首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正1Swedish Meteorological and Hydrological Institute, Folkborgsv?gen 17, 60361 Norrk?ping, Sweden2Norwegian Meteorological Institute, Henrik Mohns Plass 1, 0371 Oslo, Norway  相似文献   

2.
A sequence of numerical experiments is conducted using a linear, semi-spectral equatorial ocean model and an advanced data assimilation scheme. The numerical model is based on decomposition of the oceanic fields into Kelvin and Rossby waves belonging to the baroclinic modes of a stratified equatorial ocean. The assimilation procedure finds that solution to the model equations that best fits, in the generalized least-squares sense, all observations made within some specified space-time interval. All experiments are of the ‘identical twin’ type; synthetic data are generated by sampling the observable fields produced by a control run of the model, then the data are assimilated using the same model. The sequence of numerical experiments serves two purposes; to demonstrate the performance of the assimilation procedure in the context of a fully three-dimensional, time-varying equatorial ocean model; and to examine the utility of specified data sets, in particular, observations of sea level, in estimating the state of the equatorial ocean. The results indicate that the assimilation procedure works very well when sufficient data are provided. However, sea-level data alone are not sufficient and must be supplemented with subsurface observations if more than a few baroclinic modes are allowed in the model ocean. The required amount of supplementary subsurface data (in the form of density profiles in these experiments) can be reduced by imposing smoothness contraints on the recovered model solution.  相似文献   

3.
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System(VDRAS).Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational(4DVAR) data assimilation system.A squall-line case observed during a field campaign is selected to investigate the performance of the technique.A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions.The surface-based cold pool,divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation.Three experiments—assimilating radar data only,assimilating radar data with surface data blended in a mesoscale background,and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation.Independent surface and wind profiler observations are used for verification.The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations.It is also shown that the additional surface data can help improve the analysis and forecast at low levels.Surface and low-level features of the squall line—including the surface warm inflow,cold pool,gust front,and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS.  相似文献   

4.
The 3-D radar reflectivity data has become increasingly important for use in data assimilation towards convective scale numerical weather prediction as well as next generation precipitation estimation. Typically, reflectivity data from multiple radars are objectively analyzed and mosaiced onto a regional 3-D Cartesian grid prior to being assimilated into the models. One of the scientific issues associated with the mosaic of multi-radar observations is the synchronization of all the observations. Since radar data is usually rapidly updated (~every 5--10 min), it is common in current multi-radar mosaic techniques to combine multiple radar' observations within a time window by assuming that the storms are steady within the window. The assumption holds well for slow evolving precipitation systems, but for fast evolving convective storms, this assumption may be violated and the mosaic of radar observations at different times may result in inaccurate storm structure depictions. This study investigates the impact of synchronization on storm structures in multiple radar data analyses using a multi-scale storm tracking algorithm.  相似文献   

5.
This study evaluates the impact of atmospheric observations from the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) observing system on numerical weather prediction of hurricane Ike (2008) using three-dimensional data assimilation system for the Weather Research and Forecast (WRF) model (WRF 3D-Var). The TAMDAR data assimilation capability is added to WRF 3D-Var by incorporating the TAMDAR observation operator and corresponding observation processing procedure. Two 6-h cycling data assimilation and forecast experiments are conducted. Track and intensity forecasts are verified against the best track data from the National Hurricane Center. The results show that, on average, assimilating TAMDAR observations has a positive impact on the forecasts of hurricane Ike. The TAMDAR data assimilation reduces the track errors by about 30 km for 72-h forecasts. Improvements in intensity forecasts are also seen after four 6-h data assimilation cycles. Diagnostics show that assimilation of TAMDAR data improves subtropical ridge and steering flow in regions along Ike’s track, resulting in better forecasts.  相似文献   

6.
雷达资料同化对暴雨预报影响的数值模拟研究   总被引:6,自引:3,他引:3  
杨艳蓉  曾明剑 《气象科学》2012,32(2):145-152
以CAPS研发的最新版ARPS模式为基础,利用其数据同化系统ADAS对南京多普勒雷达资料进行同化,模拟2009年6月5日江苏地区的一次暴雨过程,进行了不同的微物理方案设计以及何时同化雷达资料的敏感性实验研究。研究发现:(1)格距较小且不使用积云对流参数化的情况下,选择warm rain或Schultz微物理过程的模拟结果差别不大,且与实况较为相符,但选择ice微物理方案时,会造成1 h内的降水量突增百倍;(2)在参数一致的情况下,模拟研究时段前3、2、1 h分别同化,可以得到部分主要降水区域;但同化预报的时间越短,降水模拟的中尺度信息越明显,对降水量的控制也越好;(3)依据以上结论,在暴雨发生最初的1 h内进行每6 min一次的时间循环同化,然后积分2 h,可以得到较为精细的云内气象要素场分布,预报的结果与实况最接近。  相似文献   

7.
同化不同观测资料数据集得到的模拟结果大有差异,而实际应用中资料的获取及同化前的预处理也是一项耗时的工作,因此针对不同的研究目的,采用适当的观测资料进行同化是必要的。采用WRF模式同化系统,同化收集到的2种观测资料数据集(分别为全国观测资料数据集和NCEP ADP全球地面观测数据集),并将2种同化试验与未同化模拟结果对比得出:同化不同观测资料数据集对模拟效果影响较大,尤其对垂直方向上的模拟效果影响要大于对地面的;同化国家站数据集在垂直方向上优势明显,但在低空的模拟效果不如加入更多观测数据类型的NCEP ADP数据集的模拟效果;对受局地影响较大的要素,同化对模拟的改善作用显著;相比NCEP ADP数据集,WRF模式在同化国家站数据集后需要更长的积分时间来与之协调,因此选择合适的模式积分开始时间与同化资料的有效时间是必要的。  相似文献   

8.
A regional ensemble Kalman filter (EnKF) data assimilation (DA) and forecast system was recently established based on the Gridpoint Statistical Interpolation (GSI) analysis system. The EnKF DA system was tested with continuous threehourly updated cycles followed by 18-h deterministic forecasts from every three-hourly ensemble mean analysis. Initial tests showed negative to neutral impacts of assimilating satellite radiance data due to the improper bias correction procedure. In this study, two bias correction schemes within the established EnKF DA system are investigated and the impact of assimilating additional polar-orbiting satellite radiance is also investigated. Two group experiments are conducted. The purpose of the first group is to evaluate the bias correction procedure. Two online bias correction methods based on GSI 3DVar and EnKF algorithms are used to assimilate AMSU-A radiance data. Results show that both variational and EnKF-based bias correction procedures effectively reduce the observation and background radiance differences, achieving positive impacts on forecasts. With proper bias correction, we assimilate full radiance observations including AMSU-A, AMSU-B, AIRS, HIRS3/4, and MHS in the second group. The relative percentage improvements(RPIs) for all forecast variables compared to those without radiance data assimilation are mostly positive, with the RPI of upper-air relative humidity being the largest. Additionally, precipitation forecasts on a downscaled 13-km grid from 40-km EnKF analyses are also improved by radiance assimilation for almost all forecast hours.  相似文献   

9.
A conceptual coupled ocean-atmosphere model was used to study coupled ensemble data assimilation schemes with a focus on the role of ocean-atmosphere interaction in the assimilation. The optimal scheme was the fully coupled data assimilation scheme that employs the coupled covariance matrix and assimilates observations in both the atmosphere and ocean. The assimilation of synoptic atmospheric variability that captures the temporal fluctuation of the weather noise was found to be critical for the estimation of not only the atmospheric, but also oceanic states. The synoptic atmosphere observation was especially important in the mid-latitude system, where oceanic variability is driven by weather noise. The assimilation of synoptic atmospheric variability in the coupled model improved the atmospheric variability in the analysis and the subsequent forecasts, reducing error in the surface forcing and, in turn, in the ocean state. Atmospheric observation was able to further improve the oceanic state estimation directly through the coupled covariance between the atmosphere and ocean states. Relative to the mid-latitude system, the tropical system was influenced more by ocean-atmosphere interaction and, thus, the assimilation of oceanic observation becomes more important for the estimation of the ocean and atmosphere.  相似文献   

10.
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China. The experiments with GPS-PWV assimilation cluster and also eliminated the erroneous rainfall successfully simulated the evolution of the observed MCS systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.  相似文献   

11.
风廓线雷达资料质量控制及其同化应用   总被引:6,自引:0,他引:6  
为更好地同化风廓线雷达观测资料开展了相应的质量控制与同化应用研究。针对2013年5月广东地区13部风廓线雷达的观测数据,采用经验正交函数(EOF) 分析方法对其进行质量控制。相比原始观测,经过质量控制的风场提高(降低)了来自时空大(小)尺度的贡献,较好地滤除了小尺度高频脉动,也较好地保留了大尺度平均状态与局地中小尺度系统的共同影响,并且更加接近ECMWF再分析场。此外,还对质量控制后的数据进行了垂直稀疏化。分别计算了质量控制前、后风廓线雷达观测与NCEP 6 h预报场的差值,对比差值的特征发现,经过质量控制的数据的观测增量更好地满足了高斯分布与无偏假设。针对一个实际天气个例,基于GRAPES 3D-Var同化系统,分析了质量控制后的风廓线雷达资料对模式分析与预报的影响。试验表明,在循环同化过程中加入风廓线雷达资料可以更好地描述模式初始场低层风场的特征,从而对强降水的位置与强度做出更好的预报。针对2013年5月的批量试验表明,同化风廓线雷达资料使短期降水预报有明显的改善。  相似文献   

12.
Weather forecasting in the Southern Ocean and Antarctica is a challenge above all due to the rarity of observations to be assimilated in numerical weather prediction(NWP)models.As observations are expensive and logistically challenging,it is important to evaluate the benefit that additional observations could bring to NWP.Atmospheric soundings applying unmanned aerial vehicles(UAVs)have a large potential to supplement conventional radiosonde sounding observations.Here,we applied UAV and radiosonde sounding observations from an RV Polarstern cruise in the ice-covered Weddell Sea in austral winter 2013 to evaluate the impact of their assimilation in the Polar version of the Weather Research and Forecasting(Polar WRF)model.Our experiments revealed small to moderate impacts of radiosonde and UAV data assimilation.In any case,the assimilation of sounding data from both radiosondes and UAVs improved the analyses of air temperature,wind speed,and humidity at the observation site for most of the time.Further,the impact on the results of 5-day-long Polar WRF experiments was often felt over distances of at least 300 km from the observation site.All experiments succeeded in capturing the main features of the evolution of near-surface variables,but the effects of data assimilation varied between different cases.Due to the limited vertical extent of the UAV observations,the impact of their assimilation was limited to the lowermost 1?2-km layer,and assimilation of radiosonde data was more beneficial for modeled sea level pressure and near-surface wind speed.  相似文献   

13.
Recent advances in Global Positioning System (GPS) remote sensing technology allow for a direct estimation of the precipitable water vapor (PWV) from delayed signals transmitted by GPS satellites, which can be assimilated into numerical models with four-dimensional variational (4DVAR) data assimilation. A mesoscale model and its 4DVAR system are used to access the impacts of assimilating GPS-PWV and hourly rainfall observations on the short-range prediction of a heavy rainfall event on 20 June 2002. The heavy precipitation was induced by a sequence of meso-β-scale convective systems (MCS) along the mei-yu front in China.The experiments with GPS-PWV assimilation successfully simulated the evolution of the observed MCS cluster and also eliminated the erroneous rainfall systems found in the experiment without 4DVAR assimilation. Experiments with hourly rainfall assimilation performed similarly both on the prediction of MCS initiation and the elimination of erroneous systems, however the MCS dissipated much sooner than it did in observations. It is found that the assimilation-induced moisture perturbation and mesoscale low-level jet are helpful for the MCS generation and development. It is also discovered that spurious gravity waves may post serious limitations for the current 4DVAR algorithm, which would degrade the assimilation efficiency, especially for rainfall data. Sensitivity experiments with different observations, assimilation windows and observation weightings suggest that assimilating GPS-PWV can be quite effective, even with the assimilation window as short as 1 h. On the other hand, assimilating rainfall observations requires extreme cautions on the selection of observation weightings and the control of spurious gravity waves.  相似文献   

14.
Correctly estimating the forecast error covariance matrix is a key step in any data assimilation scheme. If it is not correctly estimated, the assimilated states could be far from the true states. A popular method to address this problem is error covariance matrix inflation. That is, to multiply the forecast error covariance matrix by an appropriate factor. In this paper, analysis states are used to construct the forecast error covariance matrix and an adaptive estimation procedure associated with the error covariance matrix inflation technique is developed. The proposed assimilation scheme was tested on the Lorenz-96 model and 2D Shallow Water Equation model, both of which are associated with spatially correlated observational systems. The experiments showed that by introducing the proposed structure of the forecast error covariance matrix and applying its adaptive estimation procedure, the assimilation results were further improved.  相似文献   

15.
聂肃平  朱江  罗勇 《大气科学》2010,34(3):580-590
本文主要目的是探讨不同模式误差方案在土壤湿度同化中的性能。基于集合Kalman滤波同化方法和AVIM (Atmosphere-Vegetation Interaction Model) 陆面模式, 利用理想试验对膨胀因子方案 (Covariance Inflation, 简称CI)、 直接随机扰动方案 (Direct Random Disturbance, 简称DRD)、 误差源扰动方案 (Source Random Disturbance, 简称SRD) 等3种模式误差方案的同化效果进行了比较, 讨论了各方案在不同观测误差、 观测层数、 观测间隔情况下的同化性能。试验结果表明在观测误差估计完全准确的情况下, 3种方案都能获得较好的同化效果, 并且SRD方案相对于真值的均方根误差最小。当观测误差估计不准确时, SRD方案的同化效果仍能基本得以保持, 而CI和DRD方案则对观测误差估计更为敏感, 同化效果下降明显。当同化多层观测时, CI和DRD方案由于难以保持不同层观测之间的匹配关系, 同化结果反而变差, 而SRD方案能有效协调同化多层观测, 增加观测层后同化结果有了进一步的改善。当观测时间间隔较大时, CI和DRD方案的同化效果显著下降; 而SRD方案由于包含了一定的误差订正功能, 在观测稀疏时仍能保持较好的同化效果。  相似文献   

16.
Cyclones with strong winds can make the Southern Ocean and the Antarctic a dangerous environment.Accurate weather forecasts are essential for safe shipping in the Southern Ocean and observational and logistical operations at Antarctic research stations.This study investigated the impact of additional radiosonde observations from Research Vessel"Shirase"over the Southern Ocean and Dome Fuji Station in Antarctica on reanalysis data and forecast experiments using an ensemble data assimilation system comprising the Atmospheric General Circulation Model for the Earth Simulator and the Local Ensemble Transform Kalman Filter Experimental Ensemble Reanalysis,version 2.A 63-member ensemble forecast experiment was conducted focusing on an unusually strong Antarctic cyclonic event.Reanalysis data with(observing system experiment)and without(control)additional radiosonde data were used as initial values.The observing system experiment correctly captured the central pressure of the cyclone,which led to the reliable prediction of the strong winds and moisture transport near the coast.Conversely,the control experiment predicted lower wind speeds because it failed to forecast the central pressure of the cyclone adequately.Differences were found in cyclone predictions of operational forecast systems with and without assimilation of radiosonde observations from Dome Fuji Station.  相似文献   

17.
针对对流尺度集合卡尔曼滤波(EnKF)雷达资料同化中雷达位置对同化的影响进行研究。为了考察强对流出现在雷达不同方位时集合卡尔曼滤波同化雷达资料的能力,以一个理想风暴为例,设计了8个均匀分布在模拟区域周围的模拟雷达进行试验。单雷达同化试验中,初期同化对雷达位置较敏感,而十几个循环后对雷达方位的敏感性降低。造成初期同化效果较差的雷达观测位于模拟区域正南和正北方向,这两部雷达与模拟区域中心的连线垂直于风暴移动方向(即环境气流的方向)。双雷达试验的结果表明,正东、正南、正西和正北方向的雷达组合观测会使同化初期误差较大,这说明并不是所有与风暴连线成90°的雷达组合都能在短时同化中得到合理的分析结果,还需要都处于模拟区域对角线上(即与环境气流成45°夹角),同化效果才较好。短时同化后的确定性预报结果表明,较大分析误差也会导致较大预报误差。这些分析误差主要是由于同化初期不准确的集合平均场驱动出的不合理的背景误差协方差造成的。当背景场随着同化循环得到改进后,驱动出的合理的背景误差协方差使得不同位置雷达同化造成的差异逐步减小。基于上述结果,引入迭代集合均方根滤波(iEnSRF)算法,结果显示使用该算法后,雷达位置对同化效果的影响减小,同化不同位置的雷达资料均能有效降低分析和预报误差。   相似文献   

18.
Summary The design of adaptive observations strategies must account for the particular properties of the data assimilation method. A new adjoint sensitivity approach to the targeted observations problem is proposed in the context of four-dimensional variational data assimilation (4D-Var). The method is based on a periodic update of the adjoint sensitivity field that takes into account the interaction between time distributed adaptive and routine observations. Information provided by all previously located observations is used to identify best locations for new targeted observations. Adaptive observations at distinct instants in time are selected in a sequential manner such that the method is only suboptimal. The selection algorithm proceeds backward in time and requires only one additional adjoint model integration in the assimilation window. Therefore, the method is very efficient and is suitable for practical applications. A comparative performance analysis is presented using the traditional adjoint sensitivity method as well as the total energy singular vectors technique as alternative adaptive strategies. Numerical experiments are performed in the twin experiments framework using a two-dimensional global shallow water model in spherical coordinates and an explicit Turkel-Zwas discretization scheme. Data from a NASA 500mb analysis valid for 00Z 16 Mar 2001 6h obtained with the GEOS-3 model was used to specify the geopotential height at the initial time and the initial velocities were obtained from a geostrophic balance. Numerical results show that the new adaptive observations approach is a promising method for targeted observations and its implementation is feasible for large scale atmospheric models.  相似文献   

19.
A cold cloud assimilation scheme was developed that fully considers the water substances, i.e., water vapor, cloud water, rain, ice, snow, and graupel, based on the single-moment WSM6 microphysical scheme and four-dimensional variational(4D-Var) data assimilation in the Weather Research and Forecasting data assimilation(WRFDA) system. The verification of the regularized WSM6 and its tangent linearity model(TLM) and adjoint mode model(ADM) was proven successful. Two groups of single observation a...  相似文献   

20.
《大气与海洋》2013,51(4):211-225
Abstract

A variational estimation procedure for the simultaneous retrieval of cloud parameters and thermodynamic profiles from infrared radiances is proposed. The method is based on a cloud emissivity model which accounts for the frequency dependence of cloud absorption and scattering and possible mixed phase situations. An effective cloud top height and emissivity are assumed. Monte Carlo experiments performed in a 1D‐var assimilation context using simulated Atmospheric Infrared Radiance Sounder (AIRS) observations from 100 channels demonstrate the substantial added value, in theory, of cloudy radiance assimilation as opposed to clear‐channel assimilation. Improved temperature and humidity retrievals are obtained for a broad layer above the cloud as well as below cloud level under partial cloud cover conditions. The impact is most pronounced in broken to overcast situations involving mid‐level clouds. In these situations, the effective cloud top height and emissivity are retrieved with estimated rms errors typically lower than 30 hPa and 3%, respectively. Expected relative errors on the retrieved effective particle size are of the order of 30–50%. The methodology is directly applicable to real hyperspectral infrared data upon inclusion, for local estimation, of the cloud parameters in the Canadian 4D‐var assimilation system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号