首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
文中采用人工激振,设计完成了简单工况下现场液化试验,并与干砂试验结果对比得到了孔压增长与土体表层加速度、剪应变的关系。试验结果表明:当孔压比为0.5时,液化开始显著影响土表加速度;当孔压比为0.6左右,液化土体剪应变幅值最大,而并非孔压比为1时幅值最大。以上结论同现有的室内振动台试验一致,说明了本试验是成功的。  相似文献   

2.
编制完全耦合的三维排水有效应力动力反应分析程序,对可液化地基进行三维地震响应分析,探讨了不同土性参数、不同土层构成和不同附加压重等因素对可液化地基抗液化性能的影响。结果表明:在地震荷载作用下,天然饱和砂土地基中的超孔隙水压力随深度的增大而增大;在不同深度处,超孔压峰值到达的时刻比地震加速度峰值到达的时刻要晚;随输入地震加速度的减弱,深层处的超孔压开始消散或基本保持不变,浅层处的超孔压保持不变或略有上升,这一现象与土性参数、输入地震荷载的情况等因素有关;土性参数对土体本身的抗液化性能有重要影响,初始孔隙比越小,相对密度越大,土体的抗液化能力越强;附加压重有利于地基抗液化能力的提高;随着附加压重的增大,超孔压比减小;附加压重对地基中超孔隙水压力的增长有明显的抑制作用。  相似文献   

3.
邵帅  邵生俊    马纯阳  王平 《世界地震工程》2019,35(4):162-170
地震作用下,饱和砂土地层地铁车站的动力反应特征是城市轨道工程抗震的关键问题。以太原地铁新近沉积粉细砂地层地铁工程为对象,通过模拟地震运动输入的饱和砂土地基地下结构的振动台模型试验,分析了不同峰值加速度地震作用下饱和砂土与地下结构相互作用的动力反应性状。研究了地震波作用的放大效应与频率特征,动孔压比增长发展过程和液化区域分布,以及动土压力的变化规律。表明加速度放大系数为1.5~2.0;0.1~0.25g峰值加速度地震作用下饱和砂土均产生动孔隙水压力累计发展;0.3g峰值加速度地震作用下饱和砂土产生液化,抑制了土与地下结构的振动放大效应,地表面大量冒水,结构模型出现了明显上浮,地下结构两侧产生震陷。  相似文献   

4.
分层液化土中桩基侧向动力反应机理的试验研究   总被引:2,自引:0,他引:2  
饱和砂土中的桩基侧向动力响应研究一直是岩土工程界与地震工程领域关注的热点,尤其是群桩侧向动力响应机制是需要重点研究的课题之一。基于振动台试验,通过输入2种不同的波形,采用FBG光栅传感系统对饱和砂土中的单桩与群桩侧向动力响应特性和典型测试点的桩土动力p—y滞洄曲线进行研究。研究结果表明:振动初期,单桩和群桩试验孔压增长不大,随后单桩孔压迅速上升,振动后期逐渐下降至0.5,而群桩孔压则上升缓慢;单桩试验土表加速度在振动初期逐步升高后又迅速降低,且加速度放大值略大于台面加速度值,群桩试验土表加速度在振动初期逐渐升高时就达到了最大,且随着孔压比的升高,加速度没有继续放大,而是逐渐减小,直到后期与单桩试验土表加速度重合;饱和砂土液化对单桩承台加速度和位移的影响较大,群桩承台侧向动力响应对液化的敏感程度略低于单桩承台;在振动输入和承台输入相同的条件下,液化后的群桩基础比单桩基础能更好地抵抗侧向力的作用。  相似文献   

5.
饱和砂土地基在地震作用下液化引起的建筑物的不均匀沉降是地震破坏的典型特征之一,会导致建筑物倾斜和失效。建立模拟液化引起不均匀震陷的数值方法对结构抗震设计和工程减灾尤为重要。基于对不均匀震陷机制的认识,对可液化地基上某建筑物模型在输入地震波作用下的震陷情况进行了数值模拟试验,分析了不均匀震陷发展过程中地震动输入、基底动应力、孔隙水压力、地基压缩模量和结构沉降之间的关系,并提出一套数值计算液化引起地基不均匀震陷的方法。结果显示:(1)使用的孔压模型能够模拟孔压在不规则荷载作用下的上升,且能够反应固结比对孔压的影响,以及记录结构地基土体真实的孔压发展过程;(2)计算方法使用的压缩模量模型能够反应由孔压变化引起的时程变化;(3)计算方法能够跟踪记录土层变形随孔压上升的时程变化。  相似文献   

6.
循环荷载作用下饱和砂土的孔压增长规律是土动力学的核心内容之一。基于笔者在给定相对密度、均等固结条件下饱和南京细砂的不排水等幅循环三轴试验结果建立的孔压增量模型,进一步进行了不同相对密度、不同固结比条件下饱和南京细砂的不排水等幅循环三轴试验,将上述均等固结的孔压增量模型拓展为适用于不同相对密度、均等和非均等固结条件的孔压增量模型。采用拓展后的孔压增量模型对试验结果进行分析的结果表明:通过该孔压增量模型预测验证试验的孔压与验证试验测试的孔压具有较好的一致性,说明该孔压增量模型具有普适性。  相似文献   

7.
将液化及液化后状态的砂土视为流体状态,研究发现液化及液化后砂土是一种剪切稀化非牛顿流体。对于液化前高孔压状态下的流动特性也值得探讨。根据落球黏度计的原理,开发了饱和砂土液化前流动特性的模型试验装置。在模型箱中铺设饱和砂土,模型箱底部与一水箱相连,提高水箱高度可以使模型箱中的饱和砂土产生超孔压。模型箱的砂土中埋设一个可以水平拉动的钢球,通过监测钢球水平运动的速度和所受的阻力来计算砂土的表观黏度,得到饱和砂土液化前高孔压状态下的流动特性。试验中考虑了超孔压比、钢球运动速度对结果的影响。试验表明,饱和砂土在液化前高孔压状态下,表观黏度均随着应变率的增大而减小,呈现出剪切稀化非牛顿流体特性,同时随着超孔压比的提高,表观黏度也逐渐减小。  相似文献   

8.
为探讨台安砂土液化相关特性及发展规律,针对辽宁台安砂土进行一系列不排水动三轴试验,研究台安砂土在动荷载作用下动孔压及动应变变化规律,分析影响台安砂土发生液化的主控因素,揭示动载作用次数下台安砂土动力响应特征。结果表明:动应力水平不同的各相对密度试样ud曲线可分为后期陡增和匀速增长两种类型,动应力幅值较大时,ud始终以较快速度增长,呈现匀速增长特征,动应力幅值较小时,ud曲线则呈现初期缓增后期陡增的特点;相对密度Dr和动应力幅值CSR是决定砂土液化的主控因素,在同一里氏震级等效动载作用次数下,随着Dr持续发展,液化所需CSR增长逐渐加快,当Dr足够大时,砂土基本处于密实状态,此时难以发生液化;循环荷载作用下,台安砂土呈现出初期整体受压、中期拉压平衡、后期受拉凸显的动力响应特征,到后期试样拉应变迅速增大,试样易发生受拉破坏。研究成果可为辽宁台安地区建筑物抗震设计提供参考依据。  相似文献   

9.
给出了基于颗粒离散元模拟饱和砂土不排水循环三轴试验的模型和方法。基于计算结果,分析了模拟试样在循环荷载下的流动性及主要特征。结果表明,数值模拟得到的循环荷载下饱和砂土宏观动力响应与室内动三轴试验结果基本一致,控制应变幅值和有效固结压力对试样宏观动力响应的影响规律符合已有的认识;控制应变幅值对模拟试样的平均流动系数-孔压比关系曲线基本无影响,模拟试样的流动性演变与孔压状态相关;有效固结压力限制试样流动性的增长。验证了基于颗粒流细观模拟方法分析饱和砂土流动性的可行性。  相似文献   

10.
为探究地震动特性对砂土震陷的影响,提出合理的震陷评价方法,本文利用开源有限元平台Open Sees对饱和砂土自由场地震陷进行数值模拟,研究了地震动维度和方向角对砂土震陷的影响,以震陷比为评价指标,分析了水平单向荷载简化二维荷载的合理性,并对震陷和震陷比与地震动强度参数进行相关性研究,提出了考虑地震动特性的饱和砂土震陷计算方法。结果表明:饱和砂土在地震动水平双向荷载作用下的孔压和震陷均大于单向加载结果,但小于两个单向荷载分别施加产生的结果之和,也小于任一单向加载下结果的2倍;地震动方向对震陷比影响显著,且不同地震动得到的最大震陷比对应的方向角存在差异,表明采用某一确定方向的一维荷载简化分析二维荷载的方法并不合理;震陷量与地震动强度参数Sa(0.6 s)和VSI相关性较好,以VSI为参数提出的预估公式可快速计算震陷量;砂土相对密度越大,计算结果越准确。  相似文献   

11.
地震作用下的桩基动力响应问题一直是土动力学和岩土工程抗震领域研究的热点。本文基于非液化干砂和饱和砂土中对称双直桩和双斜桩电磁式振动台试验,在试验中输入不同峰值加速度的正弦波和不同的地震波形,对比研究非液化干砂和饱和砂土中斜桩横向动力响应特性的不同,主要包括桩头承台加速度和位移幅值与台面输入时程的对比。研究结果表明:无论是正弦波输入还是地震波输入试验,当饱和砂土发生液化后,桩周土对桩侧支撑反力降低从而导致桩-土之间相互作用力减小,加速度和位移幅值放大效应均发生显著增加,对称双斜桩的动力响应放大程度低于对称双直桩,尤其在饱和砂土液化时更加显著。地震波输入试验中承台加速度和位移量值均明显高于正弦波试验工况,但相对台面输出幅值的动力放大倍数整体水平较低。  相似文献   

12.
液化地基自由场振动台模型试验研究   总被引:4,自引:0,他引:4  
进行了液化场地自由场振动台试验,试验采用柔性容器以减小边界影响,采用上覆黏土层的饱和砂土作为模型土。试验中再现了液化场地土的震害现象。得出的主要规律有:随着振次的增加,地基的频率迅速降低,阻尼比迅速增大;砂土对地震动起滤波作用;土体的加速度峰值反应在高度上呈"K"形分布;当最初加速度峰值到达前,砂土层中的孔压比存在负值;震后土中振动孔隙水压力不一定随振动的停止而立即开始消散,在短期内可能继续增长。  相似文献   

13.
基于OpenSees计算软件建立液化微倾场地群桩-土动力相互作用有限元模型,分析液化微倾场地饱和砂土p-y曲线特性,系统研究了场地倾斜角度、桩径、地震作用幅值和基桩位置对饱和砂土动力p-y曲线特性影响。研究表明:土体即将液化时,桩基土反力达到峰值;土体液化后,土体表现出了流体特性;土反力峰值、桩土相对位移峰值和初始刚度随场地倾斜角度增加而增大;桩径越大,液化砂土的耗能效应越明显;随着地震作用幅值的增加,桩土相对位移峰值和土反力峰值也随之增加;液化微倾场地上坡桩受到的土体侧向流动力大于下坡桩。  相似文献   

14.
在饱和砂土地震液化评估中,多用单向动三轴试验代替双向动三轴试验获得土体的抗液化强度。由于单向激振和双向激振产生的应力路径不同,土的动力特性受应力路径影响,其合理性尚待证明。本文利用双向振动三轴仪分别采用单、双向振动形式进行饱和砂土振动液化试验,对比了相同动剪应力作用下累积孔压和动强度,分析了较大循环振次作用下单、双向振动方式使试样动力响应产生差异的原因,提出了利用单向三轴试验代替双向振动模拟地震循环剪应力获得砂土动力特性的室内试验方法的适用条件。  相似文献   

15.
地震波是一种随机的、不规则作用的动荷载脉冲,可分为振动型和冲击型。不同类型的地震波会对砂土液化和变形等产生重要影响,而传统的砂土震陷计算方法往往忽视这种因素,只考虑最大加速度幅值。通过编写UMAT子程序,在非线性有限元软件ABAQUS中开发亚塑性砂土边界面模型,对不同地震波类型下不同相对密度的砂土进行动单剪试验模拟,得到一系列砂土剪应变及竖向应变的时程曲线,并与室内试验结果进行对比分析。研究表明:在同一工况下,同类型的地震波引起的砂土竖向应变相近,不同类型引起的竖向应变差异明显;振动型地震波比冲击型引起的竖向应变更大。  相似文献   

16.
液化土中桩基础动力反应试验研究   总被引:3,自引:0,他引:3  
本文设计完成了包括三种密度饱和砂土和非液化干砂的多工况桩-土相互作用振动台动力试验,研究液化对土体和桩-承台动力反应的影响。通过试验和分析,得到了液化和非液化土层中土体水平加速度、侧向位移和桩-承台的水平加速度、侧向位移、桩身弯矩等指标的反应过程和模式,对比了液化和非液化条件对这些指标的影响方式,提出了各因素影响大小的分析结果。  相似文献   

17.
黄河三角洲粉土液化的试验研究   总被引:2,自引:0,他引:2  
在野外自然地理和地质调查的基础上,以黄河地区可液化场地粉土为研究对象,利用室内动三轴和振动柱试验进行测定,分析了动荷载作用下粉土的动应力应变关系并模拟了地震荷载作用下粉土的孔压响应及抗液化强度,得出了液化破坏标准,提出了原状粉土的振动孔压上升模型。对试验结果进行分析发现,随着粘粒含量的增加,粉砂、粉土、粉质粘土、粘土达到相同剪应变所需的动剪应力也依次增加;粉土孔压比0.68、粉砂土孔压比0.87作为液化破坏开始的标志;粉土发生液化所需的循环应力比大于砂土。这些研究为以后建立适合本地区的饱和地基土地震破坏判别方法提供了参数和依据。  相似文献   

18.
通过给饱和砂土层施加反压,模拟地震荷载作用下具有残余孔压的饱和弱化、液化土层。选择粉质细砂与细砂,进行了18组水平荷载作用下桩与饱和弱化、液化土层相互作用的模型试验,研究了饱和弱化、液化土层水平极限抗力随土层残余孔压增加的变化规律。结果表明,随土层中残余孔压增加,水平极限抗力逐渐降低,土层液化后的水平极限抗力大约降低80%~90%。通过定义饱和弱化、液化土层的强度,定量分析了饱和弱化、液化砂土的强度参数与水平极限抗力之间关系。又通过引入土层的残余孔压比折减系数,建立了确定饱和弱化、液化土层等效强度的关系式,进而提出了一种按等效强度确定饱和弱化、液化土层水平极限抗力的方法。  相似文献   

19.
通过室内动三轴试验,分析了饱和细砂的动剪切模量演变特性和孔压效应,同时分析了循环荷载作用下相对密度、初始围压等因素的影响,提出了考虑孔压效应条件下饱和细砂动剪切模量的衰减特性,建立了动剪切模量比随孔压比增大而衰减的经验公式。结果表明:不同相对密度饱和细砂的应力-应变滞回圈的变化趋势显著不同;动孔压波动频繁并随时间逐步增长,并且不同的围压和相对密度对孔压比的增长有一定的影响;饱和细砂的动剪切模量随着孔压比的增大而逐渐减小,但不同相对密度饱和细砂的衰减趋势有所不同。通过拟合的曲线可以描述并预测不同相对密度饱和细砂的动剪切模量比随孔压比的衰减特性,具有较好的效果。  相似文献   

20.
利用GDS循环三轴仪进行一系列饱和砂砾土不排水动三轴液化试验,研究其在循环荷载作用下的液化特性,分析含砾量对饱和砂砾土动强度和动孔压的影响规律。研究表明:含砾量对砂砾土液化性能影响较大,随着含砾量的增加砂砾土抗液化强度呈单调增加趋势;随循环周次的增加孔隙水压力不断升高,增长速率与所施加的循环应力幅值有关,同一固结压力下,振次比相同时循环动应力幅值越大动孔压比越大;破坏振次对动孔压增长模式存在影响,破坏振次较小时砂砾土动孔压增长模式呈双曲线型发展,破坏振次较大时砂砾土的动孔压增长模式可用反正弦函数来表示,且含砾量越大循环荷载引起的孔隙水压力越高;含砾量对砂砾土液化特性的影响可从砂砾土的微细观结构特征得到阐释,并借助其粒间状态参量进行分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号