首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report light noble gas (He, Ne, and Ar) concentrations and isotopic ratios in 11 achondrites, Tafassasset (unclassified primitive achondrite), Northwest Africa (NWA) 12934 (angrite), NWA 12573 (brachinite), Jiddat al Harasis (JaH) 809 (ureilite), NWA 11562 (ungrouped achondrite), four lodranites (NWA 11901, NWA 7474, NWA 6685, and NWA 6484), NWA 2871 (acapulcoite), and Sahara 02029 (winonaite), most of which have not been previously studied for noble gases. We discuss their noble gas isotopic composition, determine their cosmogenic nuclide content, and systematically calculate their cosmic ray exposure (CRE) and gas retention ages. In addition, we estimate their preatmospheric radii and preatmospheric masses based on the shielding parameter (22Ne/21Ne)cos. None of the studied meteorites shows evidence of contribution from solar cosmic rays (SCRs). JaH 809 and NWA 12934 show evidence of 3He diffusive losses of >90% and 40%, respectively. The winonaite Sahara 02029 has lost most of its noble gases, either during or before analysis. The average CRE age of Tafassasset of ~49 Ma is lower than that reported by Patzer et al. (2003), but is consistent with it within the uncertainties; this confirms that Tafassasset and CR chondrites are not source paired, CR chondrites having CRE ages from 1 to 25 Ma (Herzog & Caffee, 2014). The ureilite JaH 809 has a CRE age of ~5.4 Ma, which falls into the typical range of exposure ages for ureilites; the angrite NWA 12934 has a CRE age of ~49 Ma, which is within the main range of exposure ages reported for angrites (0.2–56 Ma). We calculate a CRE age of ~2.4 Ma for the brachinite NWA 12573, which falls into a possible “cluster” in the brachinite CRE age histogram around ~3 Ma. Three lodranites (NWA 11901, NWA 7474, and NWA 6685) have CRE ages higher than the average CRE ages of lodranites measured so far, NWA 11901 and NWA 6685 having CRE ages far higher than the CRE age already reported by Li et al. (2019) on NWA 8118. The measured 40K-40Ar gas retention ages fit well into established systematics. The gas retention age of Tafassasset is consistent, within respective uncertainties, with that previously calculated by Patzer et al. (2003). Our study indicates that Tafassasset originates from a meteoroid with a preatmospheric radius of ~20 cm, however discordant with the radius of ~85 cm inferred in a previous study (Patzer et al., 2003).  相似文献   

2.
Abstract— We report noble gas data for the second chassignite, Northwest Africa (NWA) 2737, which was recently found in the Moroccan desert. The cosmic ray exposure (CRE) age based on cosmogenic 3He, 21Ne, and 38Ar around 10–11 Ma is comparable to the CRE ages of Chassigny and the nakhlites and indicates ejection of meteorites belonging to these two families during a discrete event, or a suite of discrete events having occurred in a restricted interval of time. In contrast, U‐Th/He and K/Ar ages <0.5 Ga are in the range of radiometric ages of shergottites, despite a Sm‐Nd signature comparable to that of Chassigny and the nakhlites (Misawa et al. 2005). Overall, the noble gas signature of NWA 2737 resembles that of shergottites rather than that of Chassigny and the nakhlites: NWA 2737 does not contain, in detectable amount, the solar‐like xenon found in Chassigny and thought to characterize the Martian mantle nor apparently fission xenon from 244Pu, which is abundant in Chassigny and some of the nakhlites. In contrast, NWA 2737 contains Martian atmospheric noble gases trapped in amounts comparable to those found in shergottite impact glasses. The loss of Martian mantle noble gases, together with the trapping of Martian atmospheric gases, could have occurred during assimilation of Martian surface components, or more likely during shock metamorphism, which is recorded in the petrology of this meteorite.  相似文献   

3.
The Tissint meteorite fell on July 18, 2011 in Morocco and was quickly recovered, allowing the investigation of a new unaltered sample from Mars. We report new high‐field strength and highly siderophile element (HSE) data, Sr‐Nd‐Hf‐W‐Os isotope analyses, and data for cosmogenic nuclides in order to examine the history of the Tissint meteorite, from its source composition and crystallization to its irradiation history. We present high‐field strength element compositions that are typical for depleted Martian basalts (0.174 ppm Nb, 17.4 ppm Zr, 0.7352 ppm Hf, and 0.0444 ppm W), and, together with an extended literature data set for shergottites, help to reevaluate Mars’ tectonic evolution in comparison to that of the early Earth. HSE contents (0.07 ppb Re, 0.92 ppb Os, 2.55 ppb Ir, and 7.87 ppb Pt) vary significantly in comparison to literature data, reflecting significant sample inhomogeneity. Isotope data for Os and W (187Os/188Os = 0.1289 ± 15 and an ε182W = +1.41 ± 0.46) are both indistinguishable from literature data. An internal Lu‐Hf isochron for Tissint defines a crystallization age of 665 ± 74 Ma. Considering only Sm‐Nd and Lu‐Hf chronometry, we obtain, using our and literature values, a best estimate for the age of Tissint of 582 ± 18 Ma (MSWD = 3.2). Cosmogenic radionuclides analyzed in the Tissint meteorite are typical for a recent fall. Tissint's pre‐atmospheric radius was estimated to be 22 ± 2 cm, resulting in an estimated total mass of 130 ± 40 kg. Our cosmic‐ray exposure age of 0.9 ± 0.2 Ma is consistent with earlier estimations and exposure ages for other shergottites in general.  相似文献   

4.
Neon produced by solar cosmic rays in ordinary chondrites   总被引:1,自引:0,他引:1       下载免费PDF全文
Solar‐cosmic‐ray‐produced Ne (SCR‐Ne), in the form of low cosmogenic 21Ne/22Ne ratios (21Ne/22Necos <0.8), is more likely to be found in rare meteorite classes, like Martian meteorites, than in ordinary chondrites. This may be the result of a sampling bias: SCR‐Ne is better preserved in meteorites with small preatmospheric radii and these specimens are often only studied if they belong to unusual or rare classes. We measured He and Ne isotopic concentrations and nuclear tracks in 25 small unpaired ordinary chondrites from Oman. Most chondrites have been intensively heated during atmospheric entry as evidenced by the disturbed track records, the low 3He/21Ne ratios, the low 4He concentrations, and the high peak release temperatures. Concentration depth profiles indicate significant degassing; however, the Ne isotopes are mainly undisturbed. Remarkably, six chondrites have low 21Ne/22Necos in the range 0.711–0.805. Using a new physical model for the calculation of SCR production rates, we show that four of the chondrites contain up to ~20% of SCR‐Ne; they are analyzed in terms of preatmospheric sizes, cosmic ray exposure ages, mass ablation losses, and orbits. We conclude that SCR‐Ne is preserved, regardless of the meteorite class, in specimens with small preatmospheric radii. Sampling bias explains the predominance of SCR‐Ne in rare meteorites, although we cannot exclude that SCR‐Ne is more common in Martian meteorites than it is in small ordinary chondrites.  相似文献   

5.
Abstract— Cosmogenic He, Ne, and Ar were measured in the iron meteorites Grant (IIIAB) and Carbo (IID) to re‐determine their preatmospheric geometries and exposure histories. We also investigated the influence of sulphur‐ and/or phosphorus‐rich inclusions on the production rates of cosmogenic Ne. Depth profiles measured in Grant indicate a preatmospheric center location 117 mm left from the reference line and 9 mm below bar B, which is clearly different (?10 cm) from earlier results (?165 mm left from the reference line on bar F). For Carbo the preatmospheric center location was found to be 120 mm right of the reference line and 15 mm above bar J, which is in agreement with literature data. The new measurements indicate a spherical preatmospheric shape for both meteorites and, based on literature 36C1 data, the radii were estimated to be about 32 cm and 70 cm for Grant and Carbo, respectively. We demonstrate that minor elements like S and P have a significant influence on the production rates of cosmogenic Ne. In our samples, containing on average 0.5% S and/or P, about 20% of 21Ne was produced from these minor elements. Using measured 21Ne concentrations and endmember 22Ne/21Ne ratios for Fe + Ni and S + P, respectively, we show that it is possible to correct for 21Ne produced from S and/or P. The thus corrected data are then used to calculate new 41K‐40K exposure ages—using published K data—which results in 564 ± 78 Ma for Grant and 725 ± 100 Ma for Carbo. The correction always lowers the 21Ne concentrations and consequently decreases the 41K‐40K exposure ages. The discrepancies between 36Cl‐36Ar and 41K‐40K ages are accordingly reduced. The existence of a significant long‐term variation of the GCR, which is based on a former 30–50% difference between 41K‐40K and 36Cl‐36Ar ages, may warrant re‐investigation.  相似文献   

6.
Abstract— Cosmic-ray produced nuclear tracks and noble gases have been studied in the martian orthopyroxenite Allan Hills 84001 to delineate its cosmic-ray exposure history, preatmospheric size, and fall characteristics. A K-Ar age of 3.9 Ga, cosmic-ray exposure duration of 16.7 Ma, and a preatmospheric radius of 10 cm have been deduced from the noble gas and track data. The track data suggest ALH 84001 to be a single fall that has suffered atmospheric mass ablation in excess of 85%, higher than the value deduced for the shergottites, ALHA 77005, EETA 79001, and Shergotty. The formation age, as well as the cosmic-ray exposure duration, determined in this work are in good agreement with values reported earlier and are distinctly different from other shergottite, nakhlite, and chassignite (SNC) meteorites analysed so far. The high cosmogenic 22Ne/21Ne ratio of 1.22 most probably reflects an effect due to non-chondritic composition of ALH 84001 as the track data suggest high shielding (<5cm) for the analysed samples. There are signatures in the noble gas data that indicate the possible presence of trapped Ar and Ne of martian atmospheric origin in ALH 84001.  相似文献   

7.
We report newly measured noble gas isotopic concentrations of He, Ne, and Ar for 21 samples from the 10 ureilites, DaG 084, DaG 319, DaG 340, Dho 132, HaH 126, JaH 422, JaH 424, Kenna, NWA 5928, and RaS 247, including the results of both single and stepwise heating extractions. Cosmic ray exposure (CRE) ages calculated using model calculations that fully account for all shielding depths and a wide range of preatmospheric radii, and are tailored to ureilite chemistry, range from 3.7 Ma for Dho 132 to 36.3 Ma for one of several measured Kenna samples. In a Ne‐three‐isotope plot, the data for DaG 340 and JaH 422 plot below the Necos/Neureilite mixing envelope, possibly indicating the presence of Ne produced from solar cosmic rays. In combination with literature data and correcting for pairing, we established a fully consistent database containing 100 samples from 40 different ureilites. The CRE age histogram shows a trend of decreasing meteorite number with increasing CRE age. We speculate that the parent body of the known ureilites is moving closer to a resonance and/or that there is a loss mechanism that acts on ureilites independent of their size. In addition, there is a slight indication for a peak in the range 30 Ma, which might indicate a larger impact on the ureilite daughter body. Finally, we confirm earlier results that the majority of the studied ureilites have relatively small preatmospheric radii less or equal ~20 cm.  相似文献   

8.
We analyzed cosmogenic nuclides in metal and/or silicate (primarily olivine) separated from the main‐group pallasites Admire, Ahumada, Albin, Brahin, Brenham, Esquel, Finmarken, Glorieta Mountain, Huckitta, Imilac, Krasnojarsk, Marjalahti, Molong, Seymchan, South Bend, Springwater, and Thiel Mountains and from Eagle Station. The metal separates contained an olivine fraction which although small, <1 wt% in most cases, nonetheless contributes significantly to the budgets of some nuclides (e.g., up to 35% for 21Ne and 26Al). A correction for olivine is therefore essential and was made using model calculations and/or empirical relations for the production rates of cosmogenic nuclides in iron meteoroids and/or measured elemental concentrations. Cosmic‐ray exposure (CRE) ages for the metal phases of the main‐group pallasites range from 7 to 180 Ma, but many of the ages cluster around a central peak near 100 Ma. These CRE ages suggest that the parent body of the main‐group pallasites underwent a major break‐up that produced most of the meteorites analyzed. The CRE age distribution for the pallasites overlaps only a small fraction of the distribution for the IIIAB iron meteorites. Most pallasites and IIIAB irons originated in different collisions, probably on different parent bodies; a few IIIABs and pallasites may have come out of the same collision but a firm conclusion requires further study. CRE ages calculated from noble gas and radionuclide data of the metal fraction are higher on average than the 21Ne exposure ages obtained for the olivine samples. As the metal and olivine fractions were taken in most cases from different specimens, the depth‐dependency of the production rate ratio 10Be/21Ne in metal, not accounted for in our calculations, may explain the difference.  相似文献   

9.
Abstract– We measured cosmogenic radionuclides and noble gases in the L3–6 chondrite breccia Northwest Africa (NWA) 869, one of the largest meteorite finds from the Sahara. Concentrations of 10Be, 26Al, and 36Cl in stone and metal fractions of six fragments of NWA 869 indicate a preatmospheric radius of 2.0–2.5 m. The 14C and 10Be concentrations in three fragments yield a terrestrial age of 4.4 ± 0.7 kyr, whereas two fragments show evidence for a recent change in shielding, most likely due to a recent impact on the NWA meteoroid, approximately 105 yr ago, that excavated material up to approximately 80 cm deep and exposed previously shielded material to higher cosmic‐ray fluxes. This scenario is supported by the low cosmogenic 3He/21Ne ratios in these two samples, indicating recent loss of cosmogenic 3He. Most NWA samples, except for clasts of petrologic type 4–6, contain significant amounts of solar Ne and Ar, but are virtually free of solar helium, judging from the trapped 4He/20Ne ratio of approximately 7. Trapped planetary‐type Kr and Xe are most clearly present in the bulk and matrix samples, where abundances of 129Xe from decay of now extinct 129I are highest. Cosmogenic 21Ne varies between 0.55 and 1.92 × 10?8 cm3 STP g?1, with no apparent relationship between cosmogenic and solar Ne contents. Low cosmogenic (22Ne/21Ne)c ratios in solar gas free specimens are consistent with irradiation in a large body. Combined 10Be and 21Ne concentrations indicate that NWA 869 had a 4π cosmic‐ray exposure (CRE) age of 5 ± 1 Myr, whereas elevated 21Ne concentrations in several clasts and bulk samples indicate a previous CRE of 10–30 Myr on the parent body, most probably as individual components in a regolith. Unlike many other large chondrites, NWA 869 does not show clear evidence of CRE as a large boulder near the surface of its parent body. Radiogenic 4He concentrations in most NWA 869 samples indicate a major outgassing event approximately 2.8 Gyr ago that may have also resulted in loss of solar helium.  相似文献   

10.
Abstract– We measured the concentrations and isotopic ratios of the cosmogenic noble gases He, Ne, and Ar in the very large iron meteorite Xinjiang (IIIE). The 3He and 4He data indicate that a significant portion of the cosmogenic produced helium has been lost via diffusion or in a recent impact event. High 22Ne/21Ne ratios indicate that contributions to the cosmogenic 21Ne from sulfur and/or phosphorous are significant. By combining the measured nuclide concentrations with model calculations for iron meteorites we were able to determine the preatmospheric diameter of Xinjiang to 260–320 cm, which corresponds to a total mass of about 70–135 tons. The cosmic‐ray exposure age of Xinjiang is 62 ± 16 Ma, i.e., relatively short compared to most of the other iron meteorites. With the current database we cannot firmly determine whether Xinjiang experienced a complex irradiation history. The finding of 3He and 4He losses might argue for a recent impact event and therefore for a complex exposure.  相似文献   

11.
Abstract– We present 40Ar‐39Ar dating results of handpicked mineral separates and whole‐rock samples of Nakhla, Lafayette, and Chassigny. Our data on Nakhla and Lafayette and recently reported ages for some nakhlites and Chassigny ( Misawa et al. 2006 ; Park et al. 2009 ) point to formation ages of approximately 1.4 Ga rather than 1.3 Ga that is consistent with previous suggestions of close‐in‐time formation of nakhlites and Chassigny. In Lafayette mesostasis, we detected a secondary degassing event at approximately 1.1 Ga, which is not related to iddingsite formation. It may have been caused by a medium‐grade thermal event resetting the mesostasis age but not influencing the K‐Ar system of magmatic inclusions and the original igneous texture of this rock. Cosmic‐ray exposure ages for these meteorites and for Governador Valadares were calculated from bulk rock concentrations of cosmogenic nuclides 3He, 21Ne, and 38Ar. Individual results are similar to literature data. The considerable scatter of T3, T21, and T38 ages is due to systematic uncertainties related to bulk rock and target element chemistry, production rates, and shielding effects. This hampers efforts to better constrain the hypothesis of a single ejection event for all nakhlites and Chassigny from a confined Martian surface terrain ( Eugster 2003 ; Garrison and Bogard 2005 ). Cosmic‐ray exposure ages from stepwise release age spectra using 38Ar and neutron induced 37Ar from Ca in irradiated samples can eliminate errors induced by bulk chemistry on production rates, although not from shielding conditions.  相似文献   

12.
Abstract— We have measured the concentrations of the cosmogenic radionuclides 10Be, 26Al and 36Cl (half-lives 1.51 Ma, 716 ka, and 300 ka, respectively) in two different laboratories by accelerator mass spectrometry (AMS) techniques, as well as concentrations and isotopic compositions of stable He, Ne and Ar in the Antarctic H-chondrite Allan Hills (ALH) 88019. In addition, nuclear track densities were measured. From these results, it is concluded that the meteoroid ALH 88019 had a preatmospheric radius of (20 ± 5) cm and a shielding depth for the analyzed samples of between 4 and 8 cm. Using calculated and experimentally determined production rates of cosmogenic nuclides, an exposure age of ~40 Ma is obtained from cosmogenic 21Ne and 38Ar. The extremely low concentrations of radionuclides are explained by a very long terrestrial age for this meteorite of 2 ± 0.4 Ma. A similarly long terrestrial age was found so far only for the Antarctic L-chondrite Lewis Cliff (LEW) 86360. Such long ages establish one boundary condition for the history of meteorites in Antarctica.  相似文献   

13.
The Sutter's Mill (SM) carbonaceous chondrite fell in California on April 22, 2012. The cosmogenic radionuclide data indicate that Sutter's Mill was exposed to cosmic rays for 0.082 ± 0.008 Myr, which is one of the shortest ages for C chondrites, but overlaps with a small cluster at approximately 0.1 Myr. The age is significantly longer than proposed ages that were obtained from cosmogenic noble gas concentrations, which have large uncertainties due to trapped noble gas corrections. The presence of neutron‐capture 60Co and 36Cl in SM indicates a minimum preatmospheric radius of approximately 50 cm, and is consistent with a radius of 1–2 m, as derived from the fireball observations. Although a large preatmospheric size was proposed, one fragment (SM18) contains solar cosmic ray–produced short‐lived radionuclides, such as 56Co and 51Cr. This implies that this specimen was less than 2 cm from the preatmospheric surface of Sutter's Mill. Although this conclusion seems surprising, it is consistent with the observation that the meteoroid fragmented high in the atmosphere. The presence of SCR‐produced nuclides is consistent with the high SCR fluxes observed during the last few months before the meteorite's fall, when its orbit was less than 1 AU from the Sun.  相似文献   

14.
Abstract— Measured Ne isotopes in samples of shergottite ALHA77005 show variations in 21Ne/22Ne ratios and 21Ne abundances that are consistent with the presence of two cosmogenic components: a component produced by nuclear interactions of galactic cosmic rays (GCR) and a component produced at shallow shielding depths (~0–3 cm) by energetic solar flare protons (SCR). We suggest that the 21Ne/22Ne ratio generally can be used to distinguish between SCR and GCR components in many meteorite types. Analysis of cosmogenic Ne produced in chondrite mineral separates, eucrites, and anorthositic lunar rocks, all having diverse major element compositions, indicate that the GCR 21Ne/22Ne ratio increases modestly with relative Mg content. Data for hundreds of chondrite analyses suggest that SCR Ne is present in no more than a very small fraction of chondrites. Examination of literature data for other shergottites, however, indicate that all of these meteorites contain SCR Ne but that it is apparently absent in other SNC meteorites. The ubiquitous presence of SCR Ne in shergottites, in contrast to most other types of meteorites, suggests that the martian origin of shergottites gave them different orbital parameters compared to other meteorites. This in turn may have contributed to slower entry velocities and lesser surface ablation in the atmosphere or even to higher SCR production rates.  相似文献   

15.
Abstract— Cosmic‐ray exposure ages calculated from cosmogenic noble gas nuclides are reported for 57 enstatite (E) chondrites, 43 of them were measured for the first time. With a total of 62 individual E chondrites (literature and this data, corrected for pairing) the observed spectrum of ages ranges between 0.07 and 66 Ma. Three clusters seem to develop at about 3.5, 8, and 25 Ma, respectively. Since the uncertainty of ages is estimated to be ~20% (in contrast to 10 to 15% for ordinary chondrites) and the number of examined samples is still comparatively small, these peaks have to be confirmed by more measurements. Regarding the two subgroups, EH and EL chondrites, no systematic trend is apparent in the distribution of cosmic‐ray exposure ages. Several E chondrites yield significantly lower 38Ar ages compared to those calculated from cosmogenic 3He and 21Ne. For these E chondrites, we suggest a reduction of cosmogenic 38Ar as a result of weathering. In order to prove the possible influence of terrestrial alteration on the cosmogenic noble gas record of E‐chondritic material, we simulated terrestrial weathering in an experiment of 12 weeks duration. The treatment showed that a significant amount of cosmogenic 38Ar is lost on Earth by the influence of water.  相似文献   

16.
If chondrules were exposed to cosmic rays prior to meteorite compaction, they should retain an excess of cosmogenic noble gases. Beyersdorf‐Kuis et al. (2015) showed that such excesses can be detected provided that the chemical composition of each individual chondrule is precisely known. However, their study was limited to a few samples as they had to be irradiated in a nuclear reactor for instrumental neutron activation analysis. We developed a novel analytical protocol that combines the measurements of He and Ne isotopic concentrations with a fast method to correct for differences in chemical composition using micro X‐ray computed tomography. Our main idea is to combine noble gas, nuclear track, and petrography data for numerous chondrules to understand the precompaction exposure history of the chondrite parent bodies. Here, we report our results for a total of 77 chondrules and four matrix samples from NWA 8276 (L3.00), NWA 8007 (L3.2), and Bjurböle (L/LL4). All chondrules from the same meteorite have within uncertainty identical 21Ne exposure ages, and all chondrules from Bjurböle have within uncertainty identical 3He exposure ages. However, most chondrules from NWA 8276 and a few from NWA 8007 show small but resolvable differences in 3He exposure age that we attribute to matrix contamination and/or gas loss. The finding that none of the chondrules has noble gas excesses is consistent with the uniform track density found for each meteorite. We conclude that the studied chondrules did not experience a precompaction exposure longer than a few Ma assuming present‐day flux of galactic cosmic rays. A majority of chondrules from L and LL chondrites thus rapidly accreted and/or was efficiently shielded from cosmic rays in the solar nebula.  相似文献   

17.
Here we present the isotopic concentrations of He, Ne, Ar, Kr, and Xe for the three Martian meteorites, namely Grove Mountains 99027 (GRV 99027), Northwest Africa 7906 (NWA 7906), and Northwest Africa 7907 (NWA 7907). The cosmic ray exposure (CRE) age for GRV 99027 of 5.7 ± 0.4 Ma (1σ) is consistent with CRE ages for other poikilitic basaltic shergottites and suggests that all were ejected in a single event ~5.6 Ma ago. After correcting for an estimated variable sodium concentration, the CRE ages for NWA 7906 and NWA 7907 of 5.4 ± 0.4 and 4.9 ± 0.4 Ma (1σ), respectively, are in good agreement with the CRE age of ~5 Ma favored by Cartwright et al. ( 2014 ) for NWA 7034. The data, therefore, support the conclusion that all three basaltic regolith breccias are paired. The 40Ar gas retention age for NWA 7907 of ~1.3 Ga is in accord with Cartwright et al. ( 2014 ). For NWA 7906, we were unable to determine a 40Ar gas retention age. The 4He gas retention ages for NWA 7906 and 7907 are in the range of 200 Ma and are much shorter than the 40Ar gas retention age of NWA 7907, indicating that about 86–88% of the radiogenic 4He has been lost. The Kr and Xe isotopic concentrations in GRV 99027 are composed almost exclusively of Martian interior (MI) gases, while for NWA 7906 and NWA 7907, they indicate gases from the MI, elementally fractionated air, and possibly Martian atmosphere.  相似文献   

18.
Caleta el Cobre (CeC) 022 is a Martian meteorite of the nakhlite group, showing an unbrecciated cumulate texture, composed mainly of clinopyroxene and olivine. Augite shows irregular core zoning, euhedral rims, and thin overgrowths enriched in Fe relative to the core. Low‐Ca pyroxene is found adjacent to olivine. Phenocrysts of Fe‐Ti oxides are titanomagnetite with exsolutions of ilmenite/ulvöspinel. Intercumulus material consists of both coarse plagioclase and fine‐grained mesostasis, comprising K‐feldspars, pyroxene, apatite, ilmenite, Fe‐Ti oxides, and silica. CeC 022 shows a high proportion of Martian aqueous alteration products (iddingsite) in olivine (45.1 vol% of olivine) and mesostasis. This meteorite is the youngest nakhlite with a distinct Sm/Nd crystallization age of 1.215 ± 0.067 Ga. Its ejection age of 11.8 ± 1.8 Ma is similar to other nakhlites. CeC 022 reveals contrasted cooling rates with similarities with faster cooled nakhlites, such as Northwest Africa (NWA) 817, NWA 5790, or Miller Range 03346 nakhlites: augite irregular cores, Fe‐rich overgrowths, fine‐grained K‐feldspars, quenched oxides, and high rare earth element content. CeC 022 also shares similarities with slower cooled nakhlites, including Nakhla and NWA 10153: pyroxene modal abundance, pyroxenes crystal size distribution, average pyroxene size, phenocryst mineral compositions, unzoned olivine, and abundant coarse plagioclase. Moreover, CeC 022 is the most magnetic nakhlite and represents an analog source lithology for the strong magnetization of the Martian crust. With its particular features, CeC 022 must originate from a previously unsampled sill or flow in the same volcanic system as the other nakhlites, increasing Martian sample diversity and our knowledge of nakhlites.  相似文献   

19.
Abstract— Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contains excess concentrations of cosmogenic Ne in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic cosmic-ray proton (GCR) irradiation or from a greatly enhanced flux of energetic solar “cosmic-ray” protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne/22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Ma. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3–6 Ma, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar particle fluxes. Thus, this study indicates that our early Sun was much more active and emitted a substantially higher flux of energetic (>10 MeV/nucleon) protons.  相似文献   

20.
Abstract— The Monahans H‐chondrite is a regolith breccia containing light and dark phases and the first reported presence of small grains of halite. We made detailed noble gas analyses of each of these phases. The 39Ar‐40Ar age of Monahans light is 4.533 ± 0.006 Ma. Monahans dark and halite samples show greater amounts of diffusive loss of 40Ar and the maximum ages are 4.50 and 4.33 Ga, respectively. Monahans dark phase contains significant concentrations of He, Ne and Ar implanted by the solar wind when this material was extant in a parent body regolith. Monahans light contains no solar gases. From the cosmogenic 3He, 21Ne, and 38Ar in Monahans light we calculate a probable cosmic‐ray, space exposure age of 6.0 ± 0.5 Ma. Monahans dark contains twice as much cosmogenic 21Ne and 38Ar as does the light and indicates early near‐surface exposure of 13–18 Ma in a H‐chondrite regolith. The existence of fragile halite grains in H‐chondrites suggests that this regolith irradiation occurred very early. Large concentrations of 36Ar in the halite were produced during regolith exposure by neutron capture on 35Cl, followed by decay to 36Ar. The thermal neutron fluence seen by the halite was (2–4) × 1014 n/cm2. The thermal neutron flux during regolith exposure was ~0.4‐0.7 n/cm2/s. The Monahans neutron fluence is more than an order of magnitude less than that acquired during space exposure of several large meteorites and of lunar soils, but the neutron flux is lower by a factor of ≤5. Comparison of the 36Arn/21Necos ratio in Monahans halite and silicate with the theoretically calculated ratio as a function of shielding depth in an H‐chondrite regolith suggests that irradiation of Monahans dark occurred under low shielding in a regolith that may have been relatively shallow. Late addition of halite to the regolith can be ruled out. However, irradiation of halite and silicate for different times at different depths in an extensive regolith cannot be excluded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号