首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In October 2002, 15 continuous days of Very Long Baseline Interferometry (VLBI) data were observed in the Continuous VLBI 2002 (CONT02) campaign. All eight radio telescopes involved in CONT02 were co-located with at least one other space-geodetic technique, and three of them also with a Water Vapor Radiometer (WVR). The goal of this paper is to compare the tropospheric zenith delays observed during CONT02 by VLBI, Global Positioning System (GPS), Doppler Orbitography Radiopositioning Integrated by Satellite (DORIS) and WVR and to compare them also with operational pressure level data from the European Centre for Medium-Range Weather Forecasts (ECMWF). We show that the tropospheric zenith delays from VLBI and GPS are in good agreement at the 3–7 mm level. However, while only small biases can be found for most of the stations, at Kokee Park (Hawaii, USA) and Westford (Massachusetts, USA) the zenith delays derived by GPS are larger by more than 5 mm than those from VLBI. At three of the four DORIS stations, there is also a fairly good agreement with GPS and VLBI (about 10 mm), but at Kokee Park the agreement is only at about 30 mm standard deviation, probably due to the much older installation and type of DORIS equipment. This comparison also allows testing of different DORIS analysis strategies with respect to their real impact on the precision of the derived tropospheric parameters. Ground truth information about the zenith delays can also be obtained from the ECMWF numerical weather model and at three sites using WVR measurements, allowing for comparisons with results from the space-geodetic techniques. While there is a good agreement (with some problems mentioned above about DORIS) among the space-geodetic techniques, the comparison with WVR and ECMWF is at a lower accuracy level. The complete CONT02 data set is sufficient to derive a good estimate of the actual precision and accuracy of each geodetic technique for applications in meteorology.  相似文献   

2.
New global positioning system reference station in Brazil   总被引:1,自引:0,他引:1  
Co-located very long baseline interferometry (VLBI) and global positioning system (GPS) reference stations were installed near Fortaleza, Brazil, in 1993. Both have been important in the realization and maintenance of the International Terrestrial Reference Frame. A new-generation GPS system was installed in 2005 to replace the original station. Experience gained in the prior 12 years was used to improve the design of the GPS antenna mount. Preliminary indications are greatly improved data quality from the new station. Simultaneous observations from the nearly half-year of overlapping operation have been used to determine the local tie between the new and old GPS reference points to about 1 mm accuracy. This can be used to update the 1993 survey tie between the original GPS and the VLBI points, although there are questions about the accuracy of that measurement based on a comparison with space geodetic data. A test of removing the conical radome over the old GPS antenna indicates that it has biased the station height by about 16 mm downward, which probably accounts for most of the previous survey discrepancy.  相似文献   

3.
The revitalized Russian GLONASS system provides new potential for real-time retrieval of zenith tropospheric delays (ZTD) and precipitable water vapor (PWV) in order to support time-critical meteorological applications such as nowcasting or severe weather event monitoring. In this study, we develop a method of real-time ZTD/PWV retrieval based on GLONASS and/or GPS observations. The performance of ZTD and PWV derived from GLONASS data using real-time precise point positioning (PPP) technique is carefully investigated and evaluated. The potential of combining GLONASS and GPS data for ZTD/PWV retrieving is assessed as well. The GLONASS and GPS observations of about half a year for 80 globally distributed stations from the IGS (International GNSS Service) network are processed. The results show that the real-time GLONASS ZTD series agree quite well with the GPS ZTD series in general: the RMS of ZTD differences is about 8 mm (about 1.2 mm in PWV). Furthermore, for an inter-technique validation, the real-time ZTD estimated from GLONASS-only, GPS-only, and the GPS/GLONASS combined solutions are compared with those derived from very long baseline interferometry (VLBI) at colocated GNSS/VLBI stations. The comparison shows that GLONASS can contribute to real-time meteorological applications, with almost the same accuracy as GPS. More accurate and reliable water vapor values, about 1.5–2.3 mm in PWV, can be achieved when GLONASS observations are combined with the GPS ones in the real-time PPP data processing. The comparison with radiosonde data further confirms the performance of GLONASS-derived real-time PWV and the benefit of adding GLONASS to stand-alone GPS processing.  相似文献   

4.
The CONT02 campaign is of great interest for studies combining very long baseline interferometry (VLBI) with other space-geodetic techniques, because of the continuously available VLBI observations over 2 weeks in October 2002 from a homogeneous network. Especially, the combination with the Global Positioning System (GPS) offers a broad spectrum of common parameters. We combined station coordinates, Earth orientation parameters (EOPs) and troposphere parameters consistently in one solution using technique- specific datum-free normal equation systems. In this paper, we focus on the analyses concerning the EOPs, whereas the comparison and combination of the troposphere parameters and station coordinates are covered in a companion paper in Journal of Geodesy. In order to demonstrate the potential of the VLBI and GPS space-geodetic techniques, we chose a sub-daily resolution for polar motion (PM) and universal time (UT). A consequence of this solution set-up is the presence of a one-to-one correlation between the nutation angles and a retrograde diurnal signal in PM. The Bernese GPS Software used for the combination provides a constraining approach to handle this singularity. Simulation studies involving both nutation offsets and rates helped to get a deeper understanding of this singularity. With a rigorous combination of UT1–UTC and length of day (LOD) from VLBI and GPS, we showed that such a combination works very well and does not suffer from the systematic effects present in the GPS-derived LOD values. By means of wavelet analyses and the formal errors of the estimates, we explain this important result. The same holds for the combination of nutation offsets and rates. The local geodetic ties between GPS and VLBI antennas play an essential role within the inter-technique combination. Several studies already revealed non-negligible discrepancies between the terrestrial measurements and the space-geodetic solutions. We demonstrate to what extent these discrepancies propagate into the combined EOP solution.  相似文献   

5.
Troposphere parameters estimated from space-geodetic techniques, like the Global Positioning System (GPS) or Very Long Baseline Interferometry (VLBI), can be used to monitor the atmospheric water vapor content. Although the troposphere can only be monitored at discrete locations, the distribution of the instruments, at least the GPS antennas, can be assumed to be quasi-global. Critical in the data analysis are systematic effects within each single technique that significantly degrade the accuracy and especially the long-term stability of the zenith delay determination. In this paper, consistent time-series of troposphere zenith delays and gradients from homogeneously reprocessed GPS and VLBI solutions are compared for a time period of 11 years. The homogeneity of these completely reprocessed time-series is essential to avoid misinterpretations due to individual model changes. Co-located sites are used to investigate systematic effects and the long-term behavior of the two space-geodetic techniques. Both techniques show common signals in the troposphere parameters at a very high level of precision. The biases between the troposphere zenith delays are at the level of a few millimeters. On the other hand, long-term trends significantly differ for the two techniques, preventing climatological interpretations at present. Tests assume these differences to be due to mathematical artifacts such as different sampling rates and unmodeled semi-annual signals with varying amplitudes.  相似文献   

6.
A method based on multi-antennae linked to a common GPS receiver is proposed. The goal of the technique is to improve height determination for baselines a few kilometres in length. The advantage of this technique resides in the elimination of relative clock parameters in the between-antenna single difference observations. Because single difference observations are free of clock errors more geometrical strength remains to determine the baseline components. This statement is valid as long as intercable biases can be carefully calibrated. For millimetre height determination, the intercable calibration must be done at the same level of accuracy. Under this assumption it is shown that in general the height standard deviation improves by a factor of about three compared to standard GPS data processing. With the proposed method, the effect of relative tropospheric zenith delay errors becomes a bit smaller (in absolute value), compared to standard data processing. To absorb this error, a relative tropospheric zenith delay parameter may be estimated. Even with this additional parameter in the solution the height standard deviation remains two times smaller than the results of standard processing techniques (without tropospheric zenith delay parameter), and at least five times smaller than in the results obtained from standard processing including one tropospheric zenith delay parameter.  相似文献   

7.
Within the International Very Long Baseline Interferometry (VLBI) Service for Geodesy and Astrometry (IVS), long time-series of zenith wet and total troposphere delays have been combined at the level of parameter estimates. The data sets were submitted by eight IVS Analysis Centers (ACs) and cover January 1984 to December 2004. In this paper, the combination method is presented and the time-series submitted by the eight IVS ACs are compared with each other. The combined zenith delays are compared with time-series provided by the International Global Navigation Satellite System (GNSS) Service (IGS), and with zenith delays derived from the European Centre for Medium-Range Weather Forecasts (ECMWF). Before the combination, outliers are eliminated from the individual time-series using the robust BIBER (bounded influence by standardized residuals) estimator. For each station and AC, relative weight factors are obtained by variance component estimation. The mean bias of the IVS ACs’ time-series with respect to the IVS combined time-series is 0.89 mm and the mean root mean square is 7.67 mm. Small differences between stations and ACs can be found, which are due to the inhomogeneous analysis options, different parameterizations, and different treatment of missing in-situ pressure records. Compared to the IGS zenith total delays, the combined IVS series show small positive mean biases and different long-term trends. Zenith wet delays from the ECMWF are used to validate the IVS combined series. Inconsistencies, e.g., long-term inhomogeneity of the in-situ pressure data used for the determination of VLBI zenith delays, are identified.  相似文献   

8.
In preparation of activities planned for the realization of the Global Geodetic Observing System (GGOS), a group of German scientists has carried out a study under the acronym GGOS-D which closely resembles the ideas behind the GGOS initiative. The objective of the GGOS-D project was the investigation of the methodological and information-technological realization of a global geodetic-geophysical observing system and especially the integration and combination of the space geodetic observations. In the course of this project, highly consistent time series of GPS, VLBI, and SLR results were generated based on common state-of-the-art standards for modeling and parameterization. These series were then combined to consistently and accurately compute a Terrestrial Reference Frame (TRF). This TRF was subsequently used as the basis to produce time series of station coordinates, Earth orientation, and troposphere parameters. In this publication, we present results of processing algorithms and strategies for the integration of the space-geodetic observations which had been developed in the project GGOS-D serving as a prototype or a small and limited version of the data handling and processing part of a global geodetic observing system. From a comparison of the GGOS-D terrestrial reference frame results and the ITRF2005, the accuracy of the datum parameters is about 5?C7?mm for the positions and 1.0?C1.5?mm/year for the rates. The residuals of the station positions are about 3?mm and between 0.5 and 1.0?mm/year for the station velocities. Applying the GGOS-D TRF, the offset of the polar motion time series from GPS and VLBI is reduced to 50 ??as (equivalent to 1.5?mm at the Earth??s surface). With respect to troposphere parameter time series, the offset of the estimates of total zenith delays from co-located VLBI and GPS observations for most stations in this study is smaller than 1.5?mm. The combined polar motion components show a significantly better WRMS agreement with the IERS 05C04 series (96.0/96.0???as) than VLBI (109.0/100.7???as) or GPS (98.0/99.5???as) alone. The time series of the estimated parameters have not yet been combined and exploited to the extent that would be possible. However, the results presented here demonstrate that the experiences made by the GGOS-D project are very valuable for similar developments on an international level as part of the GGOS development.  相似文献   

9.
The first part of this paper compares homogeneously reprocessed Very Long Baseline Interferometry (VLBI) and Global Positioning System (GPS) long-term height series from 1994 to 2007. The data analysis used fully adapted state-of-the-art models (like VMF1 and a priori zenith delays from ECMWF) for the GPS and VLBI processing. The series are compared in terms of long-term non-linear behaviour, harmonic and mean annual signals (not necessarily of harmonic nature). The similarity between both techniques is very good (especially the mean annual signals), which is assumed to be due to the adapted models and consistent reprocessing of both series. As two almost independent observing techniques see the same annually recurring signals at almost all co-located sites, we expect a good geophysical interpretability as integral vertical deformation. For the second part of this paper, the height time series of 161 suitable GPS sites (of the same solution as before) are used to determine a harmonic and a mean annual signal for each of them. Comparing the annual signals for this big dataset visually to GRACE-determined load deformations described in other publications, we find good agreement. This puts emphasis to the assumption that our height data have a lot of potential to be interpreted as geophysical signals. Out of these 161, 131 are grouped to 55 clusters, if at least two nearby (some thousand kilometres) sites show similar mean annual signals, which are thus confirmed to be real regional deformation, not local or technical artefacts. These 55 signals are presented on a “world map” of regional average mean annual height signals, as easy-to-handle tool to validate geophysical models. The data of these measured regional mean annual signals can be downloaded from a web-page for numerical analysis.  相似文献   

10.
In order to study the Baltic Sea Level change and to unify national height systems a two week GPS campaign was performed in the region in Autumn 1990. Parties from Denmark, Finland, Germany, Poland and Sweden carried out GPS measurements at 26 tide gauges along the Baltic sea and 8 VLBI and SLR fiducial stations with baseline lengths ranging from 230 km to 1600 km. The observations were processed in the network mode with the Bernese version 3.3 software using orbit improvement techniques. To get rid of the scale error introduced by the ionospheric refraction from single-frequency data, the local models of the ionosphere were estimated using L4 observations. The tropospheric zenith corrections were also considered. The preliminary results show average root mean square (RMS) errors of about ±3 cm in the horizontal position and ±7 cm in the vertical position relative to the Potsdam SLR station in ITRF89 system. After transformation of the GPS results to geoid heights using the levelled heights, an absolute comparison with gravimetric geoid heights using the least squares modification of Stokes' formula (LSMS), the modified Molodensky and the NKG Scandinavian geoid 1989 (NGK-89) models gives a standard deviation of the difference of ±7cm to ±9cm for the NKG-89 model and of ±9cm to ±30cm for the LSMS and the modified Molodensky model. The Swedish height system is found to be about 8-37cm higher than those of the other Baltic countries for NKG-89 model.  相似文献   

11.
Combinations of station coordinates and velocities from independent space-geodetic techniques have long been the standard method to realize robust global terrestrial reference frames (TRFs). In principle, the particular strengths of one observing method can compensate for weaknesses in others if the combination is properly constructed, suitable weights are found, and accurate co-location ties are available. More recently, the methodology has been extended to combine time-series of results at the normal equation level. This allows Earth orientation parameters (EOPs) to be included and aligned in a fully consistent way with the TRF. While the utility of such multi-technique combinations is generally recognized for the reference frame, the benefits for the EOPs are yet to be quantitatively assessed. In this contribution, which is a sequel to a recent paper on co-location ties (Ray and Altamimi in J Geod 79(4–5): 189–195, 2005), we have studied test combinations of very long baseline interferometry (VLBI) and Global Positioning System (GPS) time-series solutions to evaluate the effects on combined EOP measurements compared with geophysical excitations. One expects any effect to be small, considering that GPS dominates the polar motion estimates due to its relatively dense and uniform global network coverage, high precision, continuous daily sampling, and homogeneity, while VLBI alone observes UT1-UTC. Presently, although clearly desirable, we see no practical method to rigorously include the GPS estimates of length-of-day variations due to significant time-varying biases. Nevertheless, our results, which are the first of this type, indicate that more accurate polar motion from GPS contributes to improved UT1-UTC results from VLBI. The situation with combined polar motion is more complex. The VLBI data contribute directly only very slightly, if at all, with an impact that is probably affected by the weakness of the current VLBI networks (small size and sparseness) and the quality of local ties relating the VLBI and GPS frames. Instead, the VLBI polar motion information is used primarily in rotationally aligning the VLBI and GPS frames, thereby reducing the dependence on co-location tie information. Further research is needed to determine an optimal VLBI-GPS combination strategy that yields the highest quality EOP estimates. Improved local ties (including internal systematic effects within the techniques) will be critically important in such an effort.  相似文献   

12.
CONT campaigns are 2-week campaigns of continuous VLBI observations. The IERS working group on combination at the observation level uses these campaigns to study such combinations. In this work, combinations of DORIS, GPS, SLR, and VLBI technique measurements are studied during CONT08. We present different results concerning the use of common zenith tropospheric delay (ZTD) during the combination. We compare the ZTD obtained separately using each individual technique data processing, the combined ZTD, and the ZTD derived from a meteorological model. This resulted in a high level of consistency between each of these ZTD at a sub-centimeter level, a consistency which especially depends on the number of observations per estimated ZTD and the humidity level in the troposphere. We noted that GPS provides the main information about the combined ZTD, the other techniques providing complementary information when a lack of GPS observations occurs.  相似文献   

13.
Tie vectors (TVs) between co-located space geodetic instruments are essential for combining terrestrial reference frames (TRFs) realised using different techniques. They provide relative positioning between instrumental reference points (RPs) which are part of a global geodetic network such as the international terrestrial reference frame (ITRF). This paper gathers the set of very long baseline interferometry (VLBI)–global positioning system (GPS) local ties performed at the observatory of Medicina (Northern Italy) during the years 2001–2006 and discusses some important aspects related to the usage of co-location ties in the combinations of TRFs. Two measurement approaches of local survey are considered here: a GPS-based approach and a classical approach based on terrestrial observations (i.e. angles, distances and height differences). The behaviour of terrestrial local ties, which routinely join combinations of space geodetic solutions, is compared to that of GPS-based local ties. In particular, we have performed and analysed different combinations of satellite laser ranging (SLR), VLBI and GPS long term solutions in order to (i) evaluate the local effects of the insertion of the series of TVs computed at Medicina, (ii) investigate the consistency of GPS-based TVs with respect to space geodetic solutions, (iii) discuss the effects of an imprecise alignment of TVs from a local to a global reference frame. Results of ITRF-like combinations show that terrestrial TVs originate the smallest residuals in all the three components. In most cases, GPS-based TVs fit space geodetic solutions very well, especially in the horizontal components (N, E). On the contrary, the estimation of the VLBI RP Up component through GPS technique appears to be awkward, since the corresponding post fit residuals are considerably larger. Besides, combination tests including multi-temporal TVs display local effects of residual redistribution, when compared to those solutions where Medicina TVs are added one at a time. Finally, the combination of TRFs turns out to be sensitive to the orientation of the local tie into the global frame.  相似文献   

14.
A modified mixed-differenced approach for estimating multi-GNSS real-time clock offsets is presented. This approach, as compared to the earlier presented mixed-differenced approach which uses epoch-differenced and undifferenced observations, further adds a satellite-differenced process. The proposed approach, based on real-time orbit products and a mix of epoch-differenced and satellite-differenced observations to estimate only satellite clock offsets and tropospheric zenith wet delays, has fewer estimated parameters than other approaches, and thus its implementing procedure is efficient and can be performed and extended easily. To obtain high accuracy, the approach involves three steps. First, the high-accuracy tropospheric zenith wet delay of each station is estimated using mixed-differenced carrier phase observations. Second, satellite clock offset changes between adjacent epochs are estimated using also mixed-differenced carrier phase observations. Third, the satellite clock offsets at the initial epoch are estimated using satellite-differenced pseudorange observations. Finally, the initial epoch clock results and clock offset changes are concatenated to obtain the clock results of the current epoch. To validate the real-time satellite clock results, multi-GNSS post-processing clock products from IGS ACs were selected for comparison. From the comparison, the standard deviations of the GPS, GLONASS, BeiDou and Galileo systems clock results are approximately 0.1–0.4 ns, except for the BeiDou GEO satellites. The root mean squares are about 0.4–2.3 ns, which are similar to those of other international real-time products. When the clock estimates were assessed based on a pseudo-kinematic PPP procedure, the positioning accuracies in the East, North and Up components reach 5.6, 5.5 and 7.6 cm, respectively, which meet the centimeter level and are comparable to the application of other products.  相似文献   

15.
Troposphere-induced errors in GPS-derived geodetic time series, namely, height and zenith total delays (ZTDs), over Japan are quantitatively evaluated through the analyses of simulated GPS data using realistic cumulative tropospheric delays and observed GPS data. The numerical simulations show that the use of a priori zenith hydrostatic delays (ZHDs) derived from the European Centre for Medium-Range Weather Forecasts (ECMWF) numerical weather model data and gridded Vienna mapping function 1 (gridded VMF1) results in smaller spurious annual height errors and height repeatabilities (0.45 and 2.55 mm on average, respectively) as compared to those derived from the global pressure and temperature (GPT) model and global mapping function (GMF) (1.08 and 3.22 mm on average, respectively). On the other hand, the use of a priori ZHDs derived from the GPT and GMF would be sufficient for applications involving ZTDs, given the current discrepancies between GPS-derived ZTDs and those derived from numerical weather models. The numerical simulations reveal that the use of mapping functions constructed with fine-scale numerical weather models will potentially improve height repeatabilities as compared to the gridded VMF1 (2.09 mm against 2.55 mm on average). However, they do not presently outperform the gridded VMF1 with the observed GPS data (6.52 mm against 6.50 mm on average). Finally, the commonly observed colored components in GPS-derived height time series are not primarily the result of troposphere-induced errors, since they become white in numerical simulations with the proper choice of a priori ZHDs and mapping functions.  相似文献   

16.
The Vienna Mapping Functions 1 (VMF1) as provided by the Institute of Geodesy and Geophysics (IGG) at the Vienna University of Technology are the most accurate mapping functions for the troposphere delays that are available globally and for the entire history of space geodetic observations. So far, the VMF1 coefficients have been released with a time delay of almost two days; however, many scientific applications require their availability in near real-time, e.g. the Ultra Rapid solutions of the International GNSS Service (IGS) or the analysis of the Intensive sessions of the International VLBI Service (IVS). Here we present coefficients of the VMF1 as well as the hydrostatic and wet zenith delays that have been determined from forecasting data of the European Centre for Medium-Range Weather Forecasts (ECMWF) and provided on global grids. The comparison with parameters derived from ECMWF analysis data shows that the agreement is at the 1 mm level in terms of station height, and that the differences are larger for the wet mapping functions than for the hydrostatic mapping functions and the hydrostatic zenith delays. These new products (VMF1-FC and hydrostatic zenith delays from forecast data) can be used in real-time analysis of geodetic data without significant loss of accuracy.  相似文献   

17.
The correction of tropospheric influences via so-called path delays is critical for the analysis of observations from space geodetic techniques like the very long baseline interferometry (VLBI). In standard VLBI analysis, the a priori slant path delays are determined using the concept of zenith delays, mapping functions and gradients. The a priori use of ray-traced delays, i.e., tropospheric slant path delays determined with the technique of ray-tracing through the meteorological data of numerical weather models (NWM), serves as an alternative way of correcting the influences of the troposphere on the VLBI observations within the analysis. In the presented research, the application of ray-traced delays to the VLBI analysis of sessions in a time span of 16.5 years is investigated. Ray-traced delays have been determined with program RADIATE (see Hofmeister in Ph.D. thesis, Department of Geodesy and Geophysics, Faculty of Mathematics and Geoinformation, Technische Universität Wien. http://resolver.obvsg.at/urn:nbn:at:at-ubtuw:1-3444, 2016) utilizing meteorological data provided by NWM of the European Centre for Medium-Range Weather Forecasts (ECMWF). In comparison with a standard VLBI analysis, which includes the tropospheric gradient estimation, the application of the ray-traced delays to an analysis, which uses the same parameterization except for the a priori slant path delay handling and the used wet mapping factors for the zenith wet delay (ZWD) estimation, improves the baseline length repeatability (BLR) at 55.9% of the baselines at sub-mm level. If no tropospheric gradients are estimated within the compared analyses, 90.6% of all baselines benefit from the application of the ray-traced delays, which leads to an average improvement of the BLR of 1 mm. The effects of the ray-traced delays on the terrestrial reference frame are also investigated. A separate assessment of the RADIATE ray-traced delays is carried out by comparison to the ray-traced delays from the National Aeronautics and Space Administration Goddard Space Flight Center (NASA GSFC) (Eriksson and MacMillan in http://lacerta.gsfc.nasa.gov/tropodelays, 2016) with respect to the analysis performances in terms of BLR results. If tropospheric gradient estimation is included in the analysis, 51.3% of the baselines benefit from the RADIATE ray-traced delays at sub-mm difference level. If no tropospheric gradients are estimated within the analysis, the RADIATE ray-traced delays deliver a better BLR at 63% of the baselines compared to the NASA GSFC ray-traced delays.  相似文献   

18.
Absolute phase center corrections of satellite and receiver antennas   总被引:9,自引:2,他引:9  
Results of the estimation of azimuth-dependent phase center variations (PCVs) of GPS satellite antennas using global GPS data are presented. Significant variations of up to ±3–4 mm that are demonstrated show excellent repeatability over eight years. The application of the azimuthal PCVs besides the nadir-dependent ones will lead to a further reduction in systematic antenna effects. In addition, the paper focuses on the benefit of a possible transition from relative to absolute PCVs. Apart from systematic changes in the global station coordinates, one can expect the GPS results to be less dependent on the elevation cut-off angle. This, together with the significant reduction of tropospheric zenith delay biases between GPS and VLBI, stands for an important step toward more consistency between different space geodetic techniques.  相似文献   

19.
A method for tightly integrating GPS observations and the persistent scatterer (PS) interferometric synthetic aperture radar (InSAR) is proposed to detect vertical ground motion in Hong Kong, China. The tropospheric zenith wet delays (ZWD) derived from GPS observations at sites in the SAR scenes are used first to model and correct for the tropospheric effects in the interferograms generated from the SAR images. The vertical motion rates (VMR) of the GPS sites determined based on the continuous GPS observations obtained at the sites are then used as constraints in the PS InSAR solutions to further enhance the quality of the solutions. Data from 12 continuous tracking GPS sites in Hong Kong and 8 ENVISAT ASAR images acquired during 2006–2007 are used to demonstrate the application of the proposed method. The results from the example show that the method is capable of detecting accurately the vertical ground motion.  相似文献   

20.
The very long baseline interferometry (VLBI) Intensive sessions are typically 1-h and single-baseline VLBI sessions, specifically designed to yield low-latency estimates of UT1-UTC. In this work, we investigate what accuracy is obtained from these sessions and how it can be improved. In particular, we study the modeling of the troposphere in the data analysis. The impact of including external information on the zenith wet delays (ZWD) and tropospheric gradients from GPS or numerical weather prediction models is studied. Additionally, we test estimating tropospheric gradients in the data analysis, which is normally not done. To evaluate the results, we compared the UT1-UTC values from the Intensives to those from simultaneous 24-h VLBI session. Furthermore, we calculated length of day (LOD) estimates using the UT1-UTC values from consecutive Intensives and compared these to the LOD estimated by GPS. We find that there is not much benefit in using external ZWD; however, including external information on the gradients improves the agreement with the reference data. If gradients are estimated in the data analysis, and appropriate constraints are applied, the WRMS difference w.r.t. UT1-UTC from 24-h sessions is reduced by 5% and the WRMS difference w.r.t. the LOD from GPS by up to 12%. The best agreement between Intensives and the reference time series is obtained when using both external gradients from GPS and additionally estimating gradients in the data analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号