首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 43 毫秒
1.
A high resolution regional climate model (RCM) is used to simulate climate of the recent past and to project future climate change across the northeastern US. Different types of uncertainties in climate simulations are examined by driving the RCM with different boundary data, applying different emissions scenarios, and running an ensemble of simulations with different initial conditions. Empirical orthogonal functions analysis and K-means clustering analysis are applied to divide the northeastern US region into four climatologically different zones based on the surface air temperature (SAT) and precipitation variability. The RCM simulations tend to overestimate SAT, especially over the northern part of the domain in winter and over the western part in summer. Statistically significant increases in seasonal SAT under both higher and lower emissions scenarios over the whole RCM domain suggest the robustness of future warming. Most parts of the northeastern US region will experience increasing winter precipitation and decreasing summer precipitation, though the changes are not statistically significant. The greater magnitude of the projected temperature increase by the end of the twenty-first century under the higher emissions scenario emphasizes the essential role of emissions choices in determining the potential future climate change.  相似文献   

2.
尽管气候变化是全球性的现象,但其表现和结果随区域不同而不同,因此区域气候信息对于气候变化的作用和风险评估很重要。基于此,IPCC第六次评估报告(AR6)第一工作组(WGI)报告第十章对如何从全球链接到区域气候变化方面进行了评估。区域气候变化是对自然强迫和人类活动的区域响应、对大尺度气候系统内部变率的响应和区域气候本身反馈过程的相互作用结果。因此,本章重点关注如何从多套观测资料,不同模式的集合,物理过程的理解、专家判断和本地信息等多元信息中有效提炼出区域信息的方法。通过提炼方法指出人类活动是许多次大陆尺度上1950年代以来区域平均温度变化的主要驱动力,但参考时段和阈值的选择对人类活动信号是否出现和出现的早晚有影响。人类活动对一些区域的多年代际降水变化有一定贡献,但其不确定性相对全球平均而言更大。气候系统内部变率可以在很大程度上延迟和阻碍人类活动信号在区域气候变化中的出现。区域气候变化的评估给决策者提供了更多有用的信息,增加了评估报告的适用性。  相似文献   

3.
Climate changes over China from the present (1990–1999) to future (2046–2055) under the A1FI (fossil fuel intensive) and A1B (balanced) emission scenarios are projected using the Regional Climate Model version 3 (RegCM3) nests with the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM). For the present climate, RegCM3 downscaling corrects several major deficiencies in the driving CCSM, especially the wet and cold biases over the Sichuan Basin. As compared with CCSM, RegCM3 produces systematic higher spatial pattern correlation coefficients with observations for precipitation and surface air temperature except during winter. The projected future precipitation changes differ largely between CCSM and RegCM3, with strong regional and seasonal dependence. The RegCM3 downscaling produces larger regional precipitation trends (both decreases and increases) than the driving CCSM. Contrast to substantial trend differences projected by CCSM, RegCM3 produces similar precipitation spatial patterns under different scenarios except autumn. Surface air temperature is projected to consistently increase by both CCSM and RegCM3, with greater warming under A1FI than A1B. The result demonstrates that different scenarios can induce large uncertainties even with the same RCM-GCM nesting system. Largest temperature increases are projected in the Tibetan Plateau during winter and high-latitude areas in the northern China during summer under both scenarios. This indicates that high elevation and northern regions are more vulnerable to climate change. Notable discrepancies for precipitation and surface air temperature simulated by RegCM3 with the driving conditions of CCSM versus the model for interdisciplinary research on climate under the same A1B scenario further complicated the uncertainty issue. The geographic distributions for precipitation difference among various simulations are very similar between the present and future climate with very high spatial pattern correlation coefficients. The result suggests that the model present climate biases are systematically propagate into the future climate projections. The impacts of the model present biases on projected future trends are, however, highly nonlinear and regional specific, and thus cannot be simply removed by a linear method. A model with more realistic present climate simulations is anticipated to yield future climate projections with higher credibility.  相似文献   

4.
We analyze ensembles (four realizations) of historical and future climate transient experiments carried out with the coupled atmosphere-ocean general circulation model (AOGCM) of the Hadley Centre for Climate Prediction and Research, version HADCM2, with four scenarios of greenhouse gas (GHG) and sulfate forcing. The analysis focuses on the regional scale, and in particular on 21 regions covering all land areas in the World (except Antarctica). We examine seasonally averaged surface air temperature and precipitation for the historical period of 1961–1990 and the future climate period of 2046–2075. Compared to previous AOGCM simulations, the HADCM2 model shows a good performance in reproducing observed regional averages of summer and winter temperature and precipitation. The model, however, does not reproduce well observed interannual variability. We find that the uncertainty in regional climate change predictions associated with the spread of different realizations in an ensemble (i.e. the uncertainty related to the internal model variability) is relatively low for all scenarios and regions. In particular, this uncertainty is lower than the uncertainty due to inter-scenario variability and (by comparison with previous regional analyses of AOGCMs) with inter-model variability. The climate biases and sensitivities found for different realizations of the same ensemble were similar to the corresponding ensemble averages and the averages associated with individual realizations of the same ensemble did not differ from each other at the 5% confidence level in the vast majority of cases. These results indicate that a relatively small number of realizations (3 or 4) is sufficient to characterize an AOGCM transient climate change prediction at the regional scale. Received: 12 January 1998 / Accepted: 7 July 1999  相似文献   

5.
A detailed analysis is undertaken of the Atlantic-European climate using data from 500-year-long proxy-based climate reconstructions, a long climate simulation with perpetual 1990 forcing, as well as two global and one regional climate change scenarios. The observed and simulated interannual variability and teleconnectivity are compared and interpreted in order to improve the understanding of natural climate variability on interannual to decadal time scales for the late Holocene. The focus is set on the Atlantic-European and Alpine regions during the winter and summer seasons, using temperature, precipitation, and 500 hPa geopotential height fields. The climate reconstruction shows pronounced interdecadal variations that appear to “lock” the atmospheric circulation in quasi-steady long-term patterns over multi-decadal periods controlling at least part of the temperature and precipitation variability. Different circulation patterns are persistent over several decades for the period 1500 to 1900. The 500-year-long simulation with perpetual 1990 forcing shows some substantial differences, with a more unsteady teleconnectivity behaviour. Two global scenario simulations indicate a transition towards more stable teleconnectivity for the next 100 years. Time series of reconstructed and simulated temperature and precipitation over the Alpine region show comparatively small changes in interannual variability within the time frame considered, with the exception of the summer season, where a substantial increase in interannual variability is simulated by regional climate models.  相似文献   

6.
We present an analysis of climate change over Europe as simulated by a regional climate model (RCM) nested within time-slice atmospheric general circulation model (AGCM) experiments. Changes in mean and interannual variability are discussed for the 30-year period of 2071–2100 with respect to the present day period of 1961–1990 under forcing from the A2 and B2 IPCC emission scenarios. In both scenarios, the European region undergoes substantial warming in all seasons, in the range of 1–5.5°C, with the warming being 1–2°C lower in the B2 than in the A2 scenario. The spatial patterns of warming are similar in the two scenarios, with a maximum over eastern Europe in winter and over western and southern Europe in summer. The precipitation changes in the two scenarios also show similar spatial patterns. In winter, precipitation increases over most of Europe (except for the southern Mediterranean regions) due to increased storm activity and higher atmospheric water vapor loadings. In summer, a decrease in precipitation is found over most of western and southern Europe in response to a blocking-like anticyclonic circulation over the northeastern Atlantic which deflects summer storms northward. The precipitation changes in the intermediate seasons (spring and fall) are less pronounced than in winter and summer. Overall, the intensity of daily precipitation events predominantly increases, often also in regions where the mean precipitation decreases. Conversely the number of wet days decreases (leading to longer dry periods) except in the winter over western and central Europe. Cloudiness, snow cover and soil water content show predominant decreases, in many cases also in regions where precipitation increases. Interannual variability of both temperature and precipitation increases substantially in the summer and shows only small changes in the other seasons. A number of statistically significant regional trends are found throughout the scenario simulations, especially for temperature and for the A2 scenario. The results from the forcing AGCM simulations and the nested RCM simulations are generally consistent with each other at the broad scale. However, significant differences in the simulated surface climate changes are found between the two models in the summer, when local physics processes are more important. In addition, substantial fine scale detail in the RCM-produced change signal is found in response to local topographical and coastline features.  相似文献   

7.
Summary Regional climate model and statistical downscaling procedures are used to generate winter precipitation changes over Romania for the period 2071–2100 (compared to 1961–1990), under the IPCC A2 and B2 emission scenarios. For this purpose, the ICTP regional climate model RegCM is nested within the Hadley Centre global atmospheric model HadAM3H. The statistical downscaling method is based on the use of canonical correlation analysis (CCA) to construct climate change scenarios for winter precipitation over Romania from two predictors, sea level pressure and specific humidity (either used individually or together). A technique to select the most skillful model separately for each station is proposed to optimise the statistical downscaling signal. Climate fields from the A2 and B2 scenario simulations with the HadAM3H and RegCM models are used as input to the statistical downscaling model. First, the capability of the climate models to reproduce the observed link between winter precipitation over Romania and atmospheric circulation at the European scale is analysed, showing that the RegCM is more accurate than HadAM3H in the simulation of Romanian precipitation variability and its connection with large-scale circulations. Both models overestimate winter precipitation in the eastern regions of Romania due to an overestimation of the intensity and frequency of cyclonic systems over Europe. Climate changes derived directly from the RegCM and HadAM3H show an increase of precipitation during the 2071–2100 period compared to 1961–1990, especially over northwest and northeast Romania. Similar climate change patterns are obtained through the statistical downscaling method when the technique of optimum model selected separately for each station is used. This adds confidence to the simulated climate change signal over this region. The uncertainty of results is higher for the eastern and southeastern regions of Romania due to the lower HadAM3H and RegCM performance in simulating winter precipitation variability there as well as the reduced skill of the statistical downscaling model.  相似文献   

8.
There are a number of sources of uncertainty in regional climate change scenarios. When statistical downscaling is used to obtain regional climate change scenarios, the uncertainty may originate from the uncertainties in the global climate models used, the skill of the statistical model, and the forcing scenarios applied to the global climate model. The uncertainty associated with global climate models can be evaluated by examining the differences in the predictors and in the downscaled climate change scenarios based on a set of different global climate models. When standardized global climate model simulations such as the second phase of the Coupled Model Intercomparison Project (CMIP2) are used, the difference in the downscaled variables mainly reflects differences in the climate models and the natural variability in the simulated climates. It is proposed that the spread of the estimates can be taken as a measure of the uncertainty associated with global climate models. The proposed method is applied to the estimation of global-climate-model-related uncertainty in regional precipitation change scenarios in Sweden. Results from statistical downscaling based on 17 global climate models show that there is an overall increase in annual precipitation all over Sweden although a considerable spread of the changes in the precipitation exists. The general increase can be attributed to the increased large-scale precipitation and the enhanced westerly wind. The estimated uncertainty is nearly independent of region. However, there is a seasonal dependence. The estimates for winter show the highest level of confidence, while the estimates for summer show the least.  相似文献   

9.
This study aims to analyse the interannual variability simulated by several regional climate models (RCMs), and its potential for disguising the effect of seasonal temperature increases due to greenhouse gases. In order to accomplish this, we used an ensemble of regional climate change projections over North America belonging to the North American Regional Climate Change Program, with an additional pair of 140-year continuous runs from the Canadian RCM. We find that RCM-simulated interannual variability shows important departures from observed one in some cases, and also from the driving models’ variability, while the expected climate change signal coincides with estimations presented in previous studies. The continuous runs from the Canadian RCM were used to illustrate the effect of interannual variability in trend estimation for horizons of a decade or more. As expected, it can contribute to the existence of transitory cooling trends over a few decades, embedded within the expected long-term warming trends. A new index related to signal-to-noise ratio was developed to evaluate the expected number of years it takes for the warming trend to emerge from interannual variability. Our results suggest that detection of the climate change signal is expected to occur earlier in summer than in winter almost everywhere, despite the fact that winter temperature generally has a much stronger climate change signal. In particular, we find that the province of Quebec and northwestern Mexico may possibly feel climate change in winter earlier than elsewhere in North America. Finally, we show that the spatial and temporal scales of interest are fundamental for our capacity of discriminating climate change from interannual variability.  相似文献   

10.
We analyze decadal climate variability in the Mediterranean region using observational datasets over the period 1850–2009 and a regional climate model simulation for the period 1960–2000, focusing in particular on the winter (DJF) and summer (JJA) seasons. Our results show that decadal variability associated with the winter and summer manifestations of the North Atlantic Oscillation (NAO and SNAO respectively) and the Atlantic Multidecadal Oscillation (AMO) significantly contribute to decadal climate anomalies over the Mediterranean region during these seasons. Over 30% of decadal variance in DJF and JJA precipitation in parts of the Mediterranean region can be explained by NAO and SNAO variability respectively. During JJA, the AMO explains over 30% of regional surface air temperature anomalies and Mediterranean Sea surface temperature anomalies, with significant influence also in the transition seasons. In DJF, only Mediterranean SST still significantly correlates with the AMO while regional surface air temperature does not. Also, there is no significant NAO influence on decadal Mediterranean surface air temperature anomalies during this season. A simulation with the PROTHEUS regional ocean–atmosphere coupled model is utilized to investigate processes determining regional decadal changes during the 1960–2000 period, specifically the wetter and cooler 1971–1985 conditions versus the drier and warmer 1986–2000 conditions. The simulation successfully captures the essence of observed decadal changes. Model set-up suggests that AMO variability is transmitted to the Mediterranean/European region and the Mediterranean Sea via atmospheric processes. Regional feedbacks involving cloud cover and soil moisture changes also appear to contribute to observed changes. If confirmed, the linkage between Mediterranean temperatures and the AMO may imply a certain degree of regional decadal climate predictability. The AMO and other decadal influences outlined here should be considered along with those from long-term increases in greenhouse gas forcings when making regional climate out-looks for the Mediterranean 10–20?years out.  相似文献   

11.
Central America has high biodiversity, it harbors high-value ecosystems and it??s important to provide regional climate change information to assist in adaptation and mitigation work in the region. Here we study climate change projections for Central America and Mexico using a regional climate model. The model evaluation shows its success in simulating spatial and temporal variability of temperature and precipitation and also in capturing regional climate features such as the bimodal annual cycle of precipitation and the Caribbean low-level jet. A variety of climate regimes within the model domain are also better identified in the regional model simulation due to improved resolution of topographic features. Although, the model suffers from large precipitation biases, it shows improvements over the coarse-resolution driving model in simulating precipitation amounts. The model shows a dry bias in the wet season and a wet bias in the dry season suggesting that it??s unable to capture the full range of precipitation variability. Projected warming under the A2 scenario is higher in the wet season than that in the dry season with the Yucatan Peninsula experiencing highest warming. A large reduction in precipitation in the wet season is projected for the region, whereas parts of Central America that receive a considerable amount of moisture in the form of orographic precipitation show significant decreases in precipitation in the dry season. Projected climatic changes can have detrimental impacts on biodiversity as they are spatially similar, but far greater in magnitude, than those observed during the El Ni?o events in recent decades that adversely affected species in the region.  相似文献   

12.
This paper introduces an original method for climate change detection, called temporal optimal detection method. The method consists in searching for a smooth temporal pattern in the observations. This pattern can be either the response of the climate system to a specific forcing or to a combination of forcings. Many characteristics of this new method are different from those of the classical “optimal fingerprint” method. It allows to infer the spatial distribution of the detected signal, without providing any spatial guess pattern. The spatial properties of the internal climate variability doesn’t need to be estimated either. The estimation of such quantities being very challenging at regional scale, the proposed method is particularly well-suited for such scale. The efficiency of the method is illustrated by applying it on real homogenized datasets of temperatures and precipitation over France. A multimodel detection is performed in both cases, using an ensemble of atmosphere-ocean general circulation models for estimating the temporal patterns. Regarding temperatures, new results are highlighted, especially by showing that a change is detected even after removing the uniform part of the warming. The sensitivity of the method is discussed in this case, relatively to the computation of the temporal patterns and to the choice of the model. The method also allows to detect a climate change signal in precipitation. This change impacts the spatial distribution of the precipitation more than the mean over the domain. The ability of the method to provide an estimate of the spatial distribution of the change following the prescribed temporal patterns is also illustrated.  相似文献   

13.
Observations as well as most climate model simulations are generally in accord with the hypothesis that the hydrologic cycle should intensify and become highly volatile with the greenhouse-gas-induced climate change, although uncertainties of these projections as well as the spatial and seasonal variability of the changes are much larger than for temperature extremes. In this study, we examine scenarios of changes in extreme precipitation events in 24 future climate runs of ten regional climate models, focusing on a specific area of the Czech Republic (central Europe) where complex orography and an interaction of other factors governing the occurrence of heavy precipitation events result in patterns that cannot be captured by global models. The peaks-over-threshold analysis with increasing threshold censoring is applied to estimate multi-year return levels of daily rainfall amounts. Uncertainties in scenarios of changes for the late 21st century related to the inter-model and within-ensemble variability and the use of the SRES-A2 and SRES-B2 greenhouse gas emission scenarios are evaluated. The results show that heavy precipitation events are likely to increase in severity in winter and (with less agreement among models) also in summer. The inter-model and intra-model variability and related uncertainties in the pattern and magnitude of the change is large, but the scenarios tend to agree with precipitation trends recently observed in the area, which may strengthen their credibility. In most scenario runs, the projected change in extreme precipitation in summer is of the opposite sign than a change in mean seasonal totals, the latter pointing towards generally drier conditions in summer. A combination of enhanced heavy precipitation amounts and reduced water infiltration capabilities of a dry soil may severely increase peak river discharges and flood-related risks in this region.  相似文献   

14.
Many scientific studies warn of a rapid global climate change during the next century. These changes are understood with much less certainty on a regional scale than on a global scale, but effects on ecosystems and society will occur at local and regional scales. Consequently, in order to study the true impacts of climate change, regional scenarios of future climate are needed. One of the most important sources of information for creating scenarios is the output from general circulation models (GCMs) of the climate system. However, current state-of-the-art GCMs are unable to simulate accurately even the current seasonal cycle of climate on a regional basis. Thus the simple technique of adding the difference between 2 × CO2 and 1 × CO2 GCM simulations to current climatic time series cannot produce scenarios with appropriate spatial and temporal details without corrections for model deficiencies. In this study a technique is developed to allow the information from GCM simulations to be used, while accommodating for the deficiencies. GCM output is combined with knowledge of the regional climate to produce scenarios of the equilibrium climate response to a doubling of the atmospheric CO2 concentration for three case study regions, China, Sub-Saharan Africa and Venezuela, for use in biological effects models. By combining the general climate change calculated with several GCMs with the observed patterns of interannual climate variability, reasonable scenarios of temperature and precipitation variations can be created. Generalizations of this procedure to other regions of the world are discussed.  相似文献   

15.
For the construction of regional climate change scenarios spanning a relevant fraction of the spread in climate model projections, an inventory of major drivers of regional climate change is needed. For the Netherlands, a previous set of regional climate change scenarios was based on the decomposition of local temperature/precipitation changes into components directly linked to the level of global warming, and components related to changes in the regional atmospheric circulation. In this study this decomposition is revisited utilizing the extensive modelling results from the CMIP5 model ensemble in support for the 5th IPCC assessment. Rather than selecting a number of GCMs based on performance metrics or relevant response features, a regression technique was developed to utilize all available model projections. The large number of projections allows a quantification of the separate contributions of emission scenarios, systematic model responses and natural variability to the total likelihood range. Natural variability plays a minor role in modelled differences in the global mean temperature response, but contributes for up to 50 % to the range of mean sea level pressure responses and local precipitation. Using key indicators (“steering variables”) for the temperature and circulation response, the range in local seasonal mean temperature and precipitation responses can be fairly well reproduced.  相似文献   

16.
Uncertainty in climate change projections: the role of internal variability   总被引:12,自引:7,他引:5  
Uncertainty in future climate change presents a key challenge for adaptation planning. In this study, uncertainty arising from internal climate variability is investigated using a new 40-member ensemble conducted with the National Center for Atmospheric Research Community Climate System Model Version 3 (CCSM3) under the SRES A1B greenhouse gas and ozone recovery forcing scenarios during 2000–2060. The contribution of intrinsic atmospheric variability to the total uncertainty is further examined using a 10,000-year control integration of the atmospheric model component of CCSM3 under fixed boundary conditions. The global climate response is characterized in terms of air temperature, precipitation, and sea level pressure during winter and summer. The dominant source of uncertainty in the simulated climate response at middle and high latitudes is internal atmospheric variability associated with the annular modes of circulation variability. Coupled ocean-atmosphere variability plays a dominant role in the tropics, with attendant effects at higher latitudes via atmospheric teleconnections. Uncertainties in the forced response are generally larger for sea level pressure than precipitation, and smallest for air temperature. Accordingly, forced changes in air temperature can be detected earlier and with fewer ensemble members than those in atmospheric circulation and precipitation. Implications of the results for detection and attribution of observed climate change and for multi-model climate assessments are discussed. Internal variability is estimated to account for at least half of the inter-model spread in projected climate trends during 2005–2060 in the CMIP3 multi-model ensemble.  相似文献   

17.
The analysis of possible regional climate changes over Europe as simulated by 10 regional climate models within the context of PRUDENCE requires a careful investigation of possible systematic biases in the models. The purpose of this paper is to identify how the main model systematic biases vary across the different models. Two fundamental aspects of model validation are addressed here: the ability to simulate (1) the long-term (30 or 40 years) mean climate and (2) the inter-annual variability. The analysis concentrates on near-surface air temperature and precipitation over land and focuses mainly on winter and summer. In general, there is a warm bias with respect to the CRU data set in these extreme seasons and a tendency to cold biases in the transition seasons. In winter the typical spread (standard deviation) between the models is 1 K. During summer there is generally a better agreement between observed and simulated values of inter-annual variability although there is a relatively clear signal that the modeled temperature variability is larger than suggested by observations, while precipitation variability is closer to observations. The areas with warm (cold) bias in winter generally exhibit wet (dry) biases, whereas the relationship is the reverse during summer (though much less clear, coupling warm (cold) biases with dry (wet) ones). When comparing the RCMs with their driving GCM, they generally reproduce the large-scale circulation of the GCM though in some cases there are substantial differences between regional biases in surface temperature and precipitation.  相似文献   

18.
The uncertainties in the regional climate models (RCMs) are evaluated by analyzing the driving global data of ERA40 reanalysis and ECHAM5 general circulation models, and the downscaled data of two RCMs (RegCM4 and PRECIS) over South-Asia for the present day simulation (1971–2000) of South-Asian summer monsoon. The differences between the observational datasets over South-Asia are also analyzed. The spatial and the quantitative analysis over the selected climatic regions of South-Asia for the mean climate and the inter-annual variability of temperature, precipitation and circulation show that the RCMs have systematic biases which are independent from different driving datasets and seems to come from the physics parameterization of the RCMs. The spatial gradients and topographically-induced structure of climate are generally captured and simulated values are within a few degrees of the observed values. The biases in the RCMs are not consistent with the biases in the driving fields and the models show similar spatial patterns after downscaling different global datasets. The annual cycle of temperature and rainfall is well simulated by the RCMs, however the RCMs are not able to capture the inter-annual variability. ECHAM5 is also downscaled for the future (2071–2100) climate under A1B emission scenario. The climate change signal is consistent between ECHAM5 and RCMs. There is warming over all the regions of South-Asia associated with increasing greenhouse gas concentrations and the increase in summer mean surface air temperature by the end of the century ranges from 2.5 to 5 °C, with maximum warming over north western parts of the domain and 30 % increase in rainfall over north eastern India, Bangladesh and Myanmar.  相似文献   

19.
This paper deals with different responses from various Atmosphere-Ocean Global Climate Models (AOGCMs) at the regional scale. What can be the best use of AOGCMs for assessing the climate change in a particular region? The question is complicated by the consideration of intra-year month-to-month variability of a particular climate variable such as precipitation or temperature in a specific region. A maximum entropy method (MEM), which combines limited information with empirical perspectives, is applied to assessing the probability-weighted multimodel ensemble average of a climate variable at the region scale. The method is compared to and coupled with other two methods: the root mean square error minimization method and the simple multimodel ensemble average method. A mechanism is developed to handle a comprehensive range of model uncertainties and to identify the best combination of AOGCMs based on a balance of two rules: depending equally on all models versus giving higher priority to models more strongly verified by the historical observation. As a case study, the method is applied to a central US region to compute the probability-based average changes in monthly precipitation and temperature projected for 2055, based on outputs from a set of AOGCMs. Using the AOGCM data prepared by international climate change study groups and local climate observation data, one can apply the MEM to precipitation or temperature for a particular region to generate an annual cycle, which includes the effects from both global climate change and local intra-year climate variability.  相似文献   

20.
Regional magnitudes and patterns of Arctic winter climate changes in consequence of regime changes of the North Atlantic Oscillation (NAO) are analyzed using a regional atmospheric climate model. The regional model has been driven with data of positive and negative NAO phases from a control simulation as well as from a time-dependent greenhouse gas and aerosol scenario simulation. Both global model simulations include a quite realistic interannual variability of the NAO with pronounced decadal regime changes and no or rather weak long-term NAO trends. The results indicate that the effects of NAO regime changes on Arctic winter temperatures and precipitation are regionally significant over most of northwestern Eurasia and parts of Greenland. In this regard, mean winter temperature variations of up to 6 K may occur over northern Europe. Precipitation and synoptic variability are also regionally modified by NAO regime changes, but not as significantly as temperatures. However, the climate changes associated with the NAO are in some regions clearly stronger than those attributed to enhanced greenhouse gases and aerosols, indicating that projected global changes of the atmospheric composition and internal circulation changes are competing with each other in their importance for the Arctic climate evolution in the near future. The knowledge of the future NAO trend on decadal and longer time scales appears to be vitally important in terms of a regional assessment of climate scenarios for the Arctic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号