首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 611 毫秒
1.
Accurate prediction of ocean surface waves is a challenging task with many associated difficulties. Availability of good quality wind and wave information from satellite platforms inspired the scientific community to assimilate such data in various spectral wave models for enhancing the accuracy of prediction. Over the Indian Ocean, which is the region of interest for the present study, wave heights in extreme situation can go up to 12–14 m, thereby increasing the probability of coastal hazards. This region is further governed by the southern ocean swells that propagate thousands of kilometers. These are, in general, not well captured by the spectral wave models. Therefore, assimilation of altimeter data in open ocean wave model WAM has been attempted with the aim of enhancing the quality of prediction of significant wave height. Further, simulated wave spectra have been assimilated in a coastal wave model SWAN. This assimilation has been found to significantly improve the prediction of the height of wind waves as well as swell waves. V. Bhatt and S. Surendran are former students of Meteorology and Oceanography Group, Space Applications Centre, ISRO, Ahmedabad.  相似文献   

2.
The disastrous effects of numerous winter storms on the marine environment in the North Sea and the Baltic Sea during the last decade show that wind waves generated by strong winds actually represent natural hazards and require high quality wave forecast systems as warning tools to avoid losses due to the impact of rough seas. Hence, the operational wave forecast system running at the German Weather Service including a regional wave model for the North Sea and the Baltic Sea is checked extensively whether it provides reasonable wave forecasts, especially for periods of extraordinary high sea states during winter storms. For two selected extreme storm events that induced serious damage in the area of interest, comprehensive comparisons between wave measurements and wave model forecast data are accomplished. Spectral data as well as integrated parameters are considered, and the final outcome of the corresponding comparisons and statistical analysis is encouraging. Over and above the capability to provide good short-term forecast results, the regional wave model is able to predict extreme events as severe winter storms connected with extraordinary high waves already about 2 days in advance. Therefore, it represents an appropriate warning tool for offshore activities and coastal environment.  相似文献   

3.
Response of the coastal regions of eastern Arabian Sea (AS) and Kavaratti Island lagoon in the AS to the tropical cyclonic storm `Phyan??, which developed in winter in the south-eastern AS and swept northward along the eastern AS during 9?C12 November 2009 until its landfall at the northwest coast of India, is examined based on in situ and satellite-derived measurements. Wind was predominantly south/south-westerly and the maximum wind speed (U10) of ~16 m/s occurred at Kavaratti Island region followed by ~8 m/s at Dwarka (Gujarat) and ~7 m/s at Diu (located south of Dwarka) as well as two southwest Indian coastal locations (Mangalore and Malpe). All other west Indian coastal sites recorded maximum wind speed of ~5?C6 m/s. Gust factor (i.e., gust-to-speed ratio) during peak storm event was highly variable with respect to topography, with steep hilly stations (Karwar and Ratnagiri) and proximate thick and tall vegetation-rich site (Kochi) exhibiting large values (~6), whereas Island station (Kavaratti) exhibiting ~1 (indicating consistently steady wind). Rainfall in association with Phyan was temporally scattered, with the highest 24-h accumulated precipitation (~60 mm) at Karwar and ~45 mm at several other west Indian coastal sites. Impact of Phyan on the west Indian coastal regions was manifested in terms of intensified significant waves (~2.2 m at Karwar and Panaji), sea surface cooling (~5°C at Calicut), and moderate surge (~50 cm at Verem, Goa). The surface waves were south-westerly and the peak wave period (T p) shortened from ~10?C17 s to ~5?C10 s during Phyan, indicating their transition from the long-period `swell?? to the short-period `sea??. Reduction in the spread of the mean wave period (T z) from ~5?C10 s to a steady period of ~6 s was another manifestation of the influence of the cyclone on the surface wave field. Several factors such as (1) water piling-up at the coast supported by south/south-westerly wind and seaward flow of the excess water in the rivers due to heavy rains, (2) reduction of piling-up at the coast, supported by the upstream penetration of seawater into the rivers, and (3) possible interaction of upstream flow with river run-off, together resulted in the observed moderate surge at the west Indian coast. Despite the intense wind forcing, Kavaratti Island lagoon experienced insignificantly weak surge (~7 cm) because of lack of river influx and absence of a sufficiently large land boundary required for the generation and sustenance of wave/wind-driven water mass piling-up at the land?Csea interface.  相似文献   

4.
The Ministry of Shipping desires to revise the inland vessels’ limit (IVL) notification based on scientific rationale to improve the safety of vessels and onboard personnel. The Mormugao port region extending up to the Panaji was considered for this pilot study. Measured winds and wave parameters (AWS and moored buoy) as well as NCEP re-analysis and NCMRWF winds were used for the analysis and input to regional and local models. The results of wave model were validated with measured significant wave heights (SWHs) and the comparison shows a good match. The analysis indicates that SWHs do not exceed 2.0 m during non-monsoon months, and in monsoon months exceed 5.0 m, and even 7.0 m, especially during extreme events. In order to draw IVL contours for Goa coastal region, local model was set up and nearshore waves were simulated for the period May 2004–May 2005. Based on the nearshore SWH distribution, IVL contours have been fixed for the Mormugao port and Panaji coastal regions.  相似文献   

5.
December 2004 tsunami in the Indian Ocean region has been simulated using MIKE-21 HD model. The vertical displacement of the seabed is incorporated into the numerical simulation by using time-varying bathymetry data. In the open ocean, sea surface height from altimeter observation has been used to validate the model results. To the west of the rupture zone, the crest is observed to precede the trough of the tsunami waves while to the east, trough preceded the crest. The model performance along the coastal region has been validated using de-tided sea levels from tide gauge measurements at Tuticorin, Chennai, Vishakapattanam, and Paradip ports along the east coast of India. Unique coastal characteristics of the tsunami waves, wave height, and wave celerity are reasonably simulated by the numerical model. Spectral analysis of tide gauge observations and corresponding model results has been done, and the distribution of frequency peaks from the analysis of gauge observations and the model results is observed to have a reasonable comparison. Low-frequency waves, contributed from the coastally trapped edge waves, are found to dominate both the tide gauge observations and the model results. The subsequent increase in the tsunami wave height observed at Chennai, Vishakapattanam, and Paradip has been explained on the basis of coastally trapped edge waves. From the validation studies using altimeter data and tide gauge data, it is observed that the model can be used effectively to simulate the tsunami wave height in the offshore as well as in the coastal region with satisfying performance.  相似文献   

6.
海洋环境因素极值组合及设计标准   总被引:2,自引:0,他引:2       下载免费PDF全文
由于海洋环境条件的复杂性、多变性及随机性,设计标准的选取是决定工程结构安全度、造价、效益及合理型式的主要因素。传统的设计标准,无法考虑海洋环境条件的随机组合,往往过高估计环境条件设计标准,造成不必要的浪费,甚至使具有开发前景的油田失去开采价值。以实测和后报资料为基础,使用多维联合概率的随机模拟技术,结合不同结构型式的极值响应及不同资料样本的选择方法,提出了海洋工程结构物上的风、浪、流、潮联合荷载及相应的联合概率水平问题,用以作为海洋工程环境荷载设计标准。  相似文献   

7.
In this study, the Florida State University Global Spectral Model (FSUGSM), in association with a high-resolution nested regional spectral model (FSUNRSM), is used for short-range weather forecasts over the Indian domain. Three-day forecasts for each day of August 1998 were performed using different versions of the FSUGSM and FSUNRSM and were compared with the observed fields (analysis) obtained from the European Center for Medium Range Weather Forecasts (ECMWF). The impact of physical initialization (a procedure that assimilates observed rain rates into the model atmosphere through a set of reverse algorithms) on rainfall forecasts was examined in detail. A very high nowcasting skill for precipitation is obtained through the use of high-resolution physical initialization applied at the regional model level. Higher skills in wind and precipitation forecasts over the Indian summer monsoon region are achieved using this version of the regional model with physical initialization. A relatively new concept, called the ‘multimodel/multianalysis superensemble’ is described in this paper and is applied for the wind and precipitation forecasts over the Indian subcontinent. Large improvement in forecast skills of wind at 850 hPa level over the Indian subcontinent is shown possible through the use of the multimodel superensemble. The multianalysis superensemble approach that uses the latest satellite data from the Tropical Rainfall Measuring Mission (TRMM) and the Defense Meteorological Satellite Program (DMSP) has shown significant improvement in the skills of precipitation forecasts over the Indian monsoon region.  相似文献   

8.
In the early stages of wave growth it is seen that wave heights are underestimated by presently available models especially in a low wind regime. Parametric wind-sea relationships of significant wave height (H2) and zero-crossing period (T 2) for slight to moderate sea-states were proposed earlier on an analysis of wind and wave data. This model is based on the concept of time delay between the wind speed (U) and wave evolution process. It is simple and requires less computational effort compared to the spectral method. The present paper attempts to test and evaluate the performance of the proposed model with additional field data of wind and waves measured off the Indian coast. MeasuredU,H 2, andT 2 ranged between 1 and 15 m/s, 0·5 and 2·7 m and 4 and 10 s respectively. By and large, the comparison between model output and field observations are encouraging. A hindcast study was carried out earlier using a spectral wave prediction model (TOHOKU) for Indian Seas using field measurements which include the data sets utilized in this study. Comparison between these two models reveals a good agreement.  相似文献   

9.
Mud bank formation during the southwest monsoon along the southwest coast of India remains an enigma to the researchers and coastal community in spite of several earlier studies. The present study attempts to unravel the mystery through a high-frequency, season-long time-series observation at Alappuzha, located at the southern part of the west coast of India, a region of frequent occurrence of mud bank. Using 7-month-long weekly time-series observation, we identified strong winds and high waves associated with onset of the southwest monsoon and subsequent three episodic atmospheric low-pressure events (LPEs).With the help of in situ time-series data, we show that the strong winds and high waves associated with southwest monsoon pre-conditions the near shore bottom sediment to bring it into suspension. The high amplitude waves associated with the southwest monsoon, while propagating from the deep water to shallow water region, interact with the bottom initiating bottom-sediment movement and its suspension due to wave refraction and shoaling. The sporadic occurrence of the atmospheric LPEs enhances the process of suspension of bottom sediment in the near shore region leading to the formation of fluid mud. Simulations with a cohesive sediment transport model yielded realistic estimates of sediment transport, in the presence of an onshore current, a pre-requisite for transporting the fluid mud toward the coast. The prevailing onshore upwelling current during the southwest monsoon provides the favorable pre-requisite conditions for transporting the fluid mud through depression channel network towards the coast. Once sufficient quantity and thickness of fluid mud is accumulated in the near shore region, it acts as a wave damper for subsequent high monsoon waves, as indicated by the time-series wave data, leading to the formation of tranquil mud bank region. Depression channel networks extending from the shelf to the coast off Alappuzha, Kochi, Ponnani, Beypore, and Ullal were found in the bathymetric charts, thus explaining why mud banks occur only at few locations in spite of the prevalence of similar monsoon conditions.  相似文献   

10.
Water vapour tracers can provide useful information on winds at ≈ 500mb by observing the 6·7μ radiances. This fills the data gap in the cloud motion winds provided by conventional meteorological geostationary satellites. There is no geostationary satellite at present over the Indian Ocean with 6·7μ imaging capability to provide mid-tropospheric winds. The potentials of 6·7μ radiances, available from polar orbiting satellites, for mid-tropospheric circulation features have been examined in this study. Tiros-N satellite data of May 1979 and ECMWF level-IIIb wind data were analysed to relate the radiances with the streamlines. We find that the radiances of 6·7μ from orbiting satellites agree well with the wind field.  相似文献   

11.
This study assesses the impact of Doppler weather radar (DWR) data (reflectivity and radial wind) assimilation on the simulation of severe thunderstorms (STS) events over the Indian monsoon region. Two different events that occurred during the Severe Thunderstorms Observations and Regional Modeling (STORM) pilot phase in 2009 were simulated. Numerical experiments—3DV (assimilation of DWR observations) and CNTL (without data assimilation)—were conducted using the three-dimensional variational data assimilation technique with the Advanced Research Weather Research and Forecasting model (WRF-ARW). The results show that consistent with prior studies the 3DV experiment, initialized by assimilation of DWR observations, performed better than the CNTL experiment over the Indian region. The enhanced performance was a result of improved representation and simulation of wind and moisture fields in the boundary layer at the initial time in the model. Assimilating DWR data caused higher moisture incursion and increased instability, which led to stronger convective activity in the simulations. Overall, the dynamic and thermodynamic features of the two thunderstorms were consistently better simulated after ingesting DWR data, as compared to the CNTL simulation. In the 3DV experiment, higher instability was observed in the analyses of thermodynamic indices and equivalent potential temperature (θ e) fields. Maximum convergence during the mature stage was also noted, consistent with maximum vertical velocities in the assimilation experiment (3DV). In addition, simulated hydrometeor (water vapor mixing ratio, cloud water mixing ratio, and rain water mixing ratio) structures improved with the 3DV experiment, compared to that of CNTL. From the higher equitable threat scores, it is evident that the assimilation of DWR data enhanced the skill in rainfall prediction associated with the STS over the Indian monsoon region. These results add to the body of evidence now which provide consistent and notable improvements in the mesoscale model results over the Indian monsoon region after assimilating DWR fields.  相似文献   

12.
The aim of this paper is to study the feasibility of deriving vertical wind profiles from current satellite observations. With this aim, we carried out complex empirical orthogonal function (CEOF) analysis of a large number of radiosonde observations of wind profiles over the Indian Ocean during the monsoon months. It has been found that the first two CEOFs explain 67% of the total variance in wind fields. While the first principal component is well correlated with the winds at 850 mb (r = 0:80), the second one is highly correlated with winds at 200 mb (r = 0:89). This analysis formed the basis of a retrieval algorithm which ensures the retrieval of vertical profiles of winds using satellite tracked cloud motion vector winds. Under the assumption that accurate measurements of wind are available at the above mentioned levels, the r.m.s. error of retrieval of each component of wind is estimated to range between 2 ms-1 and 6 ms-1 at different levels, which is much less than the natural variance of winds at these levels. For a better visualization of retrieval, we have provided retrieved and true wind profiles side by side for four typical synoptic conditions during the monsoon season.  相似文献   

13.
The equatorial wave campaign-II which formed a part of the Indian Middle Atmosphere Programme (IMAP), was conducted from SHAR (13.7°N, 80.2°E) from 15 January to 28 February 1986. Winds were measured from ground to 60 km by means of high altitude balloon and a meteorological rocket (RH-200), once everyday, for 45 days. The frequencies of the oscillations in the deviations of the east-west component of the winds from its mean at each height with one kilometer interval were obtained by the maximum entropy (ME) method and phases/amplitudes of these frequencies were determined by the least squares technique on the wind variation time series. The ME method has the inherent advantage of providing periodicities up to 1.5 times the data length. The height structure of the long period waves of > 23 day periodicities that have larger amplitudes nearly by a factor of 2 as compared to the medium (9 to 22 day) or shorter period (4 to 8 day) ones, reveal two height regions of enhanced amplitudes, one in the troposphere and another in the upper stratosphere/lower mesosphere, that too, mostly in the regions of positive (westerly increasing or easterly decreasing with height) wind shears. The waves are seen to be inhibited in the negative wind shear regions. From the abrupt changes in the altitude variation of phase, the possible source region has been identified. The vertical wavelengths have been estimated to be 34 km and 19 km in the troposphere and lower stratosphere respectively and 8 km in the upper stratosphere and lower mesosphere. Around 56 km the wave amplitude is reduced to 1/4 of its value below, while the vertical shear strength in the mean wind doubled up. The tropospheric waves are suggested to be Rossby waves of extratropical origin penetrating to tropical latitudes. The stratospheric/mesospheric waves however appear to emanate from a source around the stratopause.  相似文献   

14.
This study investigates impacts of a wave farm on waves, currents and coastal morphology adjacent to the wave farm, which is located in the Southwest of England (the Wave Hub). In this study, we focus on the interaction between waves and tides due to the presence of the wave farm and its effects on wave radiation stresses, bottom shear stresses and consequently on the sediment transport and the coast adjacent to the wave farm, using an integrated numerical modelling system. The modelling system consists of the near-shore wave model SWAN, the ocean circulation model ROMS and a sediment transport model for morphological evolution. The results show that tidal elevation and tidal currents can have a significant effect on waves and that tidal forcing and waves have a significant effect on bottom shear stresses. Waves can impact on the processes related to the bottom boundary layer and mixing intensity in the water column. The wave farm has an impact on the gradients of radiation shear stresses and bottom shear stresses that modify current speeds and wave heights, which in turn impact on the near-shore sediment transport and the resulting morphological changes. Bed load transport rates show a decrease when the wave farm is present, even during storm conditions. The results highlight the importance of the interactions between waves and tides when modelling coastal morphology with presence of wave energy devices.  相似文献   

15.
The shallow water wave simulation model-SWAN incorporated with a simple fine sediment erosion model is applied to Hangzhou Bay, China, to model the horizontal distribution of the maximum bottom orbital velocity and corresponding fine sediment erosion rates induced by: (1) southeasterly steady winds (5, 20 and 30 m/s), (2) southwesterly steady winds (5 and 20 m/s); (3) northwesterly steady winds (5 and 20 m/s); (4) east-southeasterly steady winds (5 and 20 m/s); (5) easterly steady winds (5 and 20 m/s) under closed and unclosed boundaries; and (6) unsteady winds during the slack water periods. Results suggest: (1) the steady wind wave-induced maximum bottom orbital velocities and corresponding fine sediment erosion rates generally increased with the increasing steady winds; (2) closed and unclosed boundary conditions had more significant influences on modeled fine sediment erosion rates under 5 m/s easterly steady winds than 20 m/s; and (3) steady and unsteady wind wave-induced maximum bottom currents could be significant in eroding fine sediment bed in Hangzhou Bay. The results show implications for geomorphology, sedimentology, coastal erosion, and environmental pollution mitigation in Hangzhou Bay.  相似文献   

16.
In this work, the impact of assimilation of conventional and satellite data is studied on the prediction of two cyclonic storms in the Bay of Bengal using the three-dimensional variational data assimilation (3D-VAR) technique. The FANOOS cyclone (December 6?C10, 2005) and the very severe cyclone NARGIS (April 28?CMay 2, 2008) were simulated with a double-nested weather research and forecasting (WRF-ARW) model at a horizontal resolution of 9?km. Three numerical experiments were performed using the WRF model. The back ground error covariance matrix for 3DVAR over the Indian region was generated by running the model for a 30-day period in November 2007. In the control run (CTL), the National Centers for Environmental Prediction (NCEP) global forecast system analysis at 0.5° resolution was used for the initial and boundary conditions. In the second experiment called the VARCON, the conventional surface and upper air observations were used for assimilation. In the third experiment (VARQSCAT), the ocean surface wind vectors from quick scatterometer (QSCAT) were used for assimilation. The CTL and VARCON experiments have produced higher intensity in terms of sea level pressure, winds and vorticity fields but with higher track errors. Assimilation of conventional observations has meager positive impact on the intensity and has led to negative impact on simulated storm tracks. The QSCAT vector winds have given positive impact on the simulations of intensity and track positions of the two storms, the impact is found to be relatively higher for the moderate intense cyclone FANOOS as compared to very severe cyclone NARGIS.  相似文献   

17.
Heat wave of 2015 over India, a natural disaster with 2500 human deaths, was studied to understand the characteristics, associated atmospheric circulation patterns and to evaluate its predictability. Although temperatures are highest in May over India, occurrence of heat wave conditions over southeast coastal parts of India in May 2015 had been unanticipated. Analyses revealed that isolated region of Andhra Pradesh (AP) had experienced severe heat wave conditions during May 23–27, 2015, with temperatures above 42 °C and the sudden escalation by 7–10 °C within a short span of 2–3 days. Short-range weather predictions with Advanced Research Weather Research and Forecasting model at 3-km resolution, up to 72-h lead time, have been found accurate with statistical metrics of small mean absolute error and root-mean-square error and high index of agreement confirming the predictability of the heat wave evolution. Analyses have indicated that regional atmospheric pressure disparities within the Eurasia region, i.e., increased pressure gradient between the Middle East and India, had been responsible for increased northwest wind flow over to northwest India and to southeast India which have advected higher temperatures. Estimates of warm air advection have shown heat accumulation over AP region, due to sea breeze effect. The study led to the conclusion that changing pressure gradients between Middle East and India, enhancement of northwest wind flow with warm air advection and sea breeze effect along southeast coast blocking the free flow have contributed to the observed heat wave episode over coastal Andhra Pradesh.  相似文献   

18.
The rise of total water levels at the coast is caused primarily by three factors that encompass storm surges, tides and wind waves. The accuracy of total water elevation (TWE) forecast depends not only on the cyclonic track and its intensity, but also on the spatial distribution of winds which include its speed and direction. In the present study, the cyclonic winds are validated using buoy winds for the recent cyclones formed in the Bay of Bengal since 2010 using Jelesnianski wind scheme. It is found that the cyclonic winds computed from the scheme show an underestimate in the magnitude and also a mismatch in its direction. Hence, the wind scheme is suitably modified based on the buoy observations available at different locations using a power law which reduces the exponential decay of winds by about 30%. Moreover, the cyclonic wind direction is also corrected by suitably modifying its inflow angle. The significance of modified exponential factor and inflow angle in the computation cyclonic winds is highlighted using statistical analysis. A hydrodynamic finite element-based Advanced Circulation 2D depth integrated (ADCIRC-2DDI) model is used here to compute TWE as a response to combined effect of cyclonic winds and astronomical tides. As contribution of wave setup plays an important role near the coast, a coupled ADCIRC + SWAN is used to perceive the contribution of wind waves on the TWE. The experiments are performed to validate computed surge residuals with available tide gauge data. On comparison of observed surge residuals with the simulations using modified winds from the uncoupled and coupled models, it is found that the simulated surge residuals are better compared, especially with the inclusion of wave effect through the coupled model.  相似文献   

19.
The delivery, flux and fate of terrigenous sediment entering the Great Barrier Reef lagoon has been a focus of recent studies and represents an ongoing environmental concern. Wave‐induced bed stress is the most significant mechanism of sediment resuspension in the Great Barrier Reef, and field data and mathematical modelling indicates that the combined effects of short‐period wind waves, longer period swell waves, and tidal and wind‐driven currents can often exceed the critical bed stress for resuspension. Suspended‐sediment concentrations at 20 m water depth indicate resuspension seldom occurs on the middle shelf under normal wave conditions. Non‐cyclonic turbidity events are generally confined to the inner shelf. The wave climate in the southern sector of the central Great Barrier Reef lagoon is the most erosive, and resuspension of outer shelf sediments was hindcast for recorded cyclones. Wind‐driven, longshore currents are fundamental to the northward movement of sediment, and the annual northward mass flux from embayments undergoing resuspension in the Burdekin region is estimated to be one order of magnitude larger than the mass of sediment introduced by a moderate flood plume. Strong onshore winds are estimated to generate significant three‐dimensional bottom return currents on approximately 30–70 days per year, forming a potentially significant offshore‐directed sediment flux during high suspended‐sediment concentration events on the inner shelf.  相似文献   

20.
Analysis of monthly momentum transport of zonal waves at 850 hPa for the period 1979 to 1993, between ‡S and ‡N for January to April, using zonal (u) and meridional (v) components of wind taken from the ECMWF reanalysis field, shows a positive correlation (.1% level of significance) between the Indian summer monsoon rainfall (June through September) and the momentum transport of wave zero TM(0) over latitudinal belt between 25‡S and 5‡N (LB) during March. Northward (Southward) TM(0) observed in March over LB subsequently leads to a good (drought) monsoon season over India which is found to be true even when the year is marked with the El-Nino event. Similarly a strong westerly zone in the Indian Ocean during March, indicates a good monsoon season for the country, even if the year is marked with El-Nino. The study thus suggests two predictors, TM(0) over LB and the strength of westerly zone in the Indian Ocean during March.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号