the contact zone of the upper layer and lead to further convective overturn of this boundary layer. A complete set of equations describing convection with bubble formation and dissolution is reduced to a simplified form by assuming a small bubble content. The development and pattern of flow driven by vesiculation is modeled numerically in a 2D magma chamber for relatively low Raleigh numbers (5×105). Bubbles rising from the magma will collect near the roof in a layer of 8–10 vol% and then escape upward to fumaroles. The Stokes flux of bubbles escaping from an andesitic magma with viscosity 104 P and a top surface of about 500×500 m corresponds with observed total magmatic water fluxes of 35 kg/s. Pressure within the chamber is buffered by elastic (and local visco-elastic) deformations in the solid rocks bounding the chamber to the range between ambient and close to lithostatic values. In a chamber closed to fresh magma inputs, the decrease in volume due to such gentle volatile escape lowers the reference pressure. Bubbles flux from the lower layer induced by variation of the saturation level around stratification boundary may be efficient mechanism for the water transport between layers.  相似文献   

20.
The Los Alamos Raman lidar has been used to make high resolution (25 m) estimates of the evapotranspiration rate over adjacent corn and soybean canopies. The lidar makes three-dimensional measurements of the water vapor content of the atmosphere directly above the canopy that are inverted using Monin–Obukhov similarity theory. This may be used to examine the relationship between evapotranspiration and surface moisture/soil type. Lidar estimates of evapotranspiration reveal a high degree of spatial variability over corn and soybean fields that may be associated with small elevation changes in the area. The spatial structure of the variability is characterized using a structure function and correlation function approach. The power law relationship found by other investigators for soil moisture is not clear in the data for evapotranspiration, nor is the data a straight line over the measured lags. The magnitude of the structure function and the slope changes with time of day, with a probable connection to the amount of evapotranspiration and the spatial variability of the water vapor source. The data used was taken during the soil moisture–atmosphere coupling experiment (SMACEX) conducted in the Walnut Creek Watershed near Ames, Iowa in June and July 2002.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号