首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 263 毫秒
1.
云南省是中国典型的湿润型雨养农业区,农业发展受热量资源变化影响显著。然而,当前对湿润型雨养农业区热量资源的研究较为缺乏,尤其是对区域内不同海拔梯度下各界限温度的积温研究仍有待深入。本研究基于云南省27个气象站近50年逐日气象数据,采用气候倾向率、小波分析以及Mann-Kendall检验等研究方法,分析了云南省不同海拔地区生长季≥0℃、≥10℃及≥20℃积温的时空特征,并探讨了各积温的周期演变特征与气候变化的响应。结果表明:(1)近50年,云南省不同海拔地区的各类积温均表现出稳定增加的趋势,峰值都出现在近5年,谷值出现在20世纪70年代中期。(2)除滇中城市群区域内呈现出显著性增温现象之外,不同海拔地区的各类积温呈现出高海拔地区增温趋势高于低海拔地区的特征。(3)在海拔因素、城市热岛效应和气候变暖的协同影响下,云南省气温增长多发生在≥10℃的天数上,≥20℃积温在不同海拔地区的空间分布差异性极大,增温趋势显著大于0℃积温和10℃积温。(4)不同海拔地区各类积温都存在15~25 a和40~50 a两个变化周期,且各类积温基本在20世纪90年代出现突变点,即各类积温在近20 a的增温趋势得到...  相似文献   

2.
土壤有机碳矿化及其温度敏感性(Q_(10))是评价土壤碳排放与固持的重要指标,对未来全球气候变化的预测具有重要意义。本研究以福建中亚热带阔叶林表层土壤(0~10 cm)为研究对象,通过观测不同温度(10、20和30℃)下土壤有机碳矿化速率、Q_(10)、可溶性有机碳(DOC)、微生物生物量碳(MBC)、呼吸熵(qCO_2)的变化,探讨福建中亚热带阔叶林土壤有机碳矿化的温度敏感性及其影响因素。结果表明:温度对土壤有机碳矿化具有显著影响,温度越高,土壤有机碳平均矿化速率、土壤有机碳累积矿化量、平均qCO_2越大(P0.05)。其中,10、20和30℃累积矿化量分别为369.29、559.85、1 077.18μg·g~(-1)。土壤有机碳矿化速率、DOC、qCO_2的均值随时间延长呈降低趋势。此外,MBC含量与温度呈显著负相关关系,土壤有机碳矿化速率与土壤DOC、MBC含量均显著线性相关(P0.05)。温度敏感性随着培养时间延长有降低趋势,且第1天的Q_(10)值(4.7)显著大于第180天的Q_(10)值(1.4)。因此,增温影响土壤DOC、MBC转换,促进土壤有机碳矿化,且高质量碳具有更高的土壤温度敏感性。  相似文献   

3.
天山北坡三工河流域中山带森林发育与气候土壤的关系   总被引:1,自引:0,他引:1  
开展干旱区山地森林发育状况及其土壤因素影响的分析,对干旱区乃至全球山地森林带的成因研究具有重要的理论意义。以天山北坡三工河流域为研究区,主要利用森林调查与遥感影像数据,确定该流域森林带的分布状况,并结合流域气象与土壤采样数据,重点分析气候土壤因素对森林发育的影响。结果表明:1.该流域森林带位于海拔1 510~2 720 m,胸径与树高随海拔增加呈双峰曲线;其中胸径两个峰值分别位于约海拔2 000 m与2 550m,而树高峰值分别为海拔2 100 m与2 600 m,均稍高于胸径的峰值海拔高度;2.在森林带内,年均温随海拔高度增加呈线性下降趋势,最冷月均温(1月)则表现先增加后减小趋势;与其他地区相比,该流域高山林线年均温较高,最冷月均温相差较大,而最热月均温差异不明显;年降水量呈先增加后减小的趋势,且在海拔2 000 m左右达到最大值。土壤属性随海拔递增呈规律性的变化趋势:森林带内海拔约2 000~2 700 m树木发育较好,其有机质、全磷及全氮含量较高;CaCO3,pH值及电导率最小值与海拔2 000 m的最大降水带恰好吻合;土壤A层(0~10 cm)有机质、全磷及全氮含量与B(10~30 cm)、C(>3...  相似文献   

4.
俞洁辉  刘新圣  罗天祥  张林 《地理学报》2012,67(9):1246-1254
本研究基于西藏念青唐古拉山北麓高山嵩草草甸海拔分布上限(5125 m) 地下10 cm和30 cm土壤温度和水分连续3 年(2008-2010 年) 的监测数据, 分析了草甸海拔分布上限土壤温度和未冻水含量的季节动态特征。结果表明:1) 土壤在4 月中下旬解冻, 10 月中下旬冻结;6-8月份土壤温度日振幅最大, 10 cm和30 cm分别为3.8℃和1.4℃;2) 土壤未冻水含量回升(下降) 在解冻(冻结) 开始后, 5-10 月份未冻水含量较高, 其中10 cm和30 cm 分别为2%~6%和15%~20%;3) 基于10 cm土壤温度推算的本地区高山嵩草草甸海拔分布上限的生长季在6 月初至8 月末或9 月初, 持续时间为80-87 天, 生长季平均土壤温度和含水量分别为6.78±0.73℃和4.14±0.91%, 生长季期间日最低温度集中在3~7℃之间(占90%以上天数);4) 与较低海拔处(4980 m) 相比, 高山嵩草草甸海拔分布上限处10 cm土壤温度和未冻水含量均明显偏低, 生长季8月份出现日最低温< 5℃的天数也明显增加。  相似文献   

5.
祁连山青海云杉林树线温度特征   总被引:4,自引:0,他引:4  
树线温度对于解释树线位置及树线形成机理、预测树线对于气候变化的响应具有重要意义。通过在祁连山北坡青海云杉林郁闭林内、树线地带、高山灌丛分布带设置土壤温度自动观测仪器,初步分析了青海云杉林树线温度特征。结果表明:(1)树线处青海云杉根际土壤温度(10cm深度)生长季平均值为4.9℃,低于全球树线生长季平均土壤温度(6.7℃)。(2)生长季长度方面,青海云杉树线(104天)与亚北极(Subarctic,103天)、北方林(Boreal,106天)树线相近。(3)高山灌丛分布带在海拔上高于树线地带,但灌丛地带根际土壤生长季节均温(6.4℃),生长季长度(122天)均高于树线地带,显示了树线之上灌丛相对于乔木生活型有更佳的保持根际土壤热量的优势,从而也成为在树线之上灌丛能够很好生长,并且取代乔木的重要因素。  相似文献   

6.
为探索治理持久性有机污染物的理论依据,本研究对福州市鼓楼区居民区、道路和公园3种功能区的城市绿地土壤中的多环芳烃(PAHs)进行分析,并比较了不同功能区绿地表层土壤(0~20 cm)PAHs的污染程度。研究结果表明:福州市区不同功能区绿地表层的土壤都受到一定程度的多环芳烃污染,检测的15种多环芳烃的含量在不同功能区绿地表层土壤不同深度分布存在差异。在0~10 cm土层中,PAHs含量表现为:居民区道路公园,而在10~20 cm土层中则为:公园道路居民区,且在该土层中多环芳烃的含量总体高于0~10cm的含量。参照荷兰土壤PAHs污染标准,鼓楼区绿地土壤均受到不同程度的PAHs污染,其中10~20 cm土层中多环芳烃的超标率高于0~10 cm。不同功能区绿地表层土壤中多环芳烃的来源受多种因素的影响,主要因素为生物燃烧源。  相似文献   

7.
深入研究黄河流域霜冻演变规律,可为科学防范霜冻危害,促进气候资源合理开发利用提供依据。基于1960—2020年黄河流域83个气象站点统计资料,采用Mann-Kendall突变检验、Morlet小波分析和相关分析等方法,对黄河流域霜冻日期时空变化特征及其影响因素进行了分析。结果表明:(1) 1960—2020年黄河流域平均初霜日期为10月8日,终霜日期为4月30日,平均无霜期161 d。61 a来初霜日以2.51 d·(10a)-1的速率推迟、终霜日以-2.07 d·(10a)-1的速率提前,无霜期以4.48 d·(10a)-1的速率显著延长。20世纪70年代初霜日最早,终霜日最晚,无霜期最短,21世纪10年代初霜日最晚,终霜日最早,无霜期最长。(2) 小波分析表明,黄河流域初、终霜日和无霜期均存在28 a左右的主周期变化。初霜日于2002年发生突变,终霜日于2000年突变,无霜期突变发生于2001年。(3) 从空间分布来看,由上游、中游到下游地区初霜日逐渐延迟,终霜日逐渐提前,无霜期日数逐渐延长。初霜日在流域各地均呈推迟趋势,终霜日仅在西南部合作、久治站呈推迟趋势,无霜期在各地均呈延长趋势,下游地区初霜日和无霜期变化幅度最大。(4) 黄河流域初、终霜日和无霜期主要受海拔高度和日平均气温的影响。  相似文献   

8.
基于地统计学的甘肃臭草群落土壤水分空间异质性   总被引:1,自引:0,他引:1  
土壤水分是植被格局形成和演变的主要因素,土壤水分的空间异质性对于认识干旱区草原植物对环境的响应机制具有重要意义.应用地统计学方法,对祁连山北坡甘肃臭草(Melica przewalskyi)退化草地土壤表层含水量的变异性进行研究.结果表明,臭草型退化草地浅层(0 ~30 cm)土壤水分符合正态分布,土壤含水量沿垂直方向逐渐增大,介于9.56% ~11.21%.各层土壤水分的变异系数分别为12.97% (0~10 cm)、8.8% (10~20 cm)和14.09% (20~30 cm),均属弱变异;0~ 30 cm土壤含水量具有高度的空间异质性,其中34.92%~42.71%的空间异质性是由空间自相关部分引起的,主要体现在16.87 ~ 69.14 m尺度上.在0~ 10 cm土层,引起土壤水分空间变异的主要因素是植被覆盖度的不同,而在10 ~ 30 cm土层,土壤水分空间变异性主要是根系分布的差异引起的.  相似文献   

9.
隔离降雨对米槠天然林土壤微生物生物量和酶活性的影响   总被引:1,自引:0,他引:1  
IPCC 2014综合报告指出亚热带地区降雨将会减少,这会对亚热带地区森林土壤微生物和酶活性产生怎样的影响引起极大关注。以福建省三明市格氏栲自然保护区内200年生米槠天然林为研究对象,于2012年在实验样地布设原位隔离降雨实验,共设置隔离30%降雨、隔离60%降雨和对照3种处理。2017年4月对不同处理进行土壤采样,研究了土壤微生物生物量和酶活性对隔离降雨的响应。结果表明:隔离降雨(30%和60%)显著降低了0~10 cm土层的土壤有机碳(SOC)、可溶性有机碳(DOC)、可溶性有机氮(DON)、总氮(TN)和土壤水分含量(SWC);但对10~20 cm土层影响较小。隔离30%降雨处理0~10 cm土层土壤微生物生物量碳(MBC)和微生物生物量氮(MBN)含量分别比隔离60%降雨处理增加了20.73%和15.71%;10~20 cm土层土壤中各处理之间MBC含量及MBN含量均无显著差异(P0.05)。冗余分析(RDA)表明:TN和MBC是促使0~10 cm土层酶活性发生变异的主要因素,其解释度分别为43%和16.5%;10~20 cm土层土壤酶活性变异的主要因素是MBC,其解释度是58.1%。2个隔离降雨处理均增加0~10 cm土层土壤多酚氧化酶(PHO)、过氧化物酶(PEO)和β-N-乙酰氨基葡萄糖苷酶(NAG)酶活性,却降低了10~20 cm层土壤多酚氧化酶(PHO)和酸性磷酸酶(ACP)的酶活性。  相似文献   

10.
气候变化下中国南北过渡带的动态变化及地域范围探测是识别农业生产敏感区、研究农业适应行为的基础。前人基于“自上而下”或“自下而上”的方法,采用不同的划界指标对中国南北过渡带的范围进行了探索,但对气候变化下南北过渡带范围的地理表达及其地域范围的定量探测较少涉及。采用1951—2018年2400多个国家气象站点气温和降水的逐日观测数据,以800 mm等降水量线、1月0℃均温、日均温≥10℃积温、日均温≥10℃日数和干燥度指数0.5为划界指标,运用ArcGIS栅格计算和均值-标准差对中国南北过渡带进行地理表达。结果表明,中国的南北分界是一条宽窄不一的过渡带,各划界指标的等值线在气候变化下变动明显,各气象要素的大致变动范围西南段较东北段更为稳定,日均温≥10℃积温和干燥度指数的变化幅度大于800 mm等降水量线和1月0℃均温。确定的中国南北过渡带的极端最北界自西向东依次穿过礼县、耀县、韩城、安泽、涉县、静海县;极端最南界自西向东依次穿过北川、宁强、西乡、房县、淅川、罗山、商城、定远、临安县。该范围内提取的637个县域中,位于南北过渡带气候变化稳定区的县域256个,位于气候变化敏感区的县域187个。研究可为中国南北过渡带农业生产适应气候变化提供科学依据。  相似文献   

11.
利用2007—2020年西藏38个气象站点平均草面温度(简称草温)、平均气温、平均地表温度、云量、降水量等观测资料,采用气候统计诊断方法分析了西藏草面温度的时空分异特征及其影响因素,以期科学研究当地草地生态系统和开展专业气象服务。结果表明:西藏年平均草温呈自东南向西北递减的分布。草温与海拔高度存在显著的负相关,海拔高度每升高100 m,季平均草温降低0.44~0.70 ℃,年平均草温降低0.58 ℃;与纬度有着显著的曲线关系,29.3°N以南(北)地区,随着纬度增加,草温随之升高(降低)。各站草温呈一峰一谷的日变化特征,日最低值出现在07:00—08:00(北京时间),日最高值均出现在14:00;草温月平均最低值都出现在1月,月平均最高值出现在6月或7月;76%的站点草温的变化为夏季>春季>秋季>冬季的气候特征。西藏草温年较差为21.4 ℃,较气温年较差偏大3.1 ℃;草温日较差达35.7 ℃,远高于气温日较差,偏大21.6 ℃。草温与气温之差以夏季最大,其次是春季、冬季两者比较接近;草温与地表温度之差以春季最大,夏季次之,冬季最小。在空间分布上,月平均草温与气温、地表温度均呈显著的正相关,与平均风速、积雪日呈显著的负相关;积雪深度对草温的影响,除冬季外二者存在显著的负相关;大部分月份平均草温与总云量、低云量、降水量的关系不显著。86.8%的站点5—9月平均逐小时草温与降水量存在显著的负相关关系。  相似文献   

12.
基于宁夏地区1978—2010年旱灾灾情要素年资料和23个气象站1971—2011年月平均气温和月降水量资料,运用Mann-Kendall趋势分析和突变检验方法,详细分析了该地区近33年旱灾灾情及近41年气候的时空变化特征,在此基础上,剖析了持续性旱灾产生的气候背景。结果表明:1978—2010年宁夏地区旱灾呈持续性加重趋势,受灾人口、农作物受灾面积和直接经济损失增速分别为28.78万人/10a、3.16万hm2/10a和8 504.04万元/10a。空间变化上,旱灾加重速度由中部向北、向南呈减慢趋势。1971—2011年宁夏地区气候总体呈暖干化趋势,年平均气温、平均最高气温和最低气温的升温率分别为0.42 ℃/10a、0.37 ℃/10a和0.50 ℃/10a,增暖表现为全年温度升高,年平均气温和平均最高气温于20世纪90年代早期发生了显著增暖突变;降水量呈减少趋势,但不显著。宁夏持续性旱灾是气温持续快速上升和降水量减少共同作用的结果,其中气温显著增高是该地区干旱灾害加剧的主要气候因素。  相似文献   

13.
姚永慧  寇志翔  胡宇凡  张百平 《地理学报》2020,75(11):2298-2306
秦岭不仅是中国南北的地理分界线,也是中国亚热带和暖温带的气候分界线,在中国地理生态格局中占有重要的地位和作用。由于过渡带的复杂性、过渡性和异质性以及划分指标、研究目的的不同,学术界关于这一南北地理—生态分界线的具体位置一直有争论。为了进一步揭示秦巴山区过渡带的特征,明确中国南北地理—生态分界线的位置,本文选择马尾松(Pinus massoniana)林和油松(Pinus tabulaeformis)林这两类分别代表中国南方亚热带针叶林和北方温带针叶林的植被,结合研究区SRTM地形数据、气温和降水数据等,以年降水、最冷月(1月)气温、最热月(7月)气温和年均温为气候指标,详细分析了这两类植被在秦巴山区的空间分布及二者分界线处的气候条件。结果表明:① 马尾松林和油松林的分界线及相应位置的气候指标可以作为亚热带与暖温带界线划分的植被—气候指标之一。秦巴山区亚热带针叶林(马尾松林)与温带针叶林(油松林)的分界线位于伏牛山南坡至汉中盆地北缘一线(秦岭南坡)海拔1000~1200 m处;分界线处气候指标稳定:年降水750~1000 mm,年均温12~14 ℃,最冷月气温0~4 ℃,最热月气温22~26 ℃。② 通过综合的植被—气候指标来划分秦巴山区亚热带和暖温带的界线,能更科学地确定气候带分界线的位置及过渡带的特征,更全面地反映地表植被—气候格局的变化。此外,秦巴山区亚热带与暖温带的界线应该是由亚热带与暖温带针叶林分界线、阔叶林分界线、灌丛分界线等组成的一个过渡带。本文的研究结果为亚热带与暖温带划分指标的选取提供了一定的科学依据。  相似文献   

14.
我国夏玉米潜在种植分布区的气候适宜性研究   总被引:9,自引:0,他引:9  
何奇瑾  周广胜 《地理学报》2011,66(11):1443-1450
根据我国188 个夏玉米农业气象观测站资料与1971-2000 年10 km×10 km空间分辨率的气候资料,结合国家层次和年尺度筛选出的影响我国玉米种植分布的潜在气候指标,利用最大熵(MaxEnt) 模型和ArcGIS空间分析技术,构建了我国夏玉米潜在种植分布与气候因子关系模型,研究了影响我国夏玉米潜在种植分布的主导气候因子及其气候适宜性。结果表明,影响我国夏玉米潜在种植分布的主导气候因子有:无霜期、年平均温度、≥ 10 oC积温持续天数、≥ 0 oC积温、≥ 10 oC积温、最冷月平均温度、最热月平均温度、年降水;采用夏玉米存在概率这一综合反映各主导因子作用的指标,将我国夏玉米潜在种植分布区划分为4 个等级:最适宜区、适宜区、次适宜区和不适宜区,并阐述了各气候适宜区的气候特征。研究结果可为夏玉米种植的科学布局及制定应对气候变化政策提供参考。  相似文献   

15.
对巴音布鲁克站点1958—2015年的月降水量、降水日数和平均气温进行集合经验模态分解得到其变化趋势,利用Mann Kendall和累计距平法诊断突变点,并采用Morlet小波和R/S法分析其周期特征和未来变化趋势。结果显示:(1) 巴音布鲁克各月降水量1月、6月和11月增多趋势显著,2月、7月和12月呈“凸”字形变化,减少趋势显著。(2) 降水日数1月和9月呈显著减少趋势,2月和6月呈显著增加趋势,3月和11月呈“凸”字形变化,5月、7月和8月呈不同幅度的“凹”字形变化。(3) 各月平均气温基本呈上升趋势,尤其以5月、7月和10月升温最显著。(4) 年降水量、年降水日数和年平均气温分别在1999年、1993年和1997年发生突变,年降水日数增多早于年降水量增多和年平均气温升高的时间,从90年代中期开始气候由干冷逐渐向暖湿转型。(5) 年降水量、年降水日数和年平均气温的主周期分别为41 a、9 a和30 a。(6) 未来年降水量将增多,年降水日数将减少,年平均气温将升高,极端降水发生的频次将增大,易引发洪涝灾害。  相似文献   

16.
基于IBIS模型对中国1955~2006年的土壤上层1m的年平均与月平均土壤温度进行模拟,并利用全国气象站点土壤温度观测数据对模拟结果进行验证,结果显示中国南方区的模拟效果优于北方及青藏高原区,春、夏、秋三季模拟效果优于冬季,总体而言取得了较满意的效果。基于模拟结果,利用Mann-Kendall方法对中国1955~2006年年平均和月平均土壤温度进行趋势分析的结果表明,年平均土壤温度,中国北方呈显著上升趋势,南方呈非显著上升趋势,四川盆地、贵州中部、藏东南及天山地区等小部分区域呈现显著或非显著下降趋势;月平均土壤温度,北方基本保持显著上升趋势,南方地区7~9月份总体呈现出下降的趋势,8月份最为显著。  相似文献   

17.
中国西北近50 a来气温变化特征的进一步研究   总被引:42,自引:14,他引:28  
王劲松  费晓玲  魏锋 《中国沙漠》2008,28(4):724-732
 利用国家气象信息中心最新整编的西北地区135站1960—2005年逐月资料,通过对该地区温度变化特征的分析,在前人研究成果的基础上,进一步揭示出了近50 a来西北地区气温变化的一些新特征: ①西北地区的年和各季节均表现为一致的增温趋势,但陕西南部在夏季出现降温的趋势。冬季和秋季,从塔里木盆地西侧到河套地区,在35°—40°N的带状区域内是增温趋势最强的区域。西北区域整体年平均气温的变化幅度达0.37℃/10a,冬季增温可达0.56℃/10a。无论是年或四季平均的增温率,西北地区都比全国平均的要高。②西北地区冬季和年的平均气温在20世纪80年代中期以后开始表现为明显上升趋势;但春季、夏季和秋季均到了20世纪90年代中期以后,才开始出现气温明显上升的趋势。③西北地区年气温异常首先表现为全区一致的变化型,然后依次为南北相反变化型和陕南气温变化与其他地区不同的独特性。且整体一致型变化近50 a来呈加强态势,而陕南与西北其他地区气温非同步变化的趋势在逐渐缩小。④西北地区近50 a来年气温可分为南疆-高原区、北疆区、西北东部区3个主要空间异常气候区。且从长期倾向来看,南疆-高原区和北疆区有明显的上升变化倾向,西北东部区则表现为波动式的上升趋势。  相似文献   

18.
六盘山景观格局及与主要气候因子的关系   总被引:3,自引:1,他引:2  
以六盘山为研究区,根据野外植被调查资料、Landsat TM影像和气象数据,利用遥感影像分类方法、回归分析方法等,在研究区从南向北选取三条东西走向的等大、平行样区,系统研究景观格局与主要气候要素之间的关系。结果表明:六盘山地区年平均气温为0.8℃-7.0℃,主要受高程控制,气温直减率为0.51℃/100 m;降水量为599-770 mm,在水平方向上东南多、西北少;在垂直方向上,先随着海拔高度上升而增加,至最大降水高度(2502 m)后呈下降趋势。六盘山地区主要植被类型为暖温带落叶阔叶林,随着南至北降水量的逐步减少,植被类型有从森林经由灌丛草甸向草原过渡的趋势,北部草原成分逐渐增加。因此区域降水条件对西北干旱区的植被格局起到决定性作用。该结论有助于理解气候变化背景下生态系统的响应机理,可为区域生态建设提供理论依据。  相似文献   

19.
陆福志  鹿化煜 《地理学报》2019,74(5):875-888
本文建立了秦岭—大巴山高分辨率(~29 m×29 m)的气候格点数据集,包括逐月气温和降水、年均温和年降水、春夏秋冬气温和降水。空间插值方法采用国际上较为先进的ANUSPLIN软件内置的薄盘光滑样条函数,以经度、纬度和海拔为独立变量。空间插值结果与流行的WorldClim 2.0气候格点数据集具有一致性,但是比后者更精确、分辨率更高、细节更突出。本文揭示和证实:秦岭南麓是最冷月气温的0 ℃分界线。秦岭—大巴山气温具有明显的垂直地带性。6月气温直减率最大,为0.61 ℃/100 m;12月气温直减率最小,为0.38 ℃/100 m;年均气温直减率为0.51 ℃/100 m。夏季和秋季降水从西南向东北递减,强降水中心出现在大巴山西南坡。冬季降水从东南向西北递减。大巴山是年降水1000 mm分界线,夏季降水500 mm分界线;秦岭是年降水800 mm分界线,夏季降水400 mm分界线。与大尺度大气环流对比揭示:秦岭—大巴山气温和降水空间分布主要受到东亚季风和地形因子的控制。本文进一步明确了秦岭和大巴山的气候意义:大巴山主要阻挡夏季风北上,影响降水空间分布;秦岭主要阻挡冬季风南下,影响冬季气温空间分布。本文建立的高分辨率气候格点数据集,加深了对区域气候的认识,并将有多方面的用途。  相似文献   

20.
中国蓼科花粉类型的地理分布格局及其与生态因子的关系   总被引:2,自引:2,他引:0  
从蓼科植物的孢粉类型角度,研究了中国蓼科花粉类型的地理分布格局及其与生态因子的关系。根据中国蓼科植物赖以生存的生态因子,得出中国蓼科花粉类型分布区的主要生态因子,包括地理位置(分布中心)、海拔高度、年降水量、年积温及生境数量。在此基础上,根据同一区域内相同或相似的生态环境条件下分布的现代蓼科各种花粉类型,确定一定花粉类型组合所指示的现代气候和环境,为利用地层中蓼科化石花粉重建古气候、古环境及气候变迁提供了现代孢粉学证据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号