首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We determine the momentum distribution of the relativistic particles near the Crab pulsar from the observed X- and -ray spectra (103109 eV), provided that the curvature radiation is responsible for it. The power law spectrum for the relativistic electrons,f() –5, reproduces a close fit to the observed high-energy photon spectrum. The theoretically determined upper limit to the momentum (due to radiation damping), M 8×106, corresponds to the upper cut-off energy of the -ray spectrum, 109 eV. The lower limit to the momentum, m 1.8×105, is chosen such that flattening of the X-ray spectrum below 10 keV is simulated. The number density of these electrons is found to be much higher than the Goldreich-Julian density. We also discuss pulse shape and polarization of high-energy photons. The extremely high density of particles and the steep momentum spectrum are difficult to understand. This may imply that another, more efficient, mechanism is in operation.  相似文献   

2.
The analysis of solar wind He++ and H+ ion distribution functions, collected over five months by the satellite Prognoz 1, shows that these are in general maxwellian but that often tails appear at higher speeds. The existing relation V-T, the observation of ratios of T/Tp 3.83 and V/Vp 1.035 give evidence of preferential He++ ion heating and acceleration. The criteria for heating by dissipation of hydromagnetic waves proposed by Barnes and Hung (1973) are tested experimentally. Finally, multifluid models are likely to predict certain observations such as dependence of the velocity ratio V/Vp on the solar wind flux.  相似文献   

3.
Patrick C. Crane 《Solar physics》1998,177(1-2):243-253
Fourier analysis (DFT/CLEAN) of the international sunspot number (R) series since 1932 has revealed two long (250–500 days) and distinct episodes of solar activity exhibiting persistent 13 -day variations. The first episode lasts 500 days near the maximum of solar cycle 20, and the second, 250 days near the end of the current solar cycle 22. The solar radio flux density (F 10_7cm) series since 1947 has also been analyzed. During the first episode both solar indices exhibit distinct 27- and 13-day variations (the first report of 13-day variations in F 10_7cm). During the second episode neither index exhibits distinct 27-day variations and only R exhibits 13-day variations. Conditions affecting the appearance of 13-day variations in F 10_7cm are discussed.  相似文献   

4.
An analysis of the effects of Hall current on hydromagnetic free-convective flow through a porous medium bounded by a vertical plate is theoretically investigated when a strong magnetic field is imposed in a direction which is perpendicular to the free stream and makes an angle to the vertical direction. The influence of Hall currents on the flow is studied for various values of .Nomenclature c p specific heat at constant pressure - e electrical charge - E Eckert number - E electrical field intensity - g acceleration due to gravity - G Grashof number - H 0 applied magnetic field - H magnetic field intensity - (j x , j y , j z ) components of current densityJ - J current density - K permeability of porous medium - M magnetic parameter - m Hall parameter - n e electron number density - P Prandtl number - q velocity vector - (T, T w , T ) temperature - t time - (u, v, w) components of the velocity vectorq - U 0 uniform velocity - v 0 suction velocity - (x, y, z) Cartesian coordinates Greek Symbols angle - coefficient of volume expansion - e cyclotron frequency - frequency - dimensionless temperature - thermal conductivity - coefficient of viscosity - magnetic permeability - kinematic viscosity - mass density of fluid - e charge density - electrical conductivity - e electron collision time  相似文献   

5.
A semi-continuous hierarchy, (i.e., one in which there are galaxies outside clusters, clusters outside superclusters etc.), is examined using an expression of the field equations of general relativity in a form due to Podurets, Misner and Sharp. It is shown (a) that for a sufficiently populous hierarchy, the thinning factor( i+1/ i [r i /r i+1] is approximately equal to the exponentN in a continuous density law (=aR –N) provided (r i /r i+1)3-1; (b) that a hierarchical Universe will not look decidedly asymmetric to an observer like a human being because such salient observers live close to the densest elements of the hierarchy (viz stars), the probability of the Universe looking spherically symmetric (dipole anisotropy0.1 to such an observer being of order unity; (c) the existence of a semi-continuous or continuous hierarchy (Peebles) requires that 2 if galaxies, not presently bound to clusters were once members of such systems; (d) there are now in existence no less than ten arguments for believing 2, though recent number counts by Sandageet al. seem to be in contradiction to such a value; (e) Hubble's law, withH independent of distance, can be proved approximately in a relativistic hierarchy provided (i)N=2, (ii)2GM(R)/c 2 R1; (iii)Rc (iv)M0 in a system of massM, sizeR (f) Hubble's law holds also in a hierarchy with density jumps; (g)H100 km s–1 Mpc–1; (h) objects forming the stellar level of the hierarchy (in a cosmology of the Wilson type) must once have had 2GM/c 2 R1; (i) there is a finite pressurep=2Ga in all astrophysical systems (a=R N ,N2); (j) for the Galaxy, theory predictsp G7×10–12 dyn cm–2, observation givesp G5×10–12 dyn cm–2; (k) if the mass-defect (or excess binding energy) hypothesis is taken as a postulate, all non-collapsed astrophysical systems must be non-static, and any non-static, p0 systems must in any case be losing mass; (1) the predicted mass-loss rate from the Sun is 1012 g s–1, compared to 1011 g s–1 in the observed solar wind; (m) the mass-loss rates known by observation imply timescales of 5×109 years for the Sun and 1010 years for other astrophysical systems; (n) degenerate superdense objects composed of fermions must haveN-2 if they were ever at their Schwarzschild radii and comprised a finite numberN B of baryons; (o)N B1057N for degenerate fermion and boson systems; (p)285-4; (q) the metric coefficients for superdense bodies give equations of motion that imply equal maximum luminosities for all evolving superdense bodies (L max1059 erg s–1); (r) larger bodies have longer time-scales of energy radiation atL max (10–5 s for stars,1 h for QSO's) (s) expansion velocities are c soon after the initial loss of equilibrium in a superdense object; (t) if the density parametera(t) in aR –N isa=a (non-atomic constants of physicsc, G, A), andA, thenN=2; (u) N2 is necessary to giveMM at the stellar level of the hierarchy;(v) systems larger than, and including, galaxies must have formed by clumping of smaller systems and not (as advocated by Wertz and others) in a multiple big bang.  相似文献   

6.
The contribution to the galactic abundance of He and heavy elements by stellar nucleosynthesis is calculated as a function of time, keeping account of present knowledge about stellar and galactic evolution. A model is used which distinguishes the phase of the contracting halo from the subsequent history of the disc. Various uncertainties involved both in stellar and in galactic evolutionary theory are discussed. The amount of4He produced by stars of different masses and ejected in interstellar medium is fairly well known from stellar theory, while we have assumed its primordial abundance as a free parameter, ranging from 0 up to 0.4. We find that stellar activity provides a significant contribution to the cosmic4He, though not sufficient to explain the observed abundance. The best agreement with observational data (Y 0.26 andY now0.28) is obtained starting with a primordial abundanceY =(0.20–0.23), which is consisten with the Big-Bang theory predictions and with recent observational estimates. The contribution to the abundance of heavy elements depends on the last stellar stages and on the final explosion mechanism, which are only now beginning to be understood. Nevertheless, in the framework of present theories, we individuate a stellar evolutionary scheme reproducing the observedZ abundances for Populationi and Populationii stars, with the correctly estimated Y/Z value. In this scheme, only stars belonging to two narrow mass ranges (10m/m 15 andm/m 80) are allowed to eject metal-enriched matter, possibly with the solar (C+O)/(Si+Fe) ratio.  相似文献   

7.
In a previous publication (1977) the author has constructed a family () of long-periodic orbits in the Trojan case of the restricted problems of three bodies. Here he constructs the domain of the analytical solution of the problem of the motion, excluding the vicinity of thecritical divisor which vanishes at the exact commensurability of the natural frequencies 1 and 2. In terms of thecritical masses mj(2), or the associatedcritical energies j 2 (m), is the intersection of the intervals ofshallow resonance, of the form. Inasmuch as the intervals |2j 2 |<j ofdeep resonance aredisjoint, it follows that (1) the disjointed family () embraces the tadpole branch, 021, lying in: and (2) despite the clustering of j 2 (m) atj=, the family () includes, for 2=1, an asymptoticseparatrix that terminates the branch in the vicinity of the Lagrangian pointL 3.In a similar manner, the family () can be extended to the horseshoe branch 1<2 2 2 .  相似文献   

8.
Free convection effects on MHD flow past a semi infinite porous flat plate is studied when the time dependent suction velocity changes in step function form. The solution of the problem is obtained in closed form for the fluid with unit Prandtl number. It is observed that for both cooling and heating of the plate the suction velocity enhances the velocity field. The heat transfer is higher with increase in suction velocity.Notations B intensity of magnetic field - G Grashof number - H magnetic field parameter,H=(M+1/4) 1/2–1/2 - M magnetic field parameter - N u Nusselt number - P Prandtl number of the fluid - r suction parameter - T temperature of the fluid - T w temperature of the plate - T temperature of the fluid at infinity - t time - t non-dimensional time - u velocity of the fluid parallel to the plate - u non-dimensional velocity - U velocity of the free stream - suction velocity - 1 suction velocity att0 - 2 suction velocity att>0 - x,y coordinate axes parallel and normal to the plate, respectively - y non-dimensional distance normal to the plate - coefficient of volume expansion - thermal diffusivity - kinematic viscosity - electric conductivity of the fluid - density of the fluid - non-dimensional temperature of the fluid - shear stress at the plate - non dimensional shear stress - erf error function - erfc complementary error function  相似文献   

9.
Eselevich  V.G.  Eselevich  M.V. 《Solar physics》2000,197(1):101-113
We show that within distances from the Sun's surface less than the height of a streamer helmet, each of two neighboring rays of the streamer belt, as they approach the solar surface, bends around the helmet on either side of it. Also, a minimum angular diameter of the rays of d2°–3° remains virtually constant within R=1.2–6.0 R . A density inhomogeneity (`blob') can be produced above the helmet top visible to at least R6 R . In this case the initial velocity of the `blob' increases with solar distance from where it is generated to something like the velocity of the bulk solar wind with which the `blob' is carried away.  相似文献   

10.
Charged particle acceleration is considered by a radiation flux from a star or hot spot in X-ray pulsars. It is shown that for any distance from the star there exists the upper velocity limit up to which a particle can be accelerated by radiation. This critical velocity does not depend on the luminosity of the spot. Near the hot spot surface the critical velocityv0.65c. These results are applied to plasma acceleration inX-ray pulsars. The mechanism is advanced, of -ray generation in the course of plasma accretion, onto a neutron star. It is shown that in the presence of a large magnetic field and high luminosity of the spot the relativistic electron-position avalanche may appear. The optical depth of the electron-positron cloud achieves the value of order one. The X-ray quanta emitted by the spot are scattered by relativistic (2.6) electron-positron pairs and are transformed into -radiation. Hard quanta with energy 1 MeV leave the generation region in the narrow cone 0.25.  相似文献   

11.
A rapidly spinning, slowly accreting magnetic white dwarf (or X-ray pulsar) in hibernation is expected to result in rapid spindown as a result of the stretching and reconnection of magnetic field lines, leading to particle acceleration at the magnetospheric radiusoutside the corotation radius, and the propeller type ejection of magnetized synchrotron-emitting clouds. This may explain the non-thermal (radio and-rays) emission seen from the unique nearby AE Aquarii. Moving to Galactic distances we show how TeV-ray observations of pulsar-driven supernova remnants (with well-measured synchrotron X-ray spectra) allow us to obtain a direct measurement of the average magnetic field strength in the nebula. Finally, GeV to TeV observations of-ray blazars out to redshifts of 2 allow us to probe the intergalactic infrared radiation field, the Hubble constant and possibly the parameter of the Universe.  相似文献   

12.
We use a generic stochastic acceleration formalism to examine the power Lin (erg s-1) input to non-thermal electrons that cause noise-storm continuum emission. The analytical approach includes the derivation of the Greens function for a general second-order Fermi process, and its application to obtain the particular solution for the non-thermal electron distribution resulting from the acceleration of a Maxwellian source in the corona. We compare Lin with the power Lout observed in noise-storm radiation. Using typical values for the various parameters, we find that Lin 1023–1026 erg s-1, yielding an efficiency estimate Lout/Lin in the range 10-10 10-6 for this non-thermal acceleration/radiation process. These results reflect the efficiency of the overall process, starting from electron acceleration and culminating in the observed noise-storm emission.  相似文献   

13.
The Main-Sequence positions as well as the evolutionary behavior of Population III stars up to an evolution age of 2×1010 yr, taking this time as the age of the Universe, have been investigated in the mass range 0.2 and 0.8M . While Population III stars with masses greater than 0.3M develop a radiative core during the approach to the Main Sequence, stars with masses smaller than 0.3M reach the Main Sequence as a wholly convective stars. Population III stars with masses greater than 0.5M show a brightening of at most 2.2 in bolometric magnitude when the evolution is terminated as compared to the value which corresponds to zero-age Main Sequence. The positions of stars with masses smaller than 0.5M remain almost the same in the H-R diagram.If Population III stars have formed over a range of redshifts, 6相似文献   

14.
It is shown that the observed color diagrams(U-B) f (B-V) f for pure flare emission of UV Cet type flare stars may be explained within the framework of a fast electron hypothesis. We point out the essential influence on these color indices of the two following factors: (a) the deviations of the normal radiation capability of the star in the infrared region of spectra (on 3.6 m, 4.4 m, and 5.5 m) from the Planckian distribution; (b) the location of the cloud (source) of fast electrons around the star (flare geometry effect). Under the real conditions of the generation of flares around the star the frequency transformation law at the photon-electron interaction has a view =n20, wheren may take the different values-from 0.15 up to 4; it depends on the cloud-star-observer geometry. By the observed colors of the flare emission may be understood, in principle, the location of flare source around the star. A possible role of reflection effect at the generation of stellar flares is outlined.  相似文献   

15.
Apparent radius, visual brightness, effective temperature and absolute radius for 416 B5 v-F5 v stars of the catalogue of the Geneva Observatory (Rufener, 1976) have been determined.Twenty-eight stars, anomalous in log versus (m v)0 diagrams, have been singled out. A good correlation for seven stars, in common with the list of Hanbury Brownet al. (1974), has been found. Similar parameters determined for 279 B5 v-F5 v stars of two preceding papers (Fracassiniet al., 1973, 1975) have allowed us to determine the averaged diagrams logq v/q, logR/R and logT e versus (B-V)0 for 695 B5 v-F5 v stars.Moreover, in the present paper a good correlation logq v/q versus logR/R and careful relation M v=–7.40logR/R +3.31 for B5 v-F5 v stars have been determined. Plain correlations between logR/R and blanketing parameterm 2 for some spectral types seem to point out that there arereal differences in the absolute radii of stars of thesame spectral type, in agreement with recent researches on the HR diagram (Houck and Fesen, 1978).Systematic differences between double (spectroscopic and visual) and single stars are found. In particular, the averaged relation m 2 versus logR/R shows that A2 v-F5 v double stars may have a higher metallicity indexm 2 and smaller absolute radii than single stars. Finally, the diagram logv sini versus logR/R confirms some properties of binary systems found by other researchers (Huang, 1966; Plavec, 1970; Levato, 1974; Kitamura and Kondo, 1978).Thesis for the degree in Applied Physics.  相似文献   

16.
A spectroscopic investigation of a quiescent prominence has been performed: the line profiles of the H and K lines have been carefully determined in all regions of the prominence where these emissions are likely to originate in optically thin layers. Therefore we have been able to study the electron temperature T e and the microturbulent velocity in the outer parts of the prominence. We find that on the average, T e = 5700 K (Figure 1) and = 6.7 km s-1 (Figure 2) which are in very good agreement with classical data. Figure 3 represents the radial velocity measurements and Figure 4 the ratio of the total intensity of H to K lines. Thus the prominence we have observed does not show for T e and the regular increase outward which has been described by Hirayama (1971). On the other hand increases towards the Equator, in the dynamically active part of the prominence, which could indicate that represents the effect of macroturbulence rather than microturbulence (Kawaguchi, 1966). In this part of the prominence only the K line is in emission and the average value of the microturbulence is 9.4 km s-1, the radial velocity is also generally increasing. At last, according to the absolute intensities of the H and K lines, the electron density in the outer layers of the prominence is no more than 1 × 1010 cm-3.  相似文献   

17.
A detailed investigation of the evolution of low-mass binaries is performed for the case when the secondary fills its Roche lobe at the stage of core hydrogen exhaustion. The obtained results are compared with observational data for ultra-short periodic X-ray systems MXB 1820-30 and MXB 1916-05. In the frame of the proposed evolutionary scenario it is possible to obtain for MXB 1820-30 its periodP=11.4 min twice (see Figure 2). In the first case the parameters of the system are:M 2 0.13–0.15M ,X0.05–0.13, |P/P| (3.6–6.2) } 10–7 yr–1, M2 (4.1–9.6) } 10–9 M yr–1, for the second:M 2 0.08–0.09M ,X= 0, |P/P| (1.3–1.5) } 10–7 yr–1, M2 (1.4–1.8) } 10–8 M yr–1. It is suggested that MXB 1916-05 is the progenitor of the system MXB 1820-30 (M 2 = 0.1M,X 0.221,M 2 1.8 × 10–10 M yr–1).  相似文献   

18.
An exact analysis of the effects of mass transfer on the flow of a viscous incompressible fluid past an uniformly accelerated vertical porous and non-porous plate has been presented on taking into account the free convection currents. The results are discussed with the effects of the Grashof number Gr, the modified Grashof number Sc, the Schmidt number Sc, and the suction parametera for Pr (the Prandtl number)=0.71 representating air at 20°C.Nomenclature a suction parameter - C species concentration - C species concentration at the free stream - g acceleration due gravity - Gc modified Grashof number (vg*(C C )/U 0 3 ) - Pr Prandtl number (C p/K) - T temperature of the fluid near the plate - T dimensionless temperature near the plate ((T-T )/(T -T )) - U(t) dimensionless velocity of the plate (U/U 0) - v normal velocity component - v 0 suction/injection velocity - x, y coordinate along and normal to the plate - v kinematic viscosity (/gr) - C p specific heat at constant pressure - C w species concentration at the plate - C non-dimensional species concentration ((C-C )/(C w -C )) - Gr Grashof number (g(T w -T )/U 0 3 ) - D chemical molecular diffusivity - K thermal conductivity - Sc Schmidt number (/D) - T w temperature of the plate - T free stream temperature - t time variable - t dimensionless time (tU 0 2 /) - U 0 reference velocity - u velocity of the fluid near the plate - u non-dimensional velocity (u/U 0) - v dimensionless velocity (v/U 0) - v 0 non-dimensionalv 0 (v 0 /U0)=–at–1/2 - y dimensionless ordinate (yU 0/) - density of the fluid - coefficient of viscosity  相似文献   

19.
The neutrino magnetic moment provides an additional energy emission in stars. It will accelerate the white dwarf cooling process and reduce the life time of the white dwarf, but it causes a conflict with the observation. We use observational constraints to derive an upper limit for the neutrino magnetic moment: 4.0×10–12 B   相似文献   

20.
We present the analysis of spectrograms obtained during quiescence and during an ordinary outburst of the SU UMa type dwarf nova WX Hyi (ESO 3.6m telescope, B&C spectrograph with Image Disector Scanner, 171 Åmm–1, range 4000–7000 Å, time resolution 6min.). The radial velocities of these spectra have been discussed by Schoembs and Vogt (1981) who also derived the orbital elements of WX Hyi. The phasesmax refer to these elements. All velocities discussed here are with respect to the white dwarf, not to the center of mass of the binary system.Inquiescent state we did not find significant radial velocity variations. The equivalent widths W of the He I emission lines revealed periodic variations with an amplitude of 30%, maximal values of W were observed atmax=0.0...0.2. In contrast, the equivalent widths of the Balmer lines were not variable.Duringoutburst we found periodic radial velocity variations of the emission peak of H, H and He I 5875 with an amplitude of100 km s–1,max0.5. Also the broad Balmer absorption lines revealed periodic radial velocity variations, with a similar amplitude (max=0.3...0.5). The equivalent width of the H central emission peak varies with an amplitude of30%,max0.85. No variations of the equivalent width of the Balmer absorption lines were found.The outburst observations suggest that the preceeding part of the disc is brighter than the following one (in orbital motion). This is probably due to heating of the preceeding part by collisions with circumbinary matter, which seems to have an enhanced density in outburst as compared to the quiescent state. The emission lines are formed in outer layers or in a halo around the disc. The equivalent width variations can be interpreted in terms of interactions between this halo and the optically thick part of the disc.A more detailed discussion of the data is being published elsewhere.Paper presented at the IAU Colloquium No. 93 on Cataclysmic Variables. Recent Multi-Frequency Observations and Theoretical Developments, held at Dr. Remeis-Sternwarte Bamberg, F.R.G., 16–19 June, 1986  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号