首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Benthic fluxes of dissolved inorganic nitrogen (NO3 and NH4+), dissolved organic nitrogen (DON), N2 (denitrification), O2 and TCO2 were measured in the tidal reaches of the Bremer River, south east Queensland, Australia. Measurements were made at three sites during summer and winter. Fluxes of NO3 were generally directed into the sediments at rates of up to −225 μmol N m−2 h−1. NH4+ was mostly taken up by the sediments at rates of up to −52 μmol N m−2 h−1, its ultimate fate probably being denitrification. DON fluxes were not significant during winter. During summer, fluxes of DON were observed both into (−105 μmol m−2 h−1) and out of (39 μmol m−2 h−1) the sediments. Average N2 fluxes at all sampling sites were similar during summer (162 μmol N m−2 h−1) and winter (153 μmol N m−2 h−1). Denitrification was fed both by nitrification within the sediment and NO3 from the water column. Sediment respiration rates played an important role in the dynamics of nitrification and denitrification. NO3 fluxes were significantly related to TCO2 fluxes (p<0.01), with a release of NO3 from the sediment only occurring at respiration rates below 1000 μmol C m−2 h−1. Rates of denitrification increased with respiration up to TCO2 fluxes of 1000 μmol C m−2 h−1. At sediment respiration rates above 1000 μmol C m−2 h−1, denitrification rates increased less rapidly with respiration in winter and declined during summer. On a monthly basis denitrification removed about 9% of the total nitrogen and 16% of NO3 entering the Bremer River system from known point sources. This is a similar magnitude to that estimated in other tidal river systems and estuaries receiving similar nitrogen loads. During flood events the amount of NO3 denitrified dropped to about 6% of the total river NO3 load.  相似文献   

2.
The U-Tapao Canal is the main source of freshwater draining into the outer part of Songkhla Lake, which is the most important estuarine lagoon in Thailand. Songkhla Lake is located in southern Thailand between latitudes 7°08' and 7°50' N and longitudes 100°07' and 100°37' E. Acetic acid (HOAc)-soluble Cu, Fe, Mn, Pb, and Zn and the total concentration of these metals along with Al concentration, organic carbon, carbonate, sand, silt, and clay contents were determined in 4 sediment cores obtained at selected intervals from the mouth of the canal to 12 km upstream. Readily oxidizable organic matter in the cores varies from 1.52% to 7.30% and is generally found to decrease seaward. Total concentrations of Al (61.7–99.0 g kg−1; 2.29–3.67 mol kg−1), Cu (12.4–28.2 mg kg−1; 195–444 μmol kg−1), Fe (25.2–42.0 g kg−1; 451–752 mmol kg−1), Mn (0.22–0.49 g kg−1; 4.0–8.9 mmol kg−1), Pb (16.7–43.1 mg kg−1; 80.6–208 μmol kg−1), and Zn (48.6–122.7 mg kg−1; 0.74–1.88 mmol kg−1) vary to a certain extent vertically and seaward in the U-Tapao Canal core sediments. These concentrations are at or near natural levels and show no indication of anthropogenic contamination.Overall, the data show that total metal concentrations in the surface and near surface core sediments are enriched in varying degrees relative to Al in the order of Zn>Mn>Pb>Fe>Cu. Chemical partitioning shows that the enrichment in the surface and near surface sediments is related to the relatively high proportion of the total metal concentrations (Mn>Zn>Fe>Cu>Pb) that occur in the acetic acid-soluble (nondetrital) fraction, and they generally decrease with depth. Nondetrital Cu, Pb, and Zn likely derive from those metals held in ion exchange positions, certain carbonates, and from easily soluble amorphous compounds of Mn and perhaps those of Fe. Diagenetic processes involving Mn and to a lesser extent, Fe compounds, as well as the vertical changes in the oxidizing/reducing boundaries, appear to be the most important factors controlling the behavior of the metals in these cores. Organic matter and the aluminosilicate minerals, however, appear to be less important carriers of the metals studied.  相似文献   

3.
Polycyclic aromatic hydrocarbon (PAH) bioaccumulation by the polychaete worm Streblospio benedicti (Webster) was measured under exposure to PAH-contaminated sediments in the field and for 28 d in the laboratory. Streblospio benedicti collected from field sediments contaminated at 2.94, 1.07, and l.52 μg g−1 fluoranthene (FLU), benz[a]anthracene (BAA), and benzo[a]pyrene (BAP), bioaccumulated those PAHs at 1.53, 0.215, and 0.332 μg g−1, while worms isolated from less contaminated field sediments (0.399, 0.228, 0.288 μg g−1 FLU, BAA, and BAP) had FLU, BAA, and BAP body burdens of 0.543, 0.236, and 0.083 μg g−1. Worms incubated for 28 d in PAH-spiked sediments (1.52, 0.991, 0.504 μg g−1 FLU, BAA, and BAP) bioaccumulated those PAHs at 0.382, 0.966, and 0.602 μg g−1, respectively. Data normalization to organism lipid and sediment organic carbon (biota-sediment accumulation factors [BSAFs] strongly suggest that Streblospio PAH bioaccumulation was directly related to percent sediment organic carbon, but BSAFs were substantially lower than predicted by equilibrium partitioning theory. BSAFs decreased with increasing PAH log Kow, in worms collected from field sediments, but in spiked sediments BSAFs increased with increasing PAH hydrophobicity. This disparity may have been caused by insufficient spiked-sediment equilibration time (1.5h) in the case of the laboratory test sediments.  相似文献   

4.
To estimate the source and diagenetic state of organic matter reaching bottom sediments, fatty acids and sterols were measured in unconsolidated surface material (flocs) at 12 sites ranging from 600 to 2000 m across the mid-Atlantic continental slope off Cape Hatteras, North Carolina. Total free and esterefied fatty acids were similar in distribution and concentration to other coastal systems, with values ranging from 0.64 to 46.52 μg mg−1 organic carbon (1.10–68.85 μg g−1 dry sediment). Although shallow (600 m) stations contained significantly greater fatty acid concentrations than deep (> 1400m) stations, high variability observed at mid-depth (800 m) collections precluded a consistent relationship between total fatty acid concentration and station depth. At three sites where underlying sediments were also collected, decreases in total fatty acids, reduced amounts of polyenoic acids and significant presence of bacterial fatty acid suggest rapid reworking of labile organic material that reaches the sediment surface. The distribution of sterols was remarkably consistent among all sites even though there were large variations in concentrations (1.8–20.7 μg mg−1 organic carbon). Sterol composition indicated phytoplankton, principally diatoms and dinoflagellates, as the principal source of labile organic matter to sediments, together with a significant input of cholest-5-en-3β-ol typical of zooplankton and their feeding activity. A minor but widespread terrigenous input was also evident based upon significant concentrations of sterols dominant in vascular plants.  相似文献   

5.
Fatty acids and hydrocarbons of sedimenting particles were investigated in the northeastern Adriatic Sea from November 1988 to December 1989. Particles were collected at approximately monthly intervals, using sediment traps deployed at 30 m depth (2 m above bottom). Seasonal changes in sedimentation of particulate matter were very pronounced. Hydrocarbon fluxes and concentrations were found to vary significantly depending on the season. They averaged 2.69 ± 1.44 mg m−2 day−1 and 232.4 ± 90.93 μg g−1 in winter, respectively. In late spring-early summer the corresponding values amounted to 0.045 ± 0.015 mg m−2 day−1 and 13.72 ± 5.56 μg g−1, and they increased towards autumn, when mean values of 0.517 ± 0.228 mg m−2 day−1 and 98.86 ± 48.72 μg g−1 were obtained. In contrast, fatty acid fluxes and concentrations were low during winter (0.26 ± 0.08 mg m−2 day−1 and 21.95 ± 3.35 μg g−1), increased slightly towards the summer (0.48 ± 0.12 mg m−2 day−1 and 139.9 ± 44.6 μ g−1) and reached maximum rate and concentration in autumn, when average values were 1.98 ± 1.30 mg m2 day−1 and 489.1 ± 186.7 μg g−1, respectively. The differences in composition, concentrations and fluxes of the fatty acids and hydrocarbons were related to the sources of sedimenting material, reflecting the influence of resuspension of bottom sediments during winter and the appearance of mucus aggregates during summer and their subsequent deposition in autumn.  相似文献   

6.
Sediment samples were collected at stations along cross-shelf transects in Onslow Bay, North Carolina, during two cruises in 1984 and 1985. Station depths ranged from 11 to 285 m. Sediment chlorophyll a concentrations ranged from 0·06 to 1·87 μg g−1 sediment (mean, 0·55), or 2·6–62·0 mg m2. Areal sediment chlorophyll a exceeded water column chlorophyll a a at 16 of 17 stations, especially at inshore and mid-shelf stations. Sediment ATP concentrations ranged from 0 to 0·67 μg g−1 sediment (mean, 0·28). Values for both biomass indicators were lowest in the depth range including the shelf break (50–99 m). Organic carbon contents of the sediments were uniformly low across the shelf, averaging 0·159% by weight. Photography of the sediments revealed extensive patches of microalgae on the sediment surface.Our data suggest that viable benthic microalgae occur across the North Carolina continental shelf. The distribution of benthic macroflora on the North Carolina shelf indicates that sufficient light and nutrients are available to support primary production out to the shelf break. Frequent storm-induced perturbations do not favour settling of phytoplankton, an alternative explanation for the presence of microalgal pigments in the sediments. Therefore, we propose that a distinct, productive benthic microflora exists across the North Carolina continental shelf.  相似文献   

7.
In May and September 1999 11 stations were sampled in the southern and central North Sea, located in the German Bight, eastern Oyster Ground and Dogger Bank. The study focused on the influence of particle mixing on transport of chlorophyll a to deeper sediment layers and vertical bacterial distribution (max. DEPTH=10 cm). The sampling stations were chosen to reflect a gradient in environmental conditions in the North Sea. The sampling stations differed in respect to redox potential (eH up to −243 mV in the German Bight and up to 274 mV in the offshore regions), silt content (up to 54% in the German Bight and 0·34% at the northern Dogger Bank) and different proportion of fresh organic material on total organic matter content (C/N ratios ranging from 9·27 in the German Bight up to 1·72 in the offshore sediments). Although bacterial densities (8·55×109 g−1in the German Bight up to 0·35×109 g−1in offshore sediments) were significantly correlated to chlorophyll a content in the sediment (P<0·01), inconsistencies in the temporal pattern of both variables in the surficial sediment layer suggested, that the dynamics of bacterial densities is generally controlled by food supply but also by other variables. The chlorophyll a content in the surficial sediments of the German Bight (up to 1·84 μg g−1) was significantly higher than in the Oyster Ground (up to 0·58 μg g−1) and the Dogger Bank area (up to 0·68 μg g−1). With increasing chlorophyll a input to the benthic realm a subsequent enhanced burial of this compound into deeper sediment layers was expected either by biological (bioturbation) or by physical sediment mixing. However, the vertical profile of chlorophyll a decreased steeply in the sediments of the German Bight. Contrary, subsurface peaks were measured in the offshore areas. It was concluded from these results, that the vertical distribution of organic matter in sediments is less limited by the quantitative input from the water column but concomitant with particle mixing itself. The extent and possible mechanisms of particle mixing in the different study areas in relation to specific environmental factors is discussed.  相似文献   

8.
Results of trace metal analyses performed on two species of Euphausiacea, Meganyctiphanes norvegica and Stylocheiron longicorne, and one species of Decapoda, Sergestes arcticus, collected off the east coast of Corsica, are reported. Analyses were carried out by atomic absorption spectrophotometry and by differential pulse anodic stripping voltammetry.S. arcticus contained lower concentrations of phosphorus (which was also analysed as a biological indicator), cadmium (0.33 μg g−1), copper (17.7 μg g−1), lead (2.13 μg g−1) and zinc (51 μg g−1) than the two Euphausiacea (0.50 μg Cd g−1, 25.4 μg Cu g−1, 4.03 μg Pb g−1 and 59 μg Zn g−1). Moreover, manganese concentrations were low in all the samples.When the results presented here are compared with previous results on phytoplankton and mesozooplankton, there appears to be no trend of trace metal enrichment from phytoplankton to the Decapoda.  相似文献   

9.
Discovery Bay, a carbonate-dominated embayment in north Jamaica, has been subject to inputs for 40 years of iron-rich bauxite sediment associated with the local mining and transport of processed bauxite. As such, this site is an ideal natural laboratory to study the records and impacts of iron oxide inputs upon geochemical, diagenetic, and microbial processes in tropical carbonate sediments.Total Fe contents in sites in the bay not receiving bauxite inputs are negligible and porewater Ca2+, SO42− and Cl indicate that bacterial sulphate reduction is an important process. In contrast, surface sediments receiving bauxite inputs contain significant total Fe, from 44 μmol/g in shallow (5 m water depth) sites to 110 μmol/g in deeper (20 m water depth) sites. Up-core increases in total Fe record increased temporal inputs into the bay. Within these Fe-rich sediments porewater data shows the presence of FeII released by bacterial FeIII reduction. There is no direct evidence for significant bacterial sulphate reduction in these sediments. Iron oxides within all bauxite-impacted sediments display a high potential reducibility, from 40% to 80% of the total Fe present as dithionite-extractable FeIII. Experimental analysis of the potential susceptibility to, and rates of, bacterial FeIII reduction, utilising Discovery Bay sediment and Shewanella putrefaciens CN32 (a known FeIII-reducer) has confirmed the high bacterial reducibility of iron oxides within the sediment. Up to 75% of initial dithionite-extractable FeIII in the sediments was reduced over 15 days.The presence of iron oxides within the Discovery Bay shallow marine carbonate systems has markedly altered the chemical diagenetic processes taking place, with a shift from apparent dominance of bacterial sulphate reduction at non-impacted (Fe-poor) sites, to highly significant bacterial FeIII reduction in Fe-rich bauxite-impacted sediments. Given the perceived global increases in terrigenoclastic sediment inputs into tropical carbonate systems as a result of land-use and climate changes, coupled with the documented role that iron oxide reduction plays in nutrient and contaminant cycling in sediment systems, more research into the perturbation of early diagenesis by iron oxide inputs is required.  相似文献   

10.
Megafauna biomass and feeding guilds were studied on the NW Iberian upwelling Continental Margin in order to determine the presence of enriched zones pointing to enhanced particle input. We compare these findings with similar data obtained from a transect across the Celtic Continental Margin that represents a regime without coastal upwelling. Additionally sediment concentrations of phytopigments (chlorophyll-a, phaeophorbides) representing recent inputs of algal production and of nucleic acids (DNA, RNA) are used as proxies for microbial biomass, to assess if there was a relation between these parameters and the megafauna distribution. The sediment on the upper slope (<1600 m) of the Iberian Margin was found to be inhabited by filter-feeding megafauna (26–73% of total invertebrate density, and 1–35% of biomass), and contained relatively low levels of phytopigments (3–6 ng/cm3 chlorophyll-a) and nucleic acids (12–16 μg−1 DNA, 1.5–3.5 μg−1 RNA). In contrast, on the upper slope of the Celtic Margin the dominant component of the megafauna were deposit-feeders (57–92% of total invertebrate density, and 23–90% of biomass) and the sediments contained higher concentrations of phytopigments and nucleic acid. These observations, supplemented by video records revealing the presence of current ripples on the Iberian upper slope, show that these upper slope regions are non-depositional, high energy environments. Conditions at the lower slope and the abyssal plain on the Iberian transect were more quiescent with large deposit-feeding holothurians dominating the megafauna (72–94% of invertebrate biomass), and with relatively high sediment concentrations of phytopigments (7–9 ng/cm3 chlorophyll-a, 157–170 ng/cm3 phaeophorbides) and nucleic acids (21–38 μg−1 DNA, 2.4–5.5 μg−1 RNA). On the basis of our data we argue that the benthic food for the deepest stations on the Iberian transect does not consist of shelf derived organic matter. More likely, fast sinking offshore blooms, possibly associated with filaments of upwelling water, form the major contribution to the annual food supply of the deep living megafauna.  相似文献   

11.
Concentrations of bacteria, chlorophyll a, and several dissolved organic compounds were determined during 11 tidal cycles throughout the year in a high and a low elevation marsh of a brackish tidal estuary. Mean bacterial concentrations were slightly higher in flooding (7·1 × 106 cells ml−1) than in ebbing waters (6·5 × 106 cells ml−1), and there were no differences between marshes. Mean chlorophyll a concentrations were 36·7 μg l−1 in the low marsh and 20·4 μg l−1 in the high marsh. Flux calculations, based on tidal records and measured concentrations, suggested a small net import of bacterial and algal biomass into both marshes. Over the course of individual tidal cycles, concentrations of all parameters were variable and not related to tidal stage. Heterotrophic activity measured by the uptake of 3H-thymidine, was found predominantly in the smallest particle size fractions (< 1·0 μm). Thymidine uptake was correlated with temperature (r = 0·48, P < 0·01), and bacterial productivity was estimated to be 7 to 42 μg Cl−1 day−1.  相似文献   

12.
In 1984, on a transect covering the whole Baltic Sea and parts of the adjacent North Sea, 160 water samples were taken and analysed for their concentrations of particulate and dissolved metals. In addition, the suspended materials were investigated for their elemental bulk composition.The particulate fractions represented from about 5% (Cd, Cu and Ni) to 50% (Fe and Pb) of the total (particulate plus dissolved) concentrations. For some elements (Ba, Cd, Cu, Pb and Zn), the particulate matter from the surface microlayer was enriched with respect to those suspended materials taken from 0.2 m depth. This could reflect the atmospheric input of metal-rich aerosols. In anoxic deep waters, maximum contents of Zn (6400 μg g−1), Cu (1330 μg g−1) and Cd (12 μg g−1) were observed in the particulate matter, indicating sulphidic forms. On the other hand, under oxic conditions the distribution coefficients (Kd) decreased with the water depth (Cd, Fe and Pb).Relative to global background levels, the particulate matter contained metal “excesses” amounting to more than 90% of the total contents (Cd, Mn, Pb and Zn). Automated electron probe X-ray microanalysis (EPXMA) revealed that the elemental composition of sediments is mainly governed by post-depositional processes of early diagenesis and is only weakly related to the composition of suspended matter in the overlying water body. For instance, in relation to surface mud sediments of the central Baltic net-sedimentation basins, Zn, Cd, Cu and Mn had 30–100% higher levels in the suspended materials. The general pattern of metal contents of particulate matter taken from 10 m depth on a transect between the Bothnian Bay and the North Sea were—possibly as a result of anthropogenic inputs—rather similar for Pb, Zn and Cu. For Fe and Mn, the distribution patterns along the transect were probably governed by the natural loading characteristics and by the biogeochemistry of those elements.  相似文献   

13.
Within the framework of the EU-funded BENGAL programme, the effects of seasonality on biogenic silica early diagenesis have been studied at the Porcupine Abyssal Plain (PAP), an abyssal locality located in the northeast Atlantic Ocean. Nine cruises were carried out between August 1996 and August 1998. Silicic acid (DSi) increased downward from 46.2 to 213 μM (mean of 27 profiles). Biogenic silica (BSi) decreased from ca. 2% near the sediment–water interface to <1% at depth. Benthic silicic acid fluxes as measured from benthic chambers were close to those estimated from non-linear DSi porewater gradients. Some 90% of the dissolution occurred within the top 5.5 cm of the sediment column, rather than at the sediment–water interface and the annual DSi efflux was close to 0.057 mol Si m−2 yr−1. Biogenic silica accumulation was close to 0.008 mol Si m−2 yr−1 and the annual opal delivery reconstructed from sedimentary fluxes, assuming steady state, was 0.065 mol Si m−2 yr−1. This is in good agreement with the mean annual opal flux determined from sediment trap samples, averaged over the last decade (0.062 mol Si m−2 yr−1). Thus ca. 12% of the opal flux delivered to the seafloor get preserved in the sediments. A simple comparison between the sedimentation rate and the dissolution rate in the uppermost 5.5 cm of the sediment column suggests that there should be no accumulation of opal in PAP sediments. However, by combining the BENGAL high sampling frequency with our experimental results on BSi dissolution, we conclude that non-steady state processes associated with the seasonal deposition of fresh biogenic particles may well play a fundamental role in the preservation of BSi in these sediments. This comes about though the way seasonal variability affects the quality of the biogenic matter reaching the seafloor. Hence it influences the intrinsic dissolution properties of the opal at the seafloor and also the part played by non-local mixing events by ensuring the rapid transport of BSi particles deep into the sediment to where saturation is reached.  相似文献   

14.
Concentrations of total recoverable inorganic tin (TRISn), monomethyltin (MeSn3+), dimethyltin (Me2Sn2+), trimethyltin (Me3Sn+) and (3-dimethylsulphonio)propionate (DMSP) were determined in leaves of Spartina alterniflora from three sites in the Great Bay estuary (NH) from 8 May to 15 September 1989. Total methyltin concentration increased from 8·9 ng g−1 (fresh weight) on 8 May to 472 ng g−1 on 23 May, decreased to 52 ng g−1 on 7 June and 16ng g−1 on 20 June, and remained low until the last sample on 18 September. Statistical calculations showed that methyltin concentrations varied significantly with sampling week, but not with site. DMSP concentrations showed very different behaviour. During the same sampling period DMSP concentrations varied only from 7·5 to 26 μmol g−1 (fresh weight). DMSP concentrations varied significantly for site, but not sampling week.  相似文献   

15.
In this work we attempt to estimate the short- and long-term effects of the Amoco Cadiz oil spill on benthic microalgal populations (cyanophytes and diatoms) which, under natural conditions, live on upper layers of ‘schorres’ soils or of ‘slikke’ muds in the Ile Grande salt marsh system (Côtes du Nord, France). These populations were completely destroyed in 1978 in the oil-affected sites. Ubiquitous species settled fairly rapidly on intertidal polluted muds (tidal flat). The chlorophyll a content values reached 100 μg g−1 dry sediment, i.e. 1000 mg m−2 in 1980. Conversely, the salt marsh soils are still much less densely repopulated 3 years after the Amoco Cadiz grounding—especially when they are infrequently flooded (3 to 40 μg Chl.a g−1, i.e. 40 to 270 mg m−2). Some of these soils remain ten times less populated than reference stations.  相似文献   

16.
Specific effects of tributyltin (TBT) on Crassostrea gigas—valve thickening, and Nucella lapillus—imposex, were measured on local populations, relatively clean unaffected species from England were transferred to the Netherlands and exposed during six weeks to ambient TBT concentrations. Near marinas 50% of the exposed species were sterile after six weeks. In general, no dissolved butyltins were detected in the Rhine and Scheldt estuaries. In 1988 TBT concentrations in marinas ranged from 120 to 4000 ng litre−1. In sediments (fraction <60 μm) and suspended particulate matter TBT concentrations reached up to 1200 ng g−1. TBT concentrations in mussel tissue ranged from <1 to 2300 ng g−1 based on a dry weight. In 1989 concentrations of dissolved TBT ranged from <0·1 to 7200 ng litre−1. In 1989 a seasonal study in the marina of Colijnsplaat showed that dissolved butyltins increased from April to the end of May due to the launching of freshly painted boats, and decreased afterwards.  相似文献   

17.
The rate of benthic denitrification in slope and rise sediments of a transect across the N.W. European Continental Margin (Goban Spur) was evaluated from 31 pore water nitrate profiles obtained during six cruises between May and October. All profiles had well separated zones of nitrification and denitrification. High near-surface nitrate concentrations prevented the influx of nitrate from the bottom water. The denitrification rates obtained from steady-state-modelling ranged from 0.13 to 2.56 μmol N cm−2 y−1 and showed an exponential increase both with decreasing water depth and with increasing rate of organic carbon degradation. Denitrification rates in a nearby canyon, which did not follow these relationships, were estimated to be much higher as a result of erosion and redistribution of organic matter. Denitrification at the Goban Spur slope and rise is much lower than previously reported for similar environments in the Pacific resulting predominantly from the different oxygen and nitrate concentrations in the bottom water. A weighted average for the whole slope and rise sediment system shows that 17% of the particulate organic nitrogen input (8.93 μmol N cm−2 y−1) is denitrified and only 1% is buried, the rest being released as nitrate. Although being ten times higher compared with basin sediments, denitrification on the slope and rise is several times lower than on the adjacent shelf.  相似文献   

18.
Laboratory exposures of the urchin Lytechinus pictus to sediment dosed with varying concentrations of hydrogen sulfide (H2S), but without elevated organic material, were conducted. Changes in mortality, behavior, growth and gonad production were measured during 49 days' flow through exposures. Hydrogen sulfide concentrations of 165·8 μ liter−1 in pore water caused significant changes in all parameters measured. Concentrations as low as 32·9 μ liter−1 caused significant decreases in wet weight and male gonad production. A concentration of 91·8 μ liter−1 caused the mortality rate to increase 100-fold over control exposures (0·63 μ liter−1). Sublethal effects on growth and gonad production could have been caused by either direct biochemical inhibition by H2S or secondarily through behavioral modifications. Hydrogen sulfide concentrations above 165·8 μ liter−1 are common near sewage outfalls and could contribute to changes in species composition and sediment toxicity that occur there.  相似文献   

19.
The concentration and distribution of dissolved nitrogenous compounds was studied in the Greenland Sea in June 1991. Dissolved organic (DON) and inorganic nitrogen (DIN) were determined in seawater of different origin and depth. Dissolved organic matter was isolated on XAD-2 resin and fractionated into its non-humic hydrophilic (H1), and so-called humic components (hydrophobic acid, HbA, and hydrophobic neutral, HbN). From all fractions the DON content was subsequently determined. Total DON concentrations were about 5 μmol Ni−1 in the surface and 3 μmol NI−1 below depths of 150–200 m. DIN varied between 1.5 and 1.6 μmol NI−1. There was a highly significant inverse correlation (r = −0.75) between DON and DIN suggesting a close coupling in the uptake and release of the different forms of nitrogen. The mean DON concentrations of the XAD-fractions were for HI = 2.3 μmol Ni−1, for HbA = 0.8 μmol NI and for HbN = 1.0 μmol NI−1. The average percentage contributions were, respectively, 56%, 19% and 25%. This means that about 56% of the total DON does not belong to the ‘humic fraction’. The HbN fraction was evenly distributed in the water column, without any obvious relationship with water masses, depth, or nutrient status. In contrast, the HbA fraction showed a significant correlation with total DON.  相似文献   

20.
In July 2002, a combination of underway mapping and discrete profiles revealed significant along-shore variability in the concentrations of manganese and iron in the vicinity of Monterey Bay, California. Both metals had lower concentrations in surface waters south of Monterey Bay, where the shelf is about 2.5 km wide, than north of Monterey Bay, where the shelf is about 10 km wide. During non-upwelling conditions over the northern broad shelf, dissolvable iron concentrations measured underway in surface waters reached 3.5 nmol L−1 and dissolved manganese reached 25 nmol L−1. In contrast, during non-upwelling conditions over the southern narrow shelf, dissolvable iron concentrations in surface waters were less than 1 nmol L−1 and dissolved manganese concentrations were less than 5 nmol L−1. A pair of vertical profiles at 1000 m water depth collected during an upwelling event showed dissolved manganese concentrations of 10 decreasing to 2 nmol L−1, and dissolvable iron concentrations of 12–20 nmol L−1 in the upper 100 m in the north, compared to 3.5–2 nmol L−1 Mn and 0.6 nmol L−1 Fe in the upper 100 m in the south, suggesting the effect of shelf width influences the chemistry of waters beyond the shelf.These observations are consistent with current understanding of the mechanism of iron supply to coastal upwelling systems: Iron from shelf sediments, predominantly associated with particles greater than 20 μm, is brought to the surface during upwelling conditions. We hypothesize that manganese oxides are brought to the surface with upwelling and are then reduced to dissolved manganese, perhaps by photoreduction, following a lag after upwelling.Greater phytoplankton biomass, primary productivity, and nutrient drawdown were observed over the broad shelf, consistent with the greater supply of iron. Incubation experiments conducted 20 km offshore in both regions, during a period of wind relaxation, confirm the potential of these sites to become limited by iron. There was no additional growth response when copper, manganese or cobalt was added in addition to iron. The growth response of surface water incubated with bottom sediment (4 nmol L−1 dissolvable Fe) was slightly greater than in control incubations, but less than in the presence of 4 nmol L−1 dissolved iron. This may indicate that dissolvable iron is not as bioavailable as dissolved iron, although the influence of additional inhibitory elements in the sediment cannot be ruled out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号