首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
External nutrient loadings, internal nutrient pools, and phytoplankton production were examined for three major subsystems of the Chesapeake Bay Estuary—the upper Mainstem, the Patuxent Estuary, and the 01 Potomac Estuary—during 1985–1989. The atomic nitrogen to phosphorus ratios (TN:TP) of total loads to the 01 Mainstem, Patuxent, and the Potomac were 51, 29 and 35, respectively. Most of these loads entered at the head of the estuaries from riverine sources and major wastewater treatment plants. Approximately 7–16% for the nitrogen load entered the head of each estuary as particulate matter in contrast to 48–69% for phosphorus. This difference is hypothesized to favor a greater loss of phosphorus than nitrogen through sedimentation and burial. This process could be important in driving estuarine nitrogen to phosphorus ratios above those of inputs. Water column TN: TP ratios in the tidal fresh, oligohaline, and mesohaline salinity zones of each estuary ranged from 56 to 82 in the Mainstem, 27 to 48 in the Patuxent, and 72 to 126 in the Potomac. A major storm event in the Potomac watershed was shown to greatly increase the particulate fraction of nitrogen and phosphorus and lower the TN:TP in the river-borne loads. The load during the month that contained this storm (November 1985) accounted for 11% of the nitrogen and 31% of the phosphorus that was delivered to the estuary by the Potomac River during the entire 60-month period examined here. Within the Mainstem estuary, salinity dilution plots revealed strong net sources of ammonium and phosphate in the oligohaline to upper mesohaline region, indicating that these areas were sites of considerable internal recycling of nutrients to surface waters. The sedimentation of particulate nutrient loads in the upper reaches of the estuary is probably a major source of these recycled nutrients. A net sink of nitrate was indicated during summer. A combination of inputs and these internal recycling processes caused dissolved inorganic N to P ratios to approach 16:1 in the mesohaline zone of the Mainstem during late summer; this ratio was much higher at other times and in the lower salinity zones. Phytoplankton biomass in the mesohaline Mainstem reached a peak in spring and was relatively constant throughout the other seasons. Productivity was highest in spring and summer, accounting for approximately 33% and 44%, respectively, of the total annual productivity in this region. In the Patuxent and Potomac, the TN:TP ratios of external loads documented here are 2–4 times higher than those observed over the previous two decades. These changes are attributed to point-source phosphorus controls and the likelihood that nitrogen-rich nonpoint source inputs, including contributions from the atmosphere, have increased. These higher N:P ratios relative to Redfield proportions (16:1) now suggest a greater overall potential for phosphorus-limitation rather than nitrogen-limitation of phytoplankton in the areas studied.  相似文献   

2.
Calculations by others of the preindustrial deposition of inorganic nitrogen from the atmosphere in the area of Narragansett Bay compared with recent measurements suggest that this flux has increased almost 15 times over natural background. On the basis of modern studies of the export of nitrogen and phosphorus from temperate forests, the prehistoric watershed also probably contributed very little reactive N or P to the bay. New information from undisturbed old-growth forests suggests that most of the N that was exported from the watershed was probably associated with refractory dissolved organic matter and thus contributed little to the fertility of the bay. The largest source of reactive dissolved inorganic nitrogen (DIN) and phosphorus (DIP) for Narragansett Bay under prehistoric conditions was the coastal ocean water entrained in the bay in estuarine circulation. The total input of DIN to this estuary has increased about five-fold and the input of total DIP has approximately doubled as a result of human activities. Recent ecosystem-level experiments using large (13 m3, 5 m deep) mesocosms designed as living models of Narragansett Bay showed that the primary production of phytoplankton in the bay is limited by the supply of DIN and that annual phytoplankton production is strongly correlated with the rate of input of DIN. The relationship between DIN input and annual phytoplankton production in the mesocosms is consistent with observations published by others working in 10 different natural marine systems, and a functional regression of the field and experimental data provides a tool to calculate the rate of prehistoric phytoplankton production that would have been associated with the prehistoric DIN input estimates. The result of this calculation suggests that phytoplankton production in the bay has approximately doubled (from about 130 g C m?2 yr?1 to 290 g C m?2 yr?1 for a baywide average) since the time of European contact. It also seems likely that seagrasses and macroalgae once made a much larger contribution to total system production than they do today.  相似文献   

3.
We present a model of estuarine mixing, removal, and input for dissolved constituents, and apply the model to 39 nutrient (P, N, Si) profiles collected over a 14-month period in a pristine river/ estuary: Ochlockonee Bay, Florida. Each profile is deconvolved into three component functions: linear mixing (conservative) first-order removal (biological productivity), and parabolic input (regeneration). After correction for temporal variations in the fluvial end-members, the model provides quantitative estimates of total estuarine primary production, net regeneration, and subsequent fluxes to the ocean over a year-long period. The modeled data set is internally self-consistent: virtually perfect mass balances are obtained for P and Si. All biological P-uptake is regenerated within the estuary so that virtually 100% of the fluvial reactive-P enters the ocean. One-third of the fluvial reactive-P enters the estuary as particles whose phosphate is released after deposition in estuarine sediments. About 20% of the dissolved fluvial silica flux is removed biologically; all of this biogenic silica dissolves in the estuary and enters the ocean. N cannot be mass balanced, probably because it enters and escapes the bay in unmeasured forms (as NH4 or via denitrification to N2 and N2O). In the Ochlockonee, biological productivity removes nutrients in the ratios N:P ? 9:1 and Si:P ? 20:1.  相似文献   

4.
In situ measurements of the exchange of ammonia, nitrate plus nitrite, phosphate, and dissolved organic phosphorus between sediments and the overlying water column were made in a shallow coastal lagoon on the ocean coast of Rhode Island, U.S.A. The release of ammonia from mud sediments in the dark (20–440 μmol per m2 per h) averaged ten times higher than from a sandy tidal flat (0–60 μmol per m2 per h), and while mud sediments also released nitrate and phosphate, sandy sediments took up these nutrients. Fluxes of nutrients from mud sediments, but not from sandy areas, markedly increased with temperature. Ammonia release rates for mud sediments in the light (0–350 μmol per m2 per h) were lower than those in the dark and it is estimated that some 25% of the ammonia released to the water column on an annual basis may be intercepted by the benthic microfloral community. Estimates of the annual net exchange of nutrients across the sediment-water interface, weighted by sediment type for the lagoon as a whole, showed a release of 450 mmol per m2 of ammonia, 5 mmol per m2 of phosphate, 5 mmol per m2 of dissolved organic phosphorus, and an uptake of 80 mmol per m2 of nitrate. Although rates of ammonia and nitrate exchange were comparable to those described for the deeper heterotrophic bottom communities of nearby Narragansett Bay, rates of benthic phosphate release were significantly lower. On an annual basis the Bay benthos released approximately 20 times more inorganic phosphate per unit area than did the lagoon benthos. As a result., the N/P ratio for the flux from the sediments was 74∶1 in the lagoon, compared with 16∶1 in “average” marine plankton and 8∶1 for the benthic flux from Narragansett Bay. The lack of remineralized phosphate in the lagoon, is reflected in water, column phosphate concentrations (always <1 μm) and water column N/P ratios (annual N/P=27) and suggests that the lagoon may show phosphate limitation rather than the nitrogen limitation commonly associated with marine systems.  相似文献   

5.
《Gondwana Research》2016,29(4):1282-1293
Availability of nutrients in the ocean can be a major factor affecting bioproductivity, burial of carbon and release of oxygen. However, the nutrient trace element (TE) composition of the palaeo-ocean cannot be measured directly. Here we present a comprehensive global dataset on the TE content of marine sedimentary pyrite in black shales, dating back 700 million years, and demonstrate a systematic cyclic evolution of pyrite TE composition with time. The nutrient TE, molybdenum, selenium, cadmium and thallium measured in pyrite, and phosphorus measured on whole rock, rise sharply at 560 to 550 Ma followed by several cycles of TE variation through the Palaeozoic and into the Mesozoic. A number of factors could explain the trends. We suggest that variations in continental uplift, erosion and nutrient flux rates were possible drivers of the oceanic nutrient cycles. The cyclic patterns through the Phanerozoic suggest periods of nutrient-rich oceans that fostered key evolutionary events, followed by nutrient-poor oceans that encompass several major mass extinction events.  相似文献   

6.
Sediment oxygen uptake and net sediment-water fluxes of dissolved inorganic and organic nitrogen and phosphorus were measured at two sites in Fourleague Bay, Louisiana, from August 1981, through May 1982. This estuary is an extension of Atchafalaya Bay which receives high discharge and nutrient loading from the Atchafalaya River. Sediment O2 uptake averaged 49 mg m?2 h?1. On the average, ammonium (NH4 +) was released from the sediments (mean flux =+129 μmol m?2 h?1), and NO3 ? was taken up (mean flux =?19 μmol m?2h?1). However, very different NO3 ? fluxes were observed at the two sites, with sediment uptake at the upper, river-influenced, high NO3 ? site (mean flux =?112 μmol m?2 h?1) and release at the lower, marine-influenced low NO3 ? site (mean flux =+79 μmol m?2 h?1). PO4 3? fluxes were low and often negative (mean flux =?8 μmol m?2 h?1), while dissolved organic phosphorus fluxes were high and positive (mean flux =+124 μmol m?2 h?1). Dissolved organic nitrogen fluxes varied greatly, ranging from a mean of +305 μmol m?2 h?1 at the lower bay, to ?710 μmol m?2 h?1 at the upper bay. Total dissolved nitrogen and phosphorus fluxes indicated the sediments were a nitrogen (mean flux =+543 μmol m?2 h?1) and phosphorus source (mean flux =+30 μmol m?2 h?1) at the lower bay, and a nitrogen sink (mean flux =?553 μmol m?2 h?1) and phosphorus source (mean flux =+17 μmol m?2 h?1) in the upper bay. Mean annual O∶N ration of the positive inorganic sediment fluxes were 27∶1 at the upper bay and 18∶1 at the lower bay. Based on these data we hypothesize that nitrification and denitrification are important sediment processes in the upper bay. We further hypothesize that Atchafalaya River discharge affects sediment-water fluxes through seasonally high nutrient loading which leads to net nutrient uptake by sediments in the upper bay and release in the lower bay, where there is less river influnces.  相似文献   

7.
Trophic states and nutrient storage of reservoirs in Chongqing   总被引:1,自引:0,他引:1  
The trophic states of 35 reservoirs were investigated in the region of Chongqing, Southwest China. The results showed that the concentrations of nutrients and chlorophyll a were high and organic pollution and transparence (SD) were low in the water body. The concentrations of total nitrogen (TN) range from 0.52 mg/L to 5.94 mg/L and those of total phosphorus (TP) range from 0.002 mg/L to 0.598 mg/L. Chemical oxygen demand (COD) ranges from 0.75 mg/L to 9.3 mg/L and SD ranges from 0.48 m to 3.2 m. There was a significant positive correlation between COD and chlorophyll a, but a significant negative correlation between SD and chlorophyll a. In terms of the integrated nutrition state index, the eutrophication states of the reservoirs were assessed. Of the investigated reservoirs, about 22 reached the grade of eutrophication. Only one reservoir was in the state of oligotropher, the rest were in the state of mestropher. Integrated nutrition state indices range from 25.4 to 74.5. The storage capacity of nutrients in the reservoirs was calculated. The stored TN, TP and COD were about 4731, 206 and 10259 t, respectively. The main pollution sources are industrial and domestic wastes. With the development of aquaculture, the contamination level increases gradually.  相似文献   

8.
Submersed macrophytes are important in nutrient cycling in marine and lacustrine systems, although their in nutrient exchange in tidally-influenced riverine systems is not well studied. In the laboratory, plants significantly lowered porewater nutrient pools of riverine sediments compared with bare controls. Deep-rootedVallisneria americana lowered the porewater nutrients to a greater extent than the shallow-rootedPotamogeton pectinatus. V. americana showed significantly higher tissue nutrient content (N in roots, P in leaves) thanP. pectinatus. porewater nutrients in the river increased from spring to summer (1995) when vegetation was at its peak (for porewater PO4-P, p<0.05). In 1996, porewater nutrients were higher during peak plant biomass in the summer than in the fall (for porewater PO4-P, p<0.05). In the summer (1995) vegetated patches had significantly greater porewater PO4-P than bare patches. We hypothesize that the concentrating of particulates in riverine grassbeds and subsequent microbial processing may provide an indirect source of nutrients for submersed macrophytes. In tidally-influenced riverine systems, biological mechanisms such as root uptake of nutrients and lateral oxygen release may be masked by the interaction of physical forces (i.e., tides, currents) with the structure of the grassbeds.  相似文献   

9.
This contribution presents a new perspective on water chemistry and its relation to tidal hydrology in marsh-dominated estuaries. Results are derived from both field and modeling experiments. A heuristic model based on a tidally-averaged advection-dispersion equation is used in conjunction with source-sink terms (for benthic, marsh surface, and open-water exchanges) to make predictions of nutrient concentrations in the water column. Spring-neap tidal contrasts are associated with significant changes in water-column chemistry for a variety of nutrients sampled during the growing season in the Parker River estuary (Massachusetts). For ammonium, phosphate, nitrate plus nitrite, total dissolved N, and total dissolved P, concentrations are significantly lower during spring tides (marshes flooded) than during neap tides (marshes unflooded). Model results indicate that physical changes and open-water processing are insufficient to produce the observed effect, and that explicit biogeochemical processing on marsh surfaces is required. Field observations of changes in nutrient to nutrient ratios with the onset of marsh inundation also support this conclusion. As tides progress from the neap to spring condition, a “spectrum” of trajectories emerges in salinity-nutrient plots developed from both observational datasets and model output. Care must therefore be exercised in designing sampling programs for water chemistry in marsh-dominated ecosystems and in interpreting the resulting mixing diagrams.  相似文献   

10.
Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts   总被引:1,自引:0,他引:1  
To gain insight into the importance of the benthos in carbon and nutrient budgets of Boston Harbor and surrounding bays, we measured sediment-water exchanges of oxygen, total carbon dioxide (DIC), nitrogen (ammonium, nitrate+nitrite, urea, N2O), silicate, and phosphorus at several stations in different sedimentary environments just prior to and subsequent to cessation of sewage sludge disposal in the harbor. The ratio of the average annual DIC release to O2 uptake at three primary stations ranged from 0.84 to 1.99. Annual average DIC:DIN flux ratios were consistently greater than predicted from the Redfield ratio, suggesting substantial losses of mineralized N. The pattern was less clear for P: some stations showed evidence that the sediments were a sink for P while others appeared to be a net source to the water column over the study period. In general, temporal and spatial patterns of respiration, nutrient fluxes, and flux ratios were not consistently related to measures of sediment oxidation-reduction status such as Eh or dissolved sulfide. Sediments from Boston Harbor metabolize a relatively high percentage (46%) of the organic matter inputs from phytoplankton production and allochthonous inputs when compared to most estuarine systems. Nutrient regeneration from the benthos is equivalent to 40% of the N, 29% of the P, and more than 60% of the Si demand of the phytoplankton. However, the role of the benthos in supporting primary production at the present time may be minor as nutrient inputs from sewage and other sources exceed benthic fluxes of N and P by 10-fold and Si by 4-fold. Our estimates of denitrification from DIC:DIN fluxes suggests that about 45% of the N mineralized in the sediments is denitrified, which accounts for about 17% of the N inputs from land.  相似文献   

11.
The supply of nitrogen and phosphorus in coastal zones through time is reflected in the nutrients’ concentration in the sediment record. Five aquaculture sites in the Philippines were investigated in an effort to establish how long-term changes in land and coastal water use could have led to biogeochemical modifications affecting the coastal ecosystem. Samples from study sites show a narrow concentration range for nitrogen and did not reveal any significant trend through time. In contrast, phosphorus concentrations in most sites start at less than 20 ppm in sediments 30 years and older. The phosphorus value continuously increase in younger sediments, with each site having a different magnitude change as well as timing of when the major increase happened. The uppermost 10 cm, representing the last 15 years in sites with age control, typically show a 2- to 3-fold increase in P load values. Historical increase in nutrient load also coincides with harmful algal bloom events in each area; when effective P input exceeded 130 kg/km2 per year. Lastly, the observed increase may be attributed to several factors including physical attributes of the area, urbanization of coastal zones, but most importantly in the proliferation of aquaculture activities.  相似文献   

12.
The results of a study of soil factors in relation to plant growth for a tropical mangrove forest in northern Australia are presented and discussed. Basic soil properties are described briefly in terms of particle size distribution, bulk density and total carbon, nitrogen and phosphorus. Soil redox potential, pH, salinity and extractable nitrogen and phosphorus were monitored monthly over a 14 month period commencing April 1979. Sampling was carried out at 9 sites along a 370 m transect which exhibits strong gradients in topography, above ground biomass, canopy height and species distribution. Statistical analysis of the data shows that above ground biomass correlates significantly with the following soil factors, averaged over depth within the rooting zone and over time: Extractable P (r=0.85, p<0.01), redox potential (r=0.89, p<0.01) and salinity (r=?0.79, p<0.05). The strong biomass-EH correlation may be partly due to oxygen translocation by the plants to the root zone. Soil ammonium levels were within the range of 1–14 μg N per g (dry wt) and, unlike the above parameters, showed only minor variation with position along the transect. Variation of ammonium levels with time was apparent, but no significant correlation with rate of new shoot growth could be demonstrated, although depth profiles indicated depletion of ammonium by plant uptake during rapid growth periods. In addition neither soil ammonium, extractable phosphorus nor rate of plant growth showed any definite seasonal periodicity in this tropical system.  相似文献   

13.
Li  Yunlong  Cheng  Jianzhong  Lee  Xinqing  Chen  Yi  Gao  Weichang  Pan  Wenjie  Tang  Yuan 《中国地球化学学报》2019,38(1):1-7
Acta Geochimica - Biochar is a soil amendment for increasing soil quality and decreasing nutrient leaching. However, there is little information on the impact of biochar-based fertilizer (BF) on...  相似文献   

14.
《Applied Geochemistry》1994,9(2):119-125
Uptake of K, Ca, Mg and Na by vegetation in two upland ecosystems, one situated in andesitic parent material and the other on mica-schists, has been studied in relation to the mineralogy of the soils and the rates of weathering of base cations. Rates of weathering were calculated by two methods: (1) long-term rates were calculated from losses of the elements in soil horizons using Zr as an internal index; (2) current rates were calculated from input-output budgets using rain-water and stream chemistry over a 3 a period. Vegetation uptake can be related in a general way to mineralogy and weathering trends. Most of the K released from the soil appears to be taken up by the vegetation and the content of K in grass-dominated plant communities is related mainly to the availability of K from the weathering of mica. High levels of Ca in the streams indicate an overabundance of Ca which is being released mainly by weathering of plagioclase feldspar. Amounts of Mg in the vegetation are related to variations in the content of chlorite which is easily weathered at both sites.  相似文献   

15.
The mass of nutrients (nitrogen, phosphorus, potassium, and calcium) imported during 1984 and 1985 to the North. Inlet Estuary, Georgetown County, South Carolina, by precipitation and runoff was compared with that imported by a colonial-nesting wading bird, the white ibis (Eudocimus albus). From late March through late June of both years, breeding ibises imported nutrients to the North Inlet Estuary study site from freshwater bottomland forest swamps, where they fed on crayfishes (Procambaridae). Although 1984 was a relatively wet year, in 1985 the ibis breeding season was preceded by a severe winter-spring drought. In 1984 ibises nested in higher numbers, had higher per-pair breeding success, and imported 11 times more nutrients than in 1985. Nutrient input from atmospheric sources was substantially lower in 1984 than in 1985. The 1984 ibises imported 9% as much nitrogen, 33% as much phosphorus, 0.4% as much potassium, and 0.3% as much calcium to the estuary as did atmospheric sources. In 1985 nutrient input from ibises amounted to only 0.2% of the nitrogen, 2.9% of the phosphorus, and ?1% of the potassium and calcium imported by atmospheric sources. Our results show that nutrient inputs to estuaries from colonial-nesting wading birds can be substantial when compared, with those from atmospheric sources and can vary considerably among years. They also suggest that nutrient regimes in estuaries with large assemblages of wading birds may differ significantly from those lacking such colonies. *** DIRECT SUPPORT *** A01BY058 00006  相似文献   

16.
Surplus nitrogen from agricultural production is a leading cause of water quality problems in the U.S. It is also a source of nitrous oxide, the largest category of greenhouse gas emissions from agriculture. Any reduction in the amount of nitrogen lost from farming practices would produce significant benefits for both water quality and climate protection. Using a model of the U.S. agricultural sector we adapted to explore water quality and climate issues, we evaluate a variety of policy options for their impact on farm income and the environment. We find that policies to create markets for reductions in nitrogen lost to water or greenhouse gas emissions from agriculture would increase farm income while producing cost-effective environmental benefits.  相似文献   

17.
We have theoretically considered the problem of interpretation of nutrient profiles in the upper ocean (100–2000m). We compare the experimental depth profiles of nonconservative tracers, both stable and radioactive, with solutions of one-dimensional steady state transport equations of increasing complexity including situations not encountered in the real oceans. Apart from gaining insight into the nutrient transport processes, this analysis is useful in offering a way to obtain operational estimates of depth dependent/independent eddy diffusivity and dissolution fluxes in the ocean. These parameters are essential for estimating new production, total production and burial of carbon in the sediments.  相似文献   

18.
To determine the removal of regenerated nitrogen by estuarine sediments, we compared sediment N2 fluxes to the stoichiometry of nutrient and O2 fluxes in cores collected in the Childs River, Cape Cod, Massachusetts. The difference between the annual PO4 3− (0.2 mol P m−2 yr−1) and NH4 + (1.6 mol N m−2 yr−1) flux and the Redfield N∶P ratio of 16 suggested an annual deficit of 1.5 mol N m−2 yr−1. Denitrification predicted from O2∶NH4 + flux ratios and measured as N2 flux suggested a nitrogen sink of roughly the same magnitude (1.4 mol N m−2 yr−1). Denitrification accounted for low N∶P ratios of benthic flux and removed 32–37% of nitrogen inputs entering the relatively highly nutrient loaded Childs River, despite a relatively brief residence time for freshwater in this system. Uptake of bottom water nitrate could only supply a fraction of the observed N2 flux. Removal of regenerated nitrogen by denitrification in this system appears to vary seasonally. Denitrification efficiency was inversely correlated with oxygen and ammonium flux and was lowest in summer. We investigated the effect of organic matter on denitrification by simulating phytoplankton deposition to cores incubated in the lab and by deploying chambers on bare and macroaglae covered sediments in the field. Organic matter addition to sediments increased N2 flux and did not alter denitrification efficiency. Increased N2 flux co-varied with O2 and NH4 + fluxes. N2 flux (261±60 μmol m−2 h−1) was lower in chambers deployed on macroalgal beds than deployed on bare sediments (458±70 μmol m−2 h−1), and O2 uptake rate was higher in chambers deployed on macroalgal beds (14.6±2.2 mmol m−2 h−1) than on bare sediments (9.6±1.5 mmol m−2 h−1). Macroalgal cover, which can retain nitrogen in the system, is a link between nutrient loading and denitrification. Decreased denitrification due to increasing macroalgal cover could create a positive feedback because decreasing denitrification would increase nitrogen availability and could increase macroalgae cover.  相似文献   

19.
The Lagoon of Venice is a wide, shallow coastal basin that extends for about 50 km along the northwest coast of the Adriatic Sea. The lagoon has been substantially modified through the actions of man over the last century through the artificial control of the hydraulic dynamics of the laggon including the construction of channels to facilitate navigation. The lagoon is subjected to considerable pollutant loading through the drainage of land under cultivation, municipal sewage, and industrial effluents. In this paper are reported the results of observations designed to document recent changes in macroalgal species composition, seasonal cycles of primary producers and nutrient levels, and the effects of the macroalgal community on concentrations of organic and inorganic pollutants. The dominant macroalgae in the lagoon wasUlva rigida, and the levels of plant nutrients and pollutants were influenced by the seasonal cycles of the macroalgal community.  相似文献   

20.
The functioning of the German Bight ecosystem is determined largely by nutrient fluxes in and out of the system, namely by the advection of nutrients from the central and southern North Sea, including the influence of the Rhine River; by nutrient inputs through direct continental river runoff into the German Bight (Elbe, Weser, and Ems rivers); and by atmospheric nutrient inputs originating from land. The nutrient situation in the German Bight and the entire North Sea is assessed by estimating these fluxes from available nutrient data. The advective inflowes are based also on simulated water transports. The circulation system in the North Sea is divided into a northern and a southern cell, with only little net water exchange. The nutrient inflow into the southern North Sea from the north is also small, with no effect on the continental coastal areas. For the entire North Sea, the total input of phosphorus increased by 7.7% an nitrogen by about 11.4% from 1950 to 1980. The percentage of Atlantic input of phosphorus into the entire North Sea decreased from 91% to 85%, while river input increased from 2% to 13%. In the continental coastal strip the total inputs increased by 80%. The share of river input increased to 52%, both for phosphorus (1950: 14%) and nitrogen (1950: 20%). Of the winter nutrient content of the upper 30 m of the entire North Sea 33.5% of phosphate and 16.1% of nitrate are taken up by algae until summer. About 50% of total new production is generated in the coastal areas, with 32.8% of the volume and 34.4% of the area of the North Sea. The ratio of new to regenerated production ranges from 2.8 to 12, depending on the method of derivation. In the German Bight, phosphate and nitrate concentrations increased during the last four decades. At Helgoland the five-year-medians of phosphate and nitrate increased by a factor of 1.7 and 2.5, respectively. As the nutrient inputs by river discharges are only slightly larger than advective contributions, the nutrient concentrations rose comparatively slowly. Diatoms stagnated, while flagellates increased 10-fold. Common winter values in the early 1980s resemble those during summer blooms in the early 1960’s. The German Bight ecosystem has changed drastically on all time scales under the anthropogenic nutrient inputs during the last 40 years; the plankton system is no longer in an annual quasiperiodic state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号