首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Results of 13-cm-wavelength radar observations and V-filter photoelectric observations of Ra- Shalom during its 1981 Aug–Sep apparition are reported. The radar data yid detections of echoes in the same sense of circular polarization as transmitted (i.e., the SC sense) as well as in the opposite (OC) sense. The estimate of the ratio of SC to OC echo power, μc = 0.14 ± 0.02, indicates that most, but certainly not all, of the backscattering is due to single reflections from surface elements that are fairly smooth at decimeter scales. The value obtained for the OC radar cross section on Aug 26 (1.2 ± 0.3 km2) is about three times larger than those obtained on Aug 23, 24, and 25. The echo bandwidth appears to be within about 1.5 Hz of 5.0 Hz on each date. The photoelectric data suggest a value, Psyn = 19.79 hr, for the synodic rotation period, and yield a composite lightcurve with two pairs of extrema. Combining this value for Psyn with a firm lower bound (4 Hz) on the maximum echo bandwidth yields a lower bound of 1.4 km on the maximum distance between Ra-Shalom's spin axis and any point on its surface.  相似文献   

2.
Emission (2 cm) from 15 Eunomia was detected on March 27, 1983, using the VLA. At this time, 15 Eunomia was 2.0 AU distant from Earth. A flux density of 687 ± 70 μJy was measured at 14.96 GHz (50-MHz bandwidth). If 246 km is adopted for the diameter, a disk temperature of184 ± 20°K results. This is consistent with a rapidly rotating, black sphere with 15 Eunomia's diameter and distance (171°K).  相似文献   

3.
37Ar and 39Ar were measured in a bulk sample and in metal-rich and metal-poor fractions of the Dhajala meteorite and in metal-rich and metal-poor fractions of the Canon City meteorite. Two determinations of the activities in Dhajala metal phase are the following: 37Ar = 18.9 ± 1.1 and 17.2 ± 1.2, and 39Ar = 23.3 ± 0.9 and 24.2 ± 1.4 dpm/kg metal. In Canon City, the determinations are 37Ar = 18.2 ± 1.4 and 16.9 ± 7.5, and 39Ar = 18.2 ± 0.7 and 24.1 ± 1.4 dpm/kg metal. Dhajala and Canon City are of interest because they both fell during solar minimum.  相似文献   

4.
We examine the uncertainties in two plasma parameters from their true values in a simulated asymmetric corona. We use the Corona Heliosphere (CORHEL) and Magnetohydrodynamics Around the Sphere (MAS) models in the Community Coordinated Modeling Center (CCMC) to investigate the differences between an assumed symmetric corona and a more realistic, asymmetric one. We were able to predict the electron temperatures and electron bulk flow speeds to within ±?0.5 MK and ±?100 km?s?1, respectively, over coronal heights up to 5.0 R from Sun center. We believe that this technique could be incorporated in next-generation white-light coronagraphs to determine these electron plasma parameters in the low solar corona. We have conducted experiments in the past during total solar eclipses to measure the thermal electron temperature and the electron bulk flow speed in the radial direction in the low solar corona. These measurements were made at different altitudes and latitudes in the low solar corona by measuring the shape of the K-coronal spectra between 350 nm and 450 nm and two brightness ratios through filters centered at 385.0 nm/410.0 nm and 398.7 nm/423.3 nm with a bandwidth of ≈?4 nm. Based on symmetric coronal models used for these measurements, the two measured plasma parameters were expected to represent those values at the points where the lines of sight intersected the plane of the solar limb.  相似文献   

5.
Abstract— We report ion microprobe U‐Th‐Pb dating of Shergotty phosphates by means of the sensitive high‐resolution ion microprobe (SHRIMP) recently installed at Hiroshima University, Japan. ten analyses of whitlockite (merrillite) and three analyses of apatite indicate a 238u/206pb isochron age of 225 ± 200 ma and a tera‐wasserburg concordia‐constrained linear three‐dimensional isochron age of 217 ± 110 ma in the 238u/206pb‐207pb/206pb204pb/206pb diagram. These ages agree well with the 232Th‐208pb age of 189 ± 83 Ma, which suggests that primary crystallization or a shock metamorphic event defined the formation age of the phosphate minerals. The average of the later two ages, 204 ± 68 Ma, is consistent with the previously published Rb‐Sr age of 165 ± 11 Ma and U‐Th‐Pb age of ~200 Ma. These show marginal agreement with the 40Ar‐39Ar age of 254 ± 10 Ma but are significantly different from the Sm‐Nd age of 360 ± 16 Ma. Taking into account the closure temperature of the U‐Pb system in apatite, we suggest the time that Shergotty last experienced a temperature of ~900 °C was 204 ± 68 Ma.  相似文献   

6.
An 87-gram sample of the Haverö ureilite has been analyzed by non-destructive gamma-ray spectrometry. The results of the measurements, in dpm/kg at time of fall, are: 22Na, 71 ± 3; 26Al, 43 ± 3; 46Sc, 3.4 ± 2.1; 54Mn, 35 ± 6; 60Co, 0.7, 2*** limit. Haverö has 77 ± 14% of the 26Al activity calculated for its chemical composition. When averaged with previously-reported analyses of Goalpara and Novo Urei, ureilites as a class have 74 ± 7% of their expected 26Al activity. The depletion in 26Al could be the coincidental result of identical “shielding” effects in three meteorites of apparently very different preatmospheric sizes. Alternatively, ureilites may have been exposed to a lower cosmic-ray flux than that experienced by most chondrites, probably the result of characteristically different orbits  相似文献   

7.
Based on an analysis of the VLBI observations performed in 1985?C2010 within the framework of international geodetic programs on global networks of stations, we have obtained statistically significant corrections to the parameters of lunisolar tides??the nominal complex Love/Shida numbers. The new integral (frequency-independent) values of these parameters (in 10?4) are h (0) = (6113 ± 3) ? (33 ± 2)i, l (0) = (843 ± 1) ? (5 ± 2)i for a total tide; h (0) = (6106 ± 3) ? (10 ± 6)i, l (0) = (843 ± 1) ? (8 ± 1)i for diurnal tides; and h (0) = (6106 ± 3) ? (24 ± 3)i, l (0) = (843 ± 1) + (3 ± 1)i for semi-diurnal tides. We have detected a new effect of asymmetry in the horizontal tidal displacements in the direction of tectonic motions for 50 VLBI stations. We have determined upper limits for the influence of the frequency-dependent resonance effects whose estimation accuracy is limited by an abundance of close frequencies in their harmonic expansion. The influence of the transfer function for tides on the VLBI observations has turned out to be lower than the measurement accuracy. In future, positional GPS/GLONASS measurements are planned to be used to refine the resonance effects and the transfer function.  相似文献   

8.
An investigation of the stability of the transfer function of the European Southern Observatory's Very Large Telescope Interferometer has been carried out through observations of Fomalhaut, which was observed over a range in hour angle from 21:50–05:24 on 20 October 2002. No significant variation in the transfer function was found for the zenith angle range 5°–70°. The projected baseline varied between 139.7 m and 49.8 m during the observations and, as an integral part of the determination of the transfer function, a new accurate limb‐darkened angular diameter for Fomalhaut of 2.109 ± 0.013 mas has been established. This has led to improved values for the emergent flux = (3.43 ± 0.10)×108 Wm−2, effective temperature = 8819 ± 67 K and radius = (1.213 ± 0.011)×109 m (R/R = 1.744 ± 0.016). The luminosity has been found to be (6.34 ± 0.20)×1027 W (L/L = 16.5 ± 0.5). (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

9.
Speckle-interferometric observations of FU Ori are performed with the 6-m telescope of the Special Astrophysical Observatory with 600/40 nm and 800/100 nm (central bandwidth/halfwidth) filters. The companion star FU Ori S that was recently discovered at λ >-1.25µm was recorded in observations with the λλ==800/100 nm filter. The positional parameters and magnitude difference of the companion in the filter considered are found to be θ = (163.9 ± 1.0)°, ρ = (0.493 ± 0.007)″, Δm = 3.96 ± 0.28. An analysis of the spectral energy distribution of the companion implies that for the extinction A V toward FU Ori to be greater than about 1.6 m , i.e., the minimum value required by the available models of the fuor, the spectral type of the companion star must be no later than K3. The reliability of this conclusion and the possible ways for obtaining more accurate estimates of A V are discussed.  相似文献   

10.
Bobylev  V. V.  Bajkova  A. T. 《Astronomy Letters》2019,45(6):331-340

We have studied a sample containing ~6000 OB stars with proper motions and trigonometric parallaxes from the Gaia DR2 catalogue. The following parameters of the angular velocity of Galactic rotation have been found: Ω0 = 29.70 ± 0.11 km s-1 kpc-1, Ω'0 = -4.035 ± 0.031 km s-1 kpc-2, and Ω 0 = 0.620 ± 0.014 km s-1 kpc-3. The circular rotation velocity of the solar neighborhood around the Galactic center is V0 = 238 ± 5 km s-1 for the adopted Galactocentric distance of the Sun R0 = 8.0 ± 0.15 kpc. The amplitudes of the tangential and radial velocity perturbations produced by the spiral density wave are fθ = 4.4 ± 1.4 kms-1 and fR = 5.1 ± 1.2 kms-1, respectively; the perturbation wavelengths are λθ = 1.9 ± 0.5 kpc and λR = 2.1 ± 0.5 kpc for the adopted four-armed spiral pattern. The Sun's phase in the spiral density wave is χ = -178° ± 12°.

  相似文献   

11.
Abstract— The isotopic composition and concentrations of noble gases were measured in the eucrites Bereba, Cachari, Caldera, Camel Donga, Chervony Kut, Ibitira, Jonzac, Juvinas, Millbillillie, Moore County, Padvarninkai, Pasamonte, Pomozdino, Serra de Magé, Sioux County, and Vetluga. The distribution of 81Kr-Kr exposure ages shows “clusters” at (7 ± 1) Ma, (10 ± 1) Ma, (14 ± 1) Ma, (22 ± 2) Ma, and (37 ± 1) Ma that agree with those for howardites, eucrites, and diogenites (HED) at (6 ± 1) Ma, (12 ± 2) Ma, (21 ± 4) Ma, and (38 ± 8) Ma. This most likely indicates a common origin of HED meteorites. Correlation equations for the shielding-sensitive cosmogenic ratios 78Kr/83Kr, 80Kr/83Kr, 82Kr/83Kr, and 124Xe/131Xe were obtained. Comparison with data from simulation experiments suggests that most eucrites were exposed to the cosmic radiation as somewhat large meteoroids with diameters of ~1 m or more. The shielding-dependence of the 78Kr and 126Xe production rates was found to be small, with a few exceptions the variations aren <10%–15%. Concentrations of spallogenic 3He indicate diffusive losses of up to 70% that can be, in first approximation, described by a model of quasi-continuous losses during the exposure to the cosmic radiation with a loss rate of the order of ~3 × 10?8 a?1. Radiogenic 4He shows additional substantial losses that occurred at the time of, or prior to, the separation of the meteoroids from their parent body. Typical 40Ar retention in eucrites is 50%–60% which corresponds to a 40Ar-K retention age of 3.4–3.6 Ga. In all analyzed unbrecciated eucrites, the retention is distinctly larger (70%–100%). The 244Pu fission ratio (86Kr/136Xe)Pu, was evaluated from the data on Pomozdino samples to be 0.039 ± 0.014.  相似文献   

12.
Abstract— The isotopic abundances of the noble gases in bulk samples of the Guangnan L6 chondrite and of the anomalous CV3 chondrite Ningqiang were measured. Guangnan yields a cosmic-ray exposure age of 2.9 ± 0.4 Ma and belongs to the group of L chondrites with low exposure ages. Ningqiang, however, shows a cosmic-ray exposure age of 42.2 ± 4.0 Ma, the highest for a CV3 chondrite. The concentrations of radiogenic 4He and 40Ar in Guangnan are the lowest observed in any ordinary chondrite. A U/Th-4He age of 27 ± 16 Ma and a 40K–40Ar age of 142 ± 14 Ma are calculated assuming L chondritic U, Th, and K concentrations. This assumption is justified considering the fact that a mineralogical composition typical for L chondrites was reported for this meteorite. The observed severe gas losses must have occurred at or before the onset of the exposure of the meteoroid to the cosmic radiation. For the Ningqiang carbonaceous chondrite concordant gas retention ages are obtained: The U/Th-4He age is 4170 ± 160 Ma whereas the 40K–40Ar age is 4260 ± 70 Ma, assuming average U, Th, and K concentrations for C3 chondrites.  相似文献   

13.
Abstract High-Ti basalts from the Apollo collections span a range in age from 3.87 Ga to 3.55 Ga. The oldest of these are the common Apollo 11 Group B2 basalts which yield evidence of some of the earliest melting of the lunar mantle beneath Mare Tranquillitatis. Rare Group D high-Ti basalts from Mare Tranquillitatis have been studied in an attempt to confirm a postulated link with Group B2 basalts (Jerde et al., 1994). The initial Sr isotopic ratio of a known Group D basalt (0.69916 ± 3 at 3.85 Ga) lies at the lower end of the tight range for Group B2 basalts (87Sr/86Sr = 0.69920 to 0.69921). One known Group D basalt and a second postulated Group D basalt yield indistinguishable initial ?Nd (1.2 ± 0.6 and 1.2 ± 0.3) and again lie at the lower end of the range for the Group B2 basalts from Apollo 11 (+2.0 ± 0.4 to +3.9 ± 0.6, at 3.85 Ga). A third sample has isotopic (87Sr/86Sr = 0.69932 ± 2; ?Nd = 2.5 ± 0.4; at 3.59 Ga; as per Snyder et al., 1994b) and elemental characteristics similar to the Group A high-Ti basalts returned from the Apollo 11 landing site. Ages of 40Ar-39Ar have been determined for one known Group D basalt and a second postulated Group D basalt using step-heating with a continuous-wave laser. Suspected Group D basalt, 10002, 1006, yielded disturbed age spectra on two separate runs, which was probably due to 39Ar recoil effects. Using the “reduced plateau age” method of Turner et al. (1978), the ages derived from this sample were 3898 ± 19 and 3894 ± 19 Ma. Three separate runs of known Group D basalt 10002, 116 yielded 40Ar/39Ar plateau ages of 3798 ± 9 Ma, 3781 ± 8 Ma, and 3805 ± 7 Ma (all errors 2σ). Furthermore, this sample has apparently suffered significant 40Ar loss either due to solar heating or due to meteorite impact. The loss of a significant proportion of 40Ar at such a time means that the plateau ages underestimate the “true” crystallization age of the sample. Modelling of this Ar loss yields older, “true” ages of 3837 ± 18, 3826 ± 16, and 3836 ± 14 Ma. These ages overlap the ages of Group B2 high-Ti basalts (weighted average age = 3850 ± 20 Ma; range in ages = 3.80 to 3.90 Ga). The combined evidence indicates that the Group D and B2 high-Ti basalts could be coeval and may be genetically related, possibly through increasing degrees of melting of a similar source region in the upper mantle of the Moon that formed >4.2 Ga ago. The Group D basalts were melted from the source first and contained 3–5×more trapped KREEP-like liquid than the later (by possibly only a few million years) Group B2 basalts. Furthermore, the relatively LREE- and Rb-enriched nature of these early magmas may lend credence to the idea that the decay of heat-producing elements enriched in the KREEP-like trapped liquid of upper mantle cumulates, such as K, U, and Th, could have initiated widespread lunar volcanism.  相似文献   

14.
By directly comparing the photometric distances of Blaha and Humphreys (1989) (BH) to OB associations and field stars with the corresponding Hipparcos trigonometric parallaxes, we show that the BH distance scale is overestimated, on average, by 10–20%. This result is independently corroborated by applying the rigorous statistical-parallax method and its simplified analog (finding a kinematically adjusted rotation-curve solution from radial velocities and proper motions) to a sample of OB associations. These two methods lead us to conclude that the BH distance scale for OB associations should be shrunk, on average, by 11±6 and 24±10%, respectively. Kinematical parameters have been determined for the system of OB associations: u 0 = 8.2 ± 1.3 km s?1, v 0 = 11.9 ± 1.1 km s?1, w 0 = 9.5 ± 0.9 km s?1, σ u = 8.2 ± 1.1 km s?1, σ v = 5.8 ± 0.8 km s?1, σ w = 5.0 ± 0.8 km s?1, Ω0 = 29.1 ± 1.0 km s?1 kpc?1, Ω0′ = ?4.57 ± 0.20 km s?1 kpc?2, and Ω0″ = 1.32 ± 0.14 km s?1 kpc?3. The distance scale for OB associations reduced by 20% matches the short Cepheid distance scale (Berdnikov and Efremov 1985; Sitnik and Mel’nik 1996). Our results are a further argument for the short distance scale in the Universe.  相似文献   

15.
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.  相似文献   

16.
The radio radii of the Sun at wavelengths of 5, 10.7, 12, and 95 cm have been determined from eclipse observations as R5 ?? (1.0 ± 0.015)R ??, R 10,12 = (1.05 ± 0.003)R ??, and R 95 = (1.2 ± 0.02)R ??. The bright-ness temperatures of quiet solar disk areas at these wavelengths have turned out to be Td 5 = (22 ± 2) × 103, Td 10 = (44 ± 3) × 103, Td 12 = (47 ± 3) × 103, and Td 95 = (1000 ± 30) × 103 K. There were local sources of radio emission with angular sizes from 1.9 to 2.4 arcmin and brightness temperatures from 80 × 103 to 1.75 × 106 K above sunspot groups at short wavelengths of 5, 10.7, and 12 cm. The radio flux from the local sources at 95 cm turned out to be below the detection threshold of 1.0 × 10?22 W m?2 Hz?1. Comparison of the values obtained with the results of observations of another eclipse on August 1, 2008, occurred at the epoch of minimum of the 11-year solar cycle has shown that the radio radius of the Sun at 10.7 and 12 cm increased from 1.016 R ?? to 1.05 ± 0.003R ??, the height of the emitting layer at these wavelengths moved from 11 × 103 km to (30 ± 7) × 103 K, and the brightness temperature of the quiet Sun rose from (35.8 ± 0.4) × 103 K to (44 ± 3) × 103 K at 10.7 cm and from (37.3 ± 0.4) × 103 K to (47 ± 3) × 103 K at 12 cm. Consequently, the parameters of the solar atmosphere changed noticeably in 2 years in connection with the beginning of the new solar cycle 24. The almost complete absence of local sources at the longest wavelength of 95 cm suggests that the magnetic fields of the sunspot groups on January 4, 2011, were weak and did not penetrate to the height from where their emission could originate. If this property is inherent in most sunspot groups of cycle 24, then it can be responsible for its low flare activity.  相似文献   

17.
To study the peculiarities of the Galactic spiral density wave, we have analyzed the space velocities of Galactic Cepheids with propermotions from the Hipparcos catalog and line-of-sight velocities from various sources. First, based on the entire sample of 185 stars and taking R 0 = 8 kpc, we have found the components of the peculiar solar velocity (u , v ) = (7.6, 11.6) ± (0.8, 1.1) km s?1, the angular velocity of Galactic rotation Ω0 = 27.5 ± 0.5 km s?1 kpc?1 and its derivatives Ω′0 = ?4.12 ± 0.10 km s?1 kpc?2 and Ω″0 = 0.85 ± 0.07 km s?1 kpc?3, the amplitudes of the velocity perturbations in the spiral density wave f R = ?6.8 ± 0.7 and f θ = 3.3 ± 0.5 km s?1, the pitch angle of a two-armed spiral pattern (m = 2) i = ?4.6° ± 0.1° (which corresponds to a wavelength λ = 2.0 ± 0.1 kpc), and the phase of the Sun in the spiral density wave χ = ?193° ± 5°. The phase χ has been found to change noticeably with the mean age of the sample. Having analyzed these phase shifts, we have determined the mean value of the angular velocity difference Ω p ? Ω, which depends significantly on the calibrations used to estimate the individual ages of Cepheids. When estimating the ages of Cepheids based on Efremov’s calibration, we have found |Ω p ? Ω0| = 10 ± 1stat ± 3syst km s?1 kpc?1. The ratio of the radial component of the gravitational force produced by the spiral arms to the total gravitational force of the Galaxy has been estimated to be f r0 = 0.04 ± 0.01.  相似文献   

18.
We apply the technique of astrometric mass determination to measure the masses of 21 main-belt asteroids; the masses of 9 Metis (1.03 ± 0.24 × 10-11 M), 17 Thetis (6.17 ± 0.64 × 10-13 M), 19 Fortuna (5.41 ± 0.76 × 10-12 M), and 189 Phthia (1.87 ± 0.64 × 10-14 M) appear to be new. The resulting bulk porosities of 11 Parthenope (12±4%) and 16 Psyche (46±16%) are smaller than previously-reported values. Empirical expressions modeling bulk density as a function of mean radius are presented for the C and S taxonomic classes. To accurately model the forces on these asteroids during the mass determination process, we created an integrated ephemeris of the 300 large asteroids used in preparing the DE-405 planetary ephemeris; this new BC-405 integrated asteroid ephemeris also appears useful in other high-accuracy applications.  相似文献   

19.
《Planetary and Space Science》1999,47(3-4):327-330
The asteroid 85 Io has been observed using CCD and photoelectric photometry on 18 nights during its 1995–96 and 1997 apparitions. We present the observed lightcurves, determined colour indices and modelling of the asteroid spin vector and shape. The colour indices (U-B = 0.35±0.02, B-V = 0.66±0.02, V-R = 0.34±0.02, R-I = 0.36±0.02) are as expected for a C-type asteroid. The allowed spin vector solutions have the pole co-ordinates λ0 = 285±4°, β0 = −52±9° or λ0 = 108±10°, β0 = −46±10° and λ0 = 290±10°, β0 = −16±10° with a retrograde sense of rotation and a sidereal period Psid = 0d.286463±0d.000001. During the 1995–96 apparition the International Occultation Time Association (IOTA) observed an occultation event by 85 Io. The observations and modelling presented here were analysed together with the occultation data to develop improved constraints on the size of the asteroid. The derived value of 164 km is about 5% larger than the IRAS diameter. © 1999 Elsevier Science Ltd. All rights reserved.  相似文献   

20.
Further reduction of Doppler tracking data from Mariner 9 confirms our earlier conclusion that the gravity field of Mars is considerably rougher than the fields of either the Earth or the Moon. The largest positive gravity anomaly uncovered is in the Tharsis region which is also topographically high and geologically unusual. The best determined coefficients of the harmonic expansion of the gravitational potential are: J2 = (1.96 ± 10.01) × 10?3 ; C22 = ?(5.1 ± 0.2) × 10?5; and S22 = (3.4 ± 0.2) × 10?5. The other coefficients have not been well determined on an individual basis, but the ensemble yields a useful model for the gravity field for all longitudes in the vicinity of 23° South latitude which corresponds to the periapse position for the orbiter.The value obtained for the inverse mass of Mars (3 098 720 ± 70 M?1) is in good agreement with prior determinations from Mariner flyby trajectories. The direction found for the rotational pole of Mars, referred to the mean equinox and equator of 1950.0, is characterized by α = 317°.3 ± 0°.2, δ = 52°.7 ± 0°.2. This result is in excellent agreement with Sinclair's recent value, determined from earth-based observations of Mars' satellites, but differs by about 0°.5 from the previously accepted value. Other important physical constants that have either been refined or confirmed by the Mariner 9 data include: (i) the dynamical flattening, f = (5.24 ± 0.02) × 10?3; (ii) the maximum principal moment of inertia, C = (0.375 ± 0.006) MR2; and (iii) the period of precession of Mars' pole, P ? (1.73 ± 0.03) × 105 yr, corresponding to a rate of 7.4 sec of arc per yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号