首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An alkaline protease from Acetes chinensis was purified and characterized in this study. The steps of purification include ammonium sulfate precipitation, ion-exchange chromatography with Q-sepharose Fast Flow, gel filtration chromatography with S300 and the second ion-exchange chromatography with Q-sepharose Fast Flow. The protease was isolated and purified, which was present and active on protein substrates (azocasein and casein). The specific protease activity was 17.15 folds and the recovery was 4.67. The molecular weight of the protease was estimated at 23.2 kD by SDS-PAGE. With azocasein as the susbstrate, the optimal temperature was 55°C and the optimal pH value was 5.5. Ion Ca2+ could enhance the proteolytic activity of the protease, while Cu2+, EDTA and PMSF could inhibit its activity.  相似文献   

2.
Protease is wildly used in various fields, such as food, medicine, washing, leather, cosmetics and other industrial fields. In this study, an alkaline protease secreted by Micrococcus NH54PC02 isolated from the South China Sea was purified and characterized. The growth curve and enzyme activity curve indicated that the cell reached a maximum concentration at the 30th hour and the enzyme activity reached the maximum value at the 36th hour. The protease was purified with 3 steps involving ammonium sulfate precipitation, ion-exchange chromatography and hydrophobic chromatography with 8.22-fold increase in specific activity and 23.68% increase in the recovery. The molecular mass of the protease was estimated to be 25 kDa by SDS-PAGE analysis. The optimum temperature and pH for the protease activity were 50°C and pH 10.0, respectively. The protease showed a strong stability in a wide range of pH values ranging from 6.0–11.0, and maintained 90% enzyme activity in strong alkaline environment with pH 11.0. Inhibitor trials indicated that the protease might be serine protease. But it also possessed the characteristic of metalloprotease as it could be strongly inhibited by EDTA and strongly stimulated by Mn2+. Evaluation of matrix-assisted laser desorption ionization/time-of-flight MS (MALDI-TOF-TOF/MS) showed that the protease might belong to the peptidase S8 family.  相似文献   

3.
A psychrophilic bacterium strain 547 producing cold-adaptive alkaline protease was isolated from the deep sea sediment of Prydz Bay, Antarctica. The organism was identified as a Planomicrobium species by 16S rRNA analysis. The optimal and highest growth temperatures for strain 547 were 15℃ and 30℃, respectively. The extracellular protease was purified by ammonium sulfate precipitation and DEAE cellulose-52 chromatography. The optimal temperature and pH for the activity of the purified enzyme were 35 ℃ and pH 9.0, respectively. The enzyme retained approximately 40% of its activity after 2 h of incubation at 50℃. The enzymatic activity was inhibited by 1 mmol/L phenylmethyl sulfonylfluoride (PMSF) and hydrochloride 4-(2-aminoethyl)-benzenesulfonyl fluoride (AEBSF), indicating that it was a serine protease. The presence of Ca2+ and Mn2+ increased the activity of the enzyme. The protease gene with a size of 1 269 bp was cloned from Planomicrobium sp. 547 using primers designed based on the conserved sequences of proteases in GenBank. The Planomicrobium sp. 547 protease contained a domain belonging to the peptidase S8 family, which has a length of 309 amino acid (AA) residues. The alignment and phylogenetic analysis of the AA sequence indicated that the protease belonged to the subtilisin family.  相似文献   

4.
A superoxide dismutase was purified from Enteromorpha linza using a simple and safe procedure, which comprised phosphate buffer extraction, ammonium sulphate precipitation, ion exchange chromatography on Q-sepharose column, and gel filtration chromatography on Superdex 200 10/300GL. The E. linza superoxide dismutase (E/SOD) was purified 103.6-fold, and a yield of 19.1% and a specific activity of 1 750 U/rag protein were obtained. The SDS-PAGE exhibited E/SOD a single band near 23 kDa and the gel filtration study showed E/SOD's molecular weight is near 46 kDa in nondenatured condition, indicating it's a homodimeric protein. E/SOD is an iron-cofactored superoxide dismutase (Fe-SOD) because it was inhibited by hydrogen peroxide, insensitive to potassium cyanide. The optimal temperature for its maximal enzyme activity was 35℃, and it still had 29.8% relative activity at 0℃, then E/SOD can be classified as a cold-adapted enzyme. E/SOD was stable when temperature was below 40℃ or the pH was within the range of 5 10. The first 11 N-terminal amino acids orE/SOD were ALELKAPPYEL, comparison of its N-terminal sequence with other Fe-SOD N-terminal sequences at the same position suggests it is possibly a chloroplastic Fe-SOD.  相似文献   

5.
A total of 69 strains of thermophilic bacteria were isolated from water, soil and sediment samples from three Indonesia’s hot spring areas (Pantai cermin, Kalianda and Banyu wedang) by using Minimal Synthetic Medium (MSM). The extreme thermophile Brevibacillus sp. PLI-1 was found to produce extracellular thermophilic alkaline protease with optimal activity at 70℃ and pH 8.0-9.0. The molecular weight of the protease was estimated to be around 56 kD by SDS-PAGE. The maximum activity of the protease was 26.54 U mL-1. The protease activity did not decrease after 30 min and still retained more than 70% of relative activity after 60 min at 70℃ and pH 8.0. The ion Mg2+ was found to promote protease activity at both low and high concentrations, whereas Cu2+ and Zn2+ could almost completely inhibit the activity. Divalent cation chelator EDTA inhibited the enzyme activity by 55.06% ± 0.27%, while the inhibition caused by PMSF, Leupeptin, Pepstain A and Benzamidine were 66.78% ± 3.25%, 52.37% ± 0.25%, 62.47% ± 2.96% and 50.99% ± 0.24%, respectively. Based on these observations, the enzyme activity was conspicuously sensitive to the serine and cysteine protease inhibitors. All these results indicated that the protease isolated from the strain PLI-1 was a thermophilic protease and had a high-temperature stability and a pH stability.  相似文献   

6.
A bacterium hydrolyzing carboxymethylcellulose, isolated from Antarctic sea ice, was identified as Pseudoalteromonas sp. based on 16S rDNA gene sequences and named as Pseudoalteromonas sp. AN545. The extracellular endo-1,4-β-glucanase AN-1 was purified successively by ammonium sulfate precipitation, DEAE-Sepharose ion exchange chromatography and Sephadex G-75 gel filtration chromatography. The molecular mass of AN-1 was estimated to be 47.5 kDa utilizing SDS-PAGE and gel chromatography analysis. AN-1 could hydrolyze caboxymethylcellulose, avicel and β-glucan, but not cellobiose, xylan and p-Nitrophenyl-β-D-glucopyranoside. The optimal temperature and pH for the β-glucanase activity of AN-1 were determined to be at 30°C and pH 6.0, respectively. AN-1 was stable at acidic solutions of pH 5.0-6.5 and temperatures below 30°C for 1 h. Moreover, the specific activity was enhanced by Ca2+ and Mg2+, and inhibited by Cu2+. The kinetic parameters Michaelis constant (Km) and maximum velocity (Vmax) of AN-1 were 3.96 mg/mL and 6.06×10-2 mg/(min·mL), respectively.  相似文献   

7.
2-haloacid dehalogenases constitute a group of dehalogenases which are capable of dehalogenating the halogenated organic compounds. So far, the 2-haloacid dehalogenases have been found in many bacteria, but not in Paracoccus genus. In the present study, one enzyme 2-haloacid dehalogenase(designated as Deh99), induced by DL-2-chloropropionate(DL-2-CPA), was purified from the marine bacterium Paracoccus sp. DEH99, isolated from marine sponge Hymeniacidon perlevis. The enzyme of Deh99 was purified to homogeneity by ammonium sulfate precipitation, ion exchange chromatography(Q-Sepharose HP), and Superdex 200 gel filtration chromatography. The molecular weight of Deh99 was estimated to be 25.0 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SDS-PAGE), and 50.0 kDa natively by gel filtration chromatography. The enzyme of Deh99 stereospecifically dehalogenated L-2-CPA to produce D-lactate, with an apparent Michaelis-Menten constant(Km) value of 0.21 mmol L-1 for L-2-CPA. The optimal pH and temperature for Deh99 activity were 10.0 and 40℃, respectively. The enzyme of Deh99 acted on short-carbon-chain 2-haloacids, with the highest activity towards monochloroacetate. The activity of Deh99 was slightly affected by DTT and EDTA, but strongly inhibited by Cu2+ and Zn2+. The enzyme of Deh99 shows unique substrate specificity and inhibitor sensitivities compared to previously characterized 2-haloacid dehalogenases and is the reported one about purified 2-haloacid dehalogenase isolated from the bacteria of Paracoccus genus.  相似文献   

8.
We cloned and sequenced a prtV-like gene from Vibrio anguillarum M3 strain.This prtV gene encodes a putative protein of 918 amino acids,and is highly homologous to the V.cholerae prtV gene.We found that a prtV insertion mutant strain displayed lower gelatinase activity on gelatin agar,lower protease activity against azocasein,and lower activity for four glycosidases.This prtV mutant strain also had increased activity for two esterases in its extracellular products,as analyzed by the API ZYM system.In additi...  相似文献   

9.
The marine yeast strain W6b isolated from sediment of the South China Sea was found to produce a cell-bound acid protease. The crude acid protease produced by this marine yeast showed the highest activity at pH 3.5 and 40 °C. The optimal pH and temperature for the crude acid protease were in agreement with those for acid protease produced by the terrestrial yeasts. The optimal medium of the acid protease production was seawater containing 1.0% glucose, 1.5% casein, and 0.5% yeast extract, and the optimal cultivation conditions of the acid protease production were pH 4.0, a temperature of 25 °C and a shaking speed of 140 rmin−1. Under the optimal conditions, 72.5 UmL−1 of acid protease activity could be obtained in cell suspension within 48 h of fermentation at shake flask level. The acid protease production was induced by high-molecular-weight nitrogen sources and repressed by low-molecular-weight nitrogen sources. Skimmed-milk-clotting test showed that the crude acid protease from the cell suspension of the yeast W6b had high skimmed milk coagulability. The acid protease produced by M. reukaufii W6b may have highly potential applications in cheese, food and fermentation industries.  相似文献   

10.
以凡纳滨对虾为原料,以ACE抑制率为指标,利用响应面法对虾肉蛋白自溶制备ACE抑制肽的工艺条件进行了优化,即在酶解条件(pH值、温度、虾头虾肉质量比)和ACE(Angiotensin I-converting Enzyme,ACE)抑制率之间建立了数学模型Y=23.59-0.21X1+0.84X2+0.85X3-0.71X12-0.94X22-1.06X32+0.088X1X2-0.46X1X3-0.87X2X3。分析表明,在3个因素中,虾头与虾肉比例对ACE抑制率的影响最为显著。优化后的工艺参数为:pH7.35,温度57.2℃,虾头与虾肉比例为1∶1。根据回归方程的预测结果,反应时间为4 h,其ACE抑制率达41.9%。  相似文献   

11.
We isolated a bacterial strain (HC4) that is able to degrade κ-carrageenan from a live specimen of the red alga Hyalosiphonia caespitosa. With 16S rRNA gene sequencing, we identified the strain as Tamlana sp., and then purified an extracellular κ-carrageenase from a culture of Tamlana sp. HC4 by ammonium sulfate precipitation, Sephadex G-200 gel filtration chromatography, and DE-cellulose 52 anion-exchange chromatography. The purified enzyme yields a single band on SDS-PAGE with a molecular mass of 66.4 kDa. The optimal pH and temperature for κ-carrageenase activity are at 8.0 and 30°C, respectively. The enzyme is stable over the range of pH 7.2–8.6 below 45°C. The enzyme activity is strongly inhibited by Zn2+ and Cu2+ at 1 mmol/L. The enzyme-catalyzed reaction follows Michaelis-Menten kinetics with the Michaelis constant (K m ) at 7.63 mg/ml. Analysis of the degradation products of the κ-carrageenase by ESI-MS and 13C-NMR spectroscopy indicates that the enzyme degrades κ-carrageenan down to the level of κ-neocarrabiose sulfate.  相似文献   

12.
为研究生物酶采油解堵剂中产蛋白酶菌株的初、复筛选及培养条件优化,从大庆原油样品中筛选菌种,通过水解酪素的透明圈实验及福林酚测蛋白酶酶活的方法进行菌株的初、复筛选;以蛋白酶酶活为优化指标,采用单因素实验对筛选的产蛋白酶菌株的培养基及培养条件进行优化,优化最适培养基:可溶性淀粉为15g/L,蛋白胨为20g/L,酵母膏为20g/L,NaCl为1.0g/L,CaCl2为0.02g/L,Na2HPO4为0.2g/L,NaH2PO4为0.1g/L;在初始pH为6.0、接种量为5%(体积分数)、温度为31℃、摇床转速为160r/min的条件下,培养72h后,菌株的蛋白酶酶活为551.0U/mL,为复筛选菌株的蛋白酶酶活的22.92倍,即为菌株生长繁殖及代谢的最佳条件,能够获得更高的蛋白酶酶活,有利于后续实验的进行.结果表明:菌株产蛋白酶对原油作用效果为发酵液表面张力从作用前的56.2mN/m降低到作用后的30.5mN/m,表面张力显著降低,还有降解降黏原油等效果,具有一定的研究价值.  相似文献   

13.
Lipase from Antarctic krill,with a molecular weight of 71.27kDa,was purified with ammonium sulfate precipitation and a series of chromatographic separations over ion exchange(DEAE)and gel filtration columns(Sephacryl S-100),resulting in 5.2%recovery with a 22.4-fold purification ratio.The optimal pH and temperature for enzyme activity were 8.0 and 45℃,respectively.Purified lipase had Km and Vmax values of 3.27mmolL−1 and 2.4Umg−1,respectively,using p-nitrophenyl laurate as the substrate.Lipase activity was enhanced by adding Ca2+and Mg2+ions in the concentration ranges of 0–0.5mmolL−1 and 0–0.3mmolL−1,respectively,while the activity was inhibited by a further increase in these ion concentrations.Fe3+and Cu2+ions showed obvious inhibitory effects on enzyme activity,and the inhibition rates were 71.8%and 53.3%when the ion concentrations were 0.5mmolL−1.  相似文献   

14.
107 strains producing protease were screened from 260 strains of Antarctic psychrophilic bacteria, among which proteolytic activity of five strains was more than 45 U ml^-1. The 16S rRNA gcne sequences homology and phylogcnetic analysis of five Antarctic psychrophillc bacteria showed that NJ276, NJS-9, NJ16-70,NJ345 belonged tO the described genus Pseudoalteromonas and NJ341 belonged to the genus Colwellia. The growth and the protease characteristic of four Antarctic psychrophilic bacteria had been studied, and the result showed that the 6ptimal temperature for growth and protease-produeing of four strains was about 10℃. Their growth and protease-produeing were still high during incubatlng 2-5 days. The maximum proteolytic activity occurred at pH 9 for four Antarctic psychrophilic bacteria. The optimal temperature of protease action of both strains NJ276 and NJ5-9 was about 50℃, however, the optimal temperature of protease aetlon of both strains NJ341 and NJ345 was about 40 ℃, and their proteolytic activity under 0℃ exhibited nearly 30% of the maximum activity, but their thermal stabilities were weaker. These results indicated that proteases from NJ341 and NJ345 were low-temperature proteases.  相似文献   

15.
Yeast strain 10 with high yield of protease was isolated from sediments of saltern near Qingdao, China. The protease had the highest activity at pH 9.0 and 45℃. The optimal medium for the maximum alkaline protease production of strain 10 was 2.5 g soluble starch and 2.0 g NaNO3 in 100 mL seawater with initial pH6.0. The optimal cultivation conditions for the maximum protease production were temperature 24.5 ℃, aeration rate 8.0 L min^- 1 and agitation speed 150 r min^-1 . Under the optimal conditions, 623.1 Umg^-1 protein of alkaline protease was reached in the culture within 30 h of fermentation.  相似文献   

16.
The protease activity in digestive tract of young turbot Scophthalmus maximum was studied, and the optimal pH, temperature and NaCl concentration were determined for different portions of the fish's internal organs. The optimal activity in the fish's stomach was at pH of 2.2, while that in the intestinal extracts was within the alkaline range from 9.5 to 10.0. In hepatopancreas, the optimal pH was in low alkalinity at 8.5. The optimal reaction temperature was above 40℃ in stomach, intestine and hepatopancreas. With increasing temperature, the pH value increased in stomach, while in the intestine, an opposite tendency was observed due to combined effect of pH and temperature. NaCl concentration showed inhibitory impact on protein digestion in hepatopancreas. The main protease for protein digestion in turbot seemed to be pepsin. Moreover, the maximum protease activity in different segments of intestine existed in the hindgut.  相似文献   

17.
The protease inhibitor was purified from five different fish eggs. The molecular weights of Pacific herring, chum salmon, pond smelt, glassfish, and Alaska pollock egg protease inhibitors were 120, 89, 84.5, 17, and 16.8kDa, respectively. The specific inhibitory activity of glassfish egg protease inhibitor was the highest followed by those of Pacific herring and Alaska pollock in order. The specific inhibitory activity and purity of glassfish egg protease inhibitor were 19.70 U mg^- 1 protein and 164.70 folds of purification, respectively. Glassfish egg protease inhibitor was reasonably stable at 50 - 65℃ and pH 8, which was more stable at high temperature and pH than protease inhibitors from the other fish species. Glassfish egg protease inhibitor was noncompetitive with inhibitor constant (Ki) of 4.44 nmol L^-1  相似文献   

18.
A total of 400 yeast strains from seawater, sediments, saltern mud, marine fish guts, and marine algae were obtained. The protease activity of the yeast cultures was estimated, after which four strains (HN3.11, N11b, YF04C and HN4.9) capable of secreting extracellular alkaline protease were isolated. The isolated strains were identified as Aureobasidium pullulans, Yarrowia lipolytica, Issatchenkia orientalis and Cryptococcus cf. aureus. The optimal pH of the protease activity produced by strains HN3.11, YF04C, and HN4.9 was 9.0, while that of the protease produced by strain N11b was 10.0. The optimal temperature for protease activity was 45°C for strains HN3.11, N11b, and YF04C, and 50°C for strain HN4.9. After digestion of shrimp (Penaeus vannamei) protein and spirulina (Arthospira platensis) protein with the four crude alkaline proteases, the filtrate from spirulina (Arthrospira platensis) powder digested by the crude alkaline protease of strain HN3.11 was found to have the highest antioxidant activity (61.4%) and the highest angiotensin I converting enzyme (ACE)-inhibitory activities (68.4%). The other filtrates had much lower antioxidant activity and ACE-inhibitory activities.  相似文献   

19.
米曲霉产中性蛋白酶的适宜条件   总被引:3,自引:0,他引:3  
研究了米曲霉产蛋白酶的分布,优化了米曲霉产中性蛋白酶的适宜培养条件以及培养基的最优组成。研究发现米曲霉产中性蛋白酶的能力为最强。米曲霉产中性蛋白酶的适宜培养条件为:m(麸皮)∶m(豆粕粉)=4∶1,水的质量分数为60%,培养基中各无机盐质量分数为:KNO30.2%,MgSO40.05%,Na2HPO40.13%,pH值为6.0,接种量为每10 g培养基接种1.0×108个孢子,最佳培养温度为30℃,最佳培养时间为48 h。在此培养条件下,最高酶活力达3 999.2 U.g-1。  相似文献   

20.
Selection of diet for culture of juvenile silver pomfret, Pampus argenteus   总被引:2,自引:0,他引:2  
Juvenile silver pomfret, Pampus argenteus, was grown in culture tanks for 9 weeks on four different diets, and their effects on fish growth, digestive enzyme activity, and body composition were assessed. The feeding regime was as follows: Diet 1: fish meat; Diet 2: fish meat+artificial feed; Diet 3: fish meat+artificial feed+Agamaki clam meat; Diet 4: fish meat+artificial feed+Agamaki clam+copepods. The greatest weight gain was associated with Diet 4, while the lowest weight gain was associated with Diet 1. No significant difference was observed in weight gain between fish receiving Diet 2 and Diet 3. Specific growth rate followed similar trends as weight gain. The feed conversion ratio (FCR) of fish fed Diet 1 was significantly higher than the other fish groups, but no significant differences were observed in FCRs of fish fed Diet 2, Diet 3 or Diet 4. There was also no significant difference in the hepatosomatic index (HSI) between the four diets. For fish that received Diets 2-4, containing artificial feed, higher protease activities were detected. A higher lipid content of the experimental diets also significantly increased lipase activities and body lipid content. No significant differences in amylase activity or body protein content were found between Diets 1-4. In conclusion, a variety of food components, including copepods and artificial feed, in the diet of silver pomfret significantly increased digestive enzyme activity and could improve growth performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号